daily update
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include "gdb_assert.h"
37 #include <sys/types.h>
38 #include "gdb_stat.h"
39 #include <fcntl.h>
40 #include "gdb_obstack.h"
41 #include "gdb_string.h"
42 #include "hashtab.h"
43
44 #include "breakpoint.h"
45 #include "block.h"
46 #include "dictionary.h"
47 #include "source.h"
48 #include "addrmap.h"
49 #include "arch-utils.h"
50 #include "exec.h"
51 #include "observer.h"
52 #include "complaints.h"
53 #include "psymtab.h"
54 #include "solist.h"
55 #include "gdb_bfd.h"
56
57 /* Keep a registry of per-objfile data-pointers required by other GDB
58 modules. */
59
60 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
61
62 /* Externally visible variables that are owned by this module.
63 See declarations in objfile.h for more info. */
64
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 struct objfile_pspace_info
68 {
69 int objfiles_changed_p;
70 struct obj_section **sections;
71 int num_sections;
72 };
73
74 /* Per-program-space data key. */
75 static const struct program_space_data *objfiles_pspace_data;
76
77 static void
78 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79 {
80 struct objfile_pspace_info *info;
81
82 info = program_space_data (pspace, objfiles_pspace_data);
83 if (info != NULL)
84 {
85 xfree (info->sections);
86 xfree (info);
87 }
88 }
89
90 /* Get the current svr4 data. If none is found yet, add it now. This
91 function always returns a valid object. */
92
93 static struct objfile_pspace_info *
94 get_objfile_pspace_data (struct program_space *pspace)
95 {
96 struct objfile_pspace_info *info;
97
98 info = program_space_data (pspace, objfiles_pspace_data);
99 if (info == NULL)
100 {
101 info = XZALLOC (struct objfile_pspace_info);
102 set_program_space_data (pspace, objfiles_pspace_data, info);
103 }
104
105 return info;
106 }
107
108 \f
109
110 /* Per-BFD data key. */
111
112 static const struct bfd_data *objfiles_bfd_data;
113
114 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
115 NULL, and it already has a per-BFD storage object, use that.
116 Otherwise, allocate a new per-BFD storage object. If ABFD is not
117 NULL, the object is allocated on the BFD; otherwise it is allocated
118 on OBJFILE's obstack. Note that it is not safe to call this
119 multiple times for a given OBJFILE -- it can only be called when
120 allocating or re-initializing OBJFILE. */
121
122 static struct objfile_per_bfd_storage *
123 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
124 {
125 struct objfile_per_bfd_storage *storage = NULL;
126
127 if (abfd != NULL)
128 storage = bfd_data (abfd, objfiles_bfd_data);
129
130 if (storage == NULL)
131 {
132 if (abfd != NULL)
133 {
134 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
135 set_bfd_data (abfd, objfiles_bfd_data, storage);
136 }
137 else
138 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
139 struct objfile_per_bfd_storage);
140
141 obstack_init (&storage->storage_obstack);
142 storage->filename_cache = bcache_xmalloc (NULL, NULL);
143 storage->macro_cache = bcache_xmalloc (NULL, NULL);
144 }
145
146 return storage;
147 }
148
149 /* Free STORAGE. */
150
151 static void
152 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
153 {
154 bcache_xfree (storage->filename_cache);
155 bcache_xfree (storage->macro_cache);
156 obstack_free (&storage->storage_obstack, 0);
157 }
158
159 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
160 cleanup function to the BFD registry. */
161
162 static void
163 objfile_bfd_data_free (struct bfd *unused, void *d)
164 {
165 free_objfile_per_bfd_storage (d);
166 }
167
168 /* See objfiles.h. */
169
170 void
171 set_objfile_per_bfd (struct objfile *objfile)
172 {
173 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
174 }
175
176 \f
177
178 /* Called via bfd_map_over_sections to build up the section table that
179 the objfile references. The objfile contains pointers to the start
180 of the table (objfile->sections) and to the first location after
181 the end of the table (objfile->sections_end). */
182
183 static void
184 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
185 void *objfilep)
186 {
187 struct objfile *objfile = (struct objfile *) objfilep;
188 struct obj_section section;
189 flagword aflag;
190
191 aflag = bfd_get_section_flags (abfd, asect);
192 if (!(aflag & SEC_ALLOC))
193 return;
194 if (bfd_section_size (abfd, asect) == 0)
195 return;
196
197 section.objfile = objfile;
198 section.the_bfd_section = asect;
199 section.ovly_mapped = 0;
200 obstack_grow (&objfile->objfile_obstack,
201 (char *) &section, sizeof (section));
202 objfile->sections_end
203 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
204 }
205
206 /* Builds a section table for OBJFILE.
207
208 Note that while we are building the table, which goes into the
209 objfile obstack, we hijack the sections_end pointer to instead hold
210 a count of the number of sections. When bfd_map_over_sections
211 returns, this count is used to compute the pointer to the end of
212 the sections table, which then overwrites the count.
213
214 Also note that the OFFSET and OVLY_MAPPED in each table entry
215 are initialized to zero.
216
217 Also note that if anything else writes to the objfile obstack while
218 we are building the table, we're pretty much hosed. */
219
220 void
221 build_objfile_section_table (struct objfile *objfile)
222 {
223 objfile->sections_end = 0;
224 bfd_map_over_sections (objfile->obfd,
225 add_to_objfile_sections, (void *) objfile);
226 objfile->sections = obstack_finish (&objfile->objfile_obstack);
227 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
228 }
229
230 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
231 allocate a new objfile struct, fill it in as best we can, link it
232 into the list of all known objfiles, and return a pointer to the
233 new objfile struct.
234
235 The FLAGS word contains various bits (OBJF_*) that can be taken as
236 requests for specific operations. Other bits like OBJF_SHARED are
237 simply copied through to the new objfile flags member. */
238
239 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
240 by jv-lang.c, to create an artificial objfile used to hold
241 information about dynamically-loaded Java classes. Unfortunately,
242 that branch of this function doesn't get tested very frequently, so
243 it's prone to breakage. (E.g. at one time the name was set to NULL
244 in that situation, which broke a loop over all names in the dynamic
245 library loader.) If you change this function, please try to leave
246 things in a consistent state even if abfd is NULL. */
247
248 struct objfile *
249 allocate_objfile (bfd *abfd, int flags)
250 {
251 struct objfile *objfile;
252
253 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
254 objfile->psymbol_cache = psymbol_bcache_init ();
255 /* We could use obstack_specify_allocation here instead, but
256 gdb_obstack.h specifies the alloc/dealloc functions. */
257 obstack_init (&objfile->objfile_obstack);
258 terminate_minimal_symbol_table (objfile);
259
260 objfile_alloc_data (objfile);
261
262 /* Update the per-objfile information that comes from the bfd, ensuring
263 that any data that is reference is saved in the per-objfile data
264 region. */
265
266 objfile->obfd = abfd;
267 gdb_bfd_ref (abfd);
268 if (abfd != NULL)
269 {
270 /* Look up the gdbarch associated with the BFD. */
271 objfile->gdbarch = gdbarch_from_bfd (abfd);
272
273 objfile->name = bfd_get_filename (abfd);
274 objfile->mtime = bfd_get_mtime (abfd);
275
276 /* Build section table. */
277 build_objfile_section_table (objfile);
278 }
279 else
280 {
281 objfile->name = "<<anonymous objfile>>";
282 }
283
284 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
285 objfile->pspace = current_program_space;
286
287 /* Initialize the section indexes for this objfile, so that we can
288 later detect if they are used w/o being properly assigned to. */
289
290 objfile->sect_index_text = -1;
291 objfile->sect_index_data = -1;
292 objfile->sect_index_bss = -1;
293 objfile->sect_index_rodata = -1;
294
295 /* Add this file onto the tail of the linked list of other such files. */
296
297 objfile->next = NULL;
298 if (object_files == NULL)
299 object_files = objfile;
300 else
301 {
302 struct objfile *last_one;
303
304 for (last_one = object_files;
305 last_one->next;
306 last_one = last_one->next);
307 last_one->next = objfile;
308 }
309
310 /* Save passed in flag bits. */
311 objfile->flags |= flags;
312
313 /* Rebuild section map next time we need it. */
314 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
315
316 return objfile;
317 }
318
319 /* Retrieve the gdbarch associated with OBJFILE. */
320 struct gdbarch *
321 get_objfile_arch (struct objfile *objfile)
322 {
323 return objfile->gdbarch;
324 }
325
326 /* If there is a valid and known entry point, function fills *ENTRY_P with it
327 and returns non-zero; otherwise it returns zero. */
328
329 int
330 entry_point_address_query (CORE_ADDR *entry_p)
331 {
332 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
333 return 0;
334
335 *entry_p = symfile_objfile->ei.entry_point;
336
337 return 1;
338 }
339
340 /* Get current entry point address. Call error if it is not known. */
341
342 CORE_ADDR
343 entry_point_address (void)
344 {
345 CORE_ADDR retval;
346
347 if (!entry_point_address_query (&retval))
348 error (_("Entry point address is not known."));
349
350 return retval;
351 }
352
353 /* Iterator on PARENT and every separate debug objfile of PARENT.
354 The usage pattern is:
355 for (objfile = parent;
356 objfile;
357 objfile = objfile_separate_debug_iterate (parent, objfile))
358 ...
359 */
360
361 struct objfile *
362 objfile_separate_debug_iterate (const struct objfile *parent,
363 const struct objfile *objfile)
364 {
365 struct objfile *res;
366
367 /* If any, return the first child. */
368 res = objfile->separate_debug_objfile;
369 if (res)
370 return res;
371
372 /* Common case where there is no separate debug objfile. */
373 if (objfile == parent)
374 return NULL;
375
376 /* Return the brother if any. Note that we don't iterate on brothers of
377 the parents. */
378 res = objfile->separate_debug_objfile_link;
379 if (res)
380 return res;
381
382 for (res = objfile->separate_debug_objfile_backlink;
383 res != parent;
384 res = res->separate_debug_objfile_backlink)
385 {
386 gdb_assert (res != NULL);
387 if (res->separate_debug_objfile_link)
388 return res->separate_debug_objfile_link;
389 }
390 return NULL;
391 }
392
393 /* Put one object file before a specified on in the global list.
394 This can be used to make sure an object file is destroyed before
395 another when using ALL_OBJFILES_SAFE to free all objfiles. */
396 void
397 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
398 {
399 struct objfile **objp;
400
401 unlink_objfile (objfile);
402
403 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
404 {
405 if (*objp == before_this)
406 {
407 objfile->next = *objp;
408 *objp = objfile;
409 return;
410 }
411 }
412
413 internal_error (__FILE__, __LINE__,
414 _("put_objfile_before: before objfile not in list"));
415 }
416
417 /* Put OBJFILE at the front of the list. */
418
419 void
420 objfile_to_front (struct objfile *objfile)
421 {
422 struct objfile **objp;
423 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
424 {
425 if (*objp == objfile)
426 {
427 /* Unhook it from where it is. */
428 *objp = objfile->next;
429 /* Put it in the front. */
430 objfile->next = object_files;
431 object_files = objfile;
432 break;
433 }
434 }
435 }
436
437 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
438 list.
439
440 It is not a bug, or error, to call this function if OBJFILE is not known
441 to be in the current list. This is done in the case of mapped objfiles,
442 for example, just to ensure that the mapped objfile doesn't appear twice
443 in the list. Since the list is threaded, linking in a mapped objfile
444 twice would create a circular list.
445
446 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
447 unlinking it, just to ensure that we have completely severed any linkages
448 between the OBJFILE and the list. */
449
450 void
451 unlink_objfile (struct objfile *objfile)
452 {
453 struct objfile **objpp;
454
455 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
456 {
457 if (*objpp == objfile)
458 {
459 *objpp = (*objpp)->next;
460 objfile->next = NULL;
461 return;
462 }
463 }
464
465 internal_error (__FILE__, __LINE__,
466 _("unlink_objfile: objfile already unlinked"));
467 }
468
469 /* Add OBJFILE as a separate debug objfile of PARENT. */
470
471 void
472 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
473 {
474 gdb_assert (objfile && parent);
475
476 /* Must not be already in a list. */
477 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
478 gdb_assert (objfile->separate_debug_objfile_link == NULL);
479 gdb_assert (objfile->separate_debug_objfile == NULL);
480 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
481 gdb_assert (parent->separate_debug_objfile_link == NULL);
482
483 objfile->separate_debug_objfile_backlink = parent;
484 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
485 parent->separate_debug_objfile = objfile;
486
487 /* Put the separate debug object before the normal one, this is so that
488 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
489 put_objfile_before (objfile, parent);
490 }
491
492 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
493 itself. */
494
495 void
496 free_objfile_separate_debug (struct objfile *objfile)
497 {
498 struct objfile *child;
499
500 for (child = objfile->separate_debug_objfile; child;)
501 {
502 struct objfile *next_child = child->separate_debug_objfile_link;
503 free_objfile (child);
504 child = next_child;
505 }
506 }
507
508 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
509 that as much as possible is allocated on the objfile_obstack
510 so that the memory can be efficiently freed.
511
512 Things which we do NOT free because they are not in malloc'd memory
513 or not in memory specific to the objfile include:
514
515 objfile -> sf
516
517 FIXME: If the objfile is using reusable symbol information (via mmalloc),
518 then we need to take into account the fact that more than one process
519 may be using the symbol information at the same time (when mmalloc is
520 extended to support cooperative locking). When more than one process
521 is using the mapped symbol info, we need to be more careful about when
522 we free objects in the reusable area. */
523
524 void
525 free_objfile (struct objfile *objfile)
526 {
527 /* Free all separate debug objfiles. */
528 free_objfile_separate_debug (objfile);
529
530 if (objfile->separate_debug_objfile_backlink)
531 {
532 /* We freed the separate debug file, make sure the base objfile
533 doesn't reference it. */
534 struct objfile *child;
535
536 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
537
538 if (child == objfile)
539 {
540 /* OBJFILE is the first child. */
541 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
542 objfile->separate_debug_objfile_link;
543 }
544 else
545 {
546 /* Find OBJFILE in the list. */
547 while (1)
548 {
549 if (child->separate_debug_objfile_link == objfile)
550 {
551 child->separate_debug_objfile_link =
552 objfile->separate_debug_objfile_link;
553 break;
554 }
555 child = child->separate_debug_objfile_link;
556 gdb_assert (child);
557 }
558 }
559 }
560
561 /* Remove any references to this objfile in the global value
562 lists. */
563 preserve_values (objfile);
564
565 /* It still may reference data modules have associated with the objfile and
566 the symbol file data. */
567 forget_cached_source_info_for_objfile (objfile);
568
569 breakpoint_free_objfile (objfile);
570
571 /* First do any symbol file specific actions required when we are
572 finished with a particular symbol file. Note that if the objfile
573 is using reusable symbol information (via mmalloc) then each of
574 these routines is responsible for doing the correct thing, either
575 freeing things which are valid only during this particular gdb
576 execution, or leaving them to be reused during the next one. */
577
578 if (objfile->sf != NULL)
579 {
580 (*objfile->sf->sym_finish) (objfile);
581 }
582
583 /* Discard any data modules have associated with the objfile. The function
584 still may reference objfile->obfd. */
585 objfile_free_data (objfile);
586
587 if (objfile->obfd)
588 gdb_bfd_unref (objfile->obfd);
589 else
590 free_objfile_per_bfd_storage (objfile->per_bfd);
591
592 /* Remove it from the chain of all objfiles. */
593
594 unlink_objfile (objfile);
595
596 if (objfile == symfile_objfile)
597 symfile_objfile = NULL;
598
599 if (objfile == rt_common_objfile)
600 rt_common_objfile = NULL;
601
602 /* Before the symbol table code was redone to make it easier to
603 selectively load and remove information particular to a specific
604 linkage unit, gdb used to do these things whenever the monolithic
605 symbol table was blown away. How much still needs to be done
606 is unknown, but we play it safe for now and keep each action until
607 it is shown to be no longer needed. */
608
609 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
610 for example), so we need to call this here. */
611 clear_pc_function_cache ();
612
613 /* Clear globals which might have pointed into a removed objfile.
614 FIXME: It's not clear which of these are supposed to persist
615 between expressions and which ought to be reset each time. */
616 expression_context_block = NULL;
617 innermost_block = NULL;
618
619 /* Check to see if the current_source_symtab belongs to this objfile,
620 and if so, call clear_current_source_symtab_and_line. */
621
622 {
623 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
624
625 if (cursal.symtab && cursal.symtab->objfile == objfile)
626 clear_current_source_symtab_and_line ();
627 }
628
629 /* The last thing we do is free the objfile struct itself. */
630
631 if (objfile->global_psymbols.list)
632 xfree (objfile->global_psymbols.list);
633 if (objfile->static_psymbols.list)
634 xfree (objfile->static_psymbols.list);
635 /* Free the obstacks for non-reusable objfiles. */
636 psymbol_bcache_free (objfile->psymbol_cache);
637 if (objfile->demangled_names_hash)
638 htab_delete (objfile->demangled_names_hash);
639 obstack_free (&objfile->objfile_obstack, 0);
640
641 /* Rebuild section map next time we need it. */
642 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
643
644 xfree (objfile);
645 }
646
647 static void
648 do_free_objfile_cleanup (void *obj)
649 {
650 free_objfile (obj);
651 }
652
653 struct cleanup *
654 make_cleanup_free_objfile (struct objfile *obj)
655 {
656 return make_cleanup (do_free_objfile_cleanup, obj);
657 }
658
659 /* Free all the object files at once and clean up their users. */
660
661 void
662 free_all_objfiles (void)
663 {
664 struct objfile *objfile, *temp;
665 struct so_list *so;
666
667 /* Any objfile referencewould become stale. */
668 for (so = master_so_list (); so; so = so->next)
669 gdb_assert (so->objfile == NULL);
670
671 ALL_OBJFILES_SAFE (objfile, temp)
672 {
673 free_objfile (objfile);
674 }
675 clear_symtab_users (0);
676 }
677 \f
678 /* A helper function for objfile_relocate1 that relocates a single
679 symbol. */
680
681 static void
682 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
683 struct section_offsets *delta)
684 {
685 fixup_symbol_section (sym, objfile);
686
687 /* The RS6000 code from which this was taken skipped
688 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
689 But I'm leaving out that test, on the theory that
690 they can't possibly pass the tests below. */
691 if ((SYMBOL_CLASS (sym) == LOC_LABEL
692 || SYMBOL_CLASS (sym) == LOC_STATIC)
693 && SYMBOL_SECTION (sym) >= 0)
694 {
695 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
696 }
697 }
698
699 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
700 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
701 Return non-zero iff any change happened. */
702
703 static int
704 objfile_relocate1 (struct objfile *objfile,
705 struct section_offsets *new_offsets)
706 {
707 struct obj_section *s;
708 struct section_offsets *delta =
709 ((struct section_offsets *)
710 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
711
712 int i;
713 int something_changed = 0;
714
715 for (i = 0; i < objfile->num_sections; ++i)
716 {
717 delta->offsets[i] =
718 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
719 if (ANOFFSET (delta, i) != 0)
720 something_changed = 1;
721 }
722 if (!something_changed)
723 return 0;
724
725 /* OK, get all the symtabs. */
726 {
727 struct symtab *s;
728
729 ALL_OBJFILE_SYMTABS (objfile, s)
730 {
731 struct linetable *l;
732 struct blockvector *bv;
733 int i;
734
735 /* First the line table. */
736 l = LINETABLE (s);
737 if (l)
738 {
739 for (i = 0; i < l->nitems; ++i)
740 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
741 }
742
743 /* Don't relocate a shared blockvector more than once. */
744 if (!s->primary)
745 continue;
746
747 bv = BLOCKVECTOR (s);
748 if (BLOCKVECTOR_MAP (bv))
749 addrmap_relocate (BLOCKVECTOR_MAP (bv),
750 ANOFFSET (delta, s->block_line_section));
751
752 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
753 {
754 struct block *b;
755 struct symbol *sym;
756 struct dict_iterator iter;
757
758 b = BLOCKVECTOR_BLOCK (bv, i);
759 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
760 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
761
762 /* We only want to iterate over the local symbols, not any
763 symbols in included symtabs. */
764 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
765 {
766 relocate_one_symbol (sym, objfile, delta);
767 }
768 }
769 }
770 }
771
772 /* Relocate isolated symbols. */
773 {
774 struct symbol *iter;
775
776 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
777 relocate_one_symbol (iter, objfile, delta);
778 }
779
780 if (objfile->psymtabs_addrmap)
781 addrmap_relocate (objfile->psymtabs_addrmap,
782 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
783
784 if (objfile->sf)
785 objfile->sf->qf->relocate (objfile, new_offsets, delta);
786
787 {
788 struct minimal_symbol *msym;
789
790 ALL_OBJFILE_MSYMBOLS (objfile, msym)
791 if (SYMBOL_SECTION (msym) >= 0)
792 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
793 }
794 /* Relocating different sections by different amounts may cause the symbols
795 to be out of order. */
796 msymbols_sort (objfile);
797
798 if (objfile->ei.entry_point_p)
799 {
800 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
801 only as a fallback. */
802 struct obj_section *s;
803 s = find_pc_section (objfile->ei.entry_point);
804 if (s)
805 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
806 else
807 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
808 }
809
810 {
811 int i;
812
813 for (i = 0; i < objfile->num_sections; ++i)
814 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
815 }
816
817 /* Rebuild section map next time we need it. */
818 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
819
820 /* Update the table in exec_ops, used to read memory. */
821 ALL_OBJFILE_OSECTIONS (objfile, s)
822 {
823 int idx = s->the_bfd_section->index;
824
825 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
826 obj_section_addr (s));
827 }
828
829 /* Relocating probes. */
830 if (objfile->sf && objfile->sf->sym_probe_fns)
831 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
832 new_offsets, delta);
833
834 /* Data changed. */
835 return 1;
836 }
837
838 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
839 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
840
841 The number and ordering of sections does differ between the two objfiles.
842 Only their names match. Also the file offsets will differ (objfile being
843 possibly prelinked but separate_debug_objfile is probably not prelinked) but
844 the in-memory absolute address as specified by NEW_OFFSETS must match both
845 files. */
846
847 void
848 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
849 {
850 struct objfile *debug_objfile;
851 int changed = 0;
852
853 changed |= objfile_relocate1 (objfile, new_offsets);
854
855 for (debug_objfile = objfile->separate_debug_objfile;
856 debug_objfile;
857 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
858 {
859 struct section_addr_info *objfile_addrs;
860 struct section_offsets *new_debug_offsets;
861 struct cleanup *my_cleanups;
862
863 objfile_addrs = build_section_addr_info_from_objfile (objfile);
864 my_cleanups = make_cleanup (xfree, objfile_addrs);
865
866 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
867 relative ones must be already created according to debug_objfile. */
868
869 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
870
871 gdb_assert (debug_objfile->num_sections
872 == bfd_count_sections (debug_objfile->obfd));
873 new_debug_offsets =
874 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
875 make_cleanup (xfree, new_debug_offsets);
876 relative_addr_info_to_section_offsets (new_debug_offsets,
877 debug_objfile->num_sections,
878 objfile_addrs);
879
880 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
881
882 do_cleanups (my_cleanups);
883 }
884
885 /* Relocate breakpoints as necessary, after things are relocated. */
886 if (changed)
887 breakpoint_re_set ();
888 }
889
890 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
891 not touched here.
892 Return non-zero iff any change happened. */
893
894 static int
895 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
896 {
897 struct section_offsets *new_offsets =
898 ((struct section_offsets *)
899 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
900 int i;
901
902 for (i = 0; i < objfile->num_sections; ++i)
903 new_offsets->offsets[i] = slide;
904
905 return objfile_relocate1 (objfile, new_offsets);
906 }
907
908 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
909 SEPARATE_DEBUG_OBJFILEs. */
910
911 void
912 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
913 {
914 struct objfile *debug_objfile;
915 int changed = 0;
916
917 changed |= objfile_rebase1 (objfile, slide);
918
919 for (debug_objfile = objfile->separate_debug_objfile;
920 debug_objfile;
921 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
922 changed |= objfile_rebase1 (debug_objfile, slide);
923
924 /* Relocate breakpoints as necessary, after things are relocated. */
925 if (changed)
926 breakpoint_re_set ();
927 }
928 \f
929 /* Return non-zero if OBJFILE has partial symbols. */
930
931 int
932 objfile_has_partial_symbols (struct objfile *objfile)
933 {
934 if (!objfile->sf)
935 return 0;
936
937 /* If we have not read psymbols, but we have a function capable of reading
938 them, then that is an indication that they are in fact available. Without
939 this function the symbols may have been already read in but they also may
940 not be present in this objfile. */
941 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
942 && objfile->sf->sym_read_psymbols != NULL)
943 return 1;
944
945 return objfile->sf->qf->has_symbols (objfile);
946 }
947
948 /* Return non-zero if OBJFILE has full symbols. */
949
950 int
951 objfile_has_full_symbols (struct objfile *objfile)
952 {
953 return objfile->symtabs != NULL;
954 }
955
956 /* Return non-zero if OBJFILE has full or partial symbols, either directly
957 or through a separate debug file. */
958
959 int
960 objfile_has_symbols (struct objfile *objfile)
961 {
962 struct objfile *o;
963
964 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
965 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
966 return 1;
967 return 0;
968 }
969
970
971 /* Many places in gdb want to test just to see if we have any partial
972 symbols available. This function returns zero if none are currently
973 available, nonzero otherwise. */
974
975 int
976 have_partial_symbols (void)
977 {
978 struct objfile *ofp;
979
980 ALL_OBJFILES (ofp)
981 {
982 if (objfile_has_partial_symbols (ofp))
983 return 1;
984 }
985 return 0;
986 }
987
988 /* Many places in gdb want to test just to see if we have any full
989 symbols available. This function returns zero if none are currently
990 available, nonzero otherwise. */
991
992 int
993 have_full_symbols (void)
994 {
995 struct objfile *ofp;
996
997 ALL_OBJFILES (ofp)
998 {
999 if (objfile_has_full_symbols (ofp))
1000 return 1;
1001 }
1002 return 0;
1003 }
1004
1005
1006 /* This operations deletes all objfile entries that represent solibs that
1007 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1008 command. */
1009
1010 void
1011 objfile_purge_solibs (void)
1012 {
1013 struct objfile *objf;
1014 struct objfile *temp;
1015
1016 ALL_OBJFILES_SAFE (objf, temp)
1017 {
1018 /* We assume that the solib package has been purged already, or will
1019 be soon. */
1020
1021 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1022 free_objfile (objf);
1023 }
1024 }
1025
1026
1027 /* Many places in gdb want to test just to see if we have any minimal
1028 symbols available. This function returns zero if none are currently
1029 available, nonzero otherwise. */
1030
1031 int
1032 have_minimal_symbols (void)
1033 {
1034 struct objfile *ofp;
1035
1036 ALL_OBJFILES (ofp)
1037 {
1038 if (ofp->minimal_symbol_count > 0)
1039 {
1040 return 1;
1041 }
1042 }
1043 return 0;
1044 }
1045
1046 /* Qsort comparison function. */
1047
1048 static int
1049 qsort_cmp (const void *a, const void *b)
1050 {
1051 const struct obj_section *sect1 = *(const struct obj_section **) a;
1052 const struct obj_section *sect2 = *(const struct obj_section **) b;
1053 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1054 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1055
1056 if (sect1_addr < sect2_addr)
1057 return -1;
1058 else if (sect1_addr > sect2_addr)
1059 return 1;
1060 else
1061 {
1062 /* Sections are at the same address. This could happen if
1063 A) we have an objfile and a separate debuginfo.
1064 B) we are confused, and have added sections without proper relocation,
1065 or something like that. */
1066
1067 const struct objfile *const objfile1 = sect1->objfile;
1068 const struct objfile *const objfile2 = sect2->objfile;
1069
1070 if (objfile1->separate_debug_objfile == objfile2
1071 || objfile2->separate_debug_objfile == objfile1)
1072 {
1073 /* Case A. The ordering doesn't matter: separate debuginfo files
1074 will be filtered out later. */
1075
1076 return 0;
1077 }
1078
1079 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1080 triage. This section could be slow (since we iterate over all
1081 objfiles in each call to qsort_cmp), but this shouldn't happen
1082 very often (GDB is already in a confused state; one hopes this
1083 doesn't happen at all). If you discover that significant time is
1084 spent in the loops below, do 'set complaints 100' and examine the
1085 resulting complaints. */
1086
1087 if (objfile1 == objfile2)
1088 {
1089 /* Both sections came from the same objfile. We are really confused.
1090 Sort on sequence order of sections within the objfile. */
1091
1092 const struct obj_section *osect;
1093
1094 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1095 if (osect == sect1)
1096 return -1;
1097 else if (osect == sect2)
1098 return 1;
1099
1100 /* We should have found one of the sections before getting here. */
1101 gdb_assert_not_reached ("section not found");
1102 }
1103 else
1104 {
1105 /* Sort on sequence number of the objfile in the chain. */
1106
1107 const struct objfile *objfile;
1108
1109 ALL_OBJFILES (objfile)
1110 if (objfile == objfile1)
1111 return -1;
1112 else if (objfile == objfile2)
1113 return 1;
1114
1115 /* We should have found one of the objfiles before getting here. */
1116 gdb_assert_not_reached ("objfile not found");
1117 }
1118 }
1119
1120 /* Unreachable. */
1121 gdb_assert_not_reached ("unexpected code path");
1122 return 0;
1123 }
1124
1125 /* Select "better" obj_section to keep. We prefer the one that came from
1126 the real object, rather than the one from separate debuginfo.
1127 Most of the time the two sections are exactly identical, but with
1128 prelinking the .rel.dyn section in the real object may have different
1129 size. */
1130
1131 static struct obj_section *
1132 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1133 {
1134 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1135 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1136 || (b->objfile->separate_debug_objfile == a->objfile));
1137 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1138 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1139
1140 if (a->objfile->separate_debug_objfile != NULL)
1141 return a;
1142 return b;
1143 }
1144
1145 /* Return 1 if SECTION should be inserted into the section map.
1146 We want to insert only non-overlay and non-TLS section. */
1147
1148 static int
1149 insert_section_p (const struct bfd *abfd,
1150 const struct bfd_section *section)
1151 {
1152 const bfd_vma lma = bfd_section_lma (abfd, section);
1153
1154 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1155 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1156 /* This is an overlay section. IN_MEMORY check is needed to avoid
1157 discarding sections from the "system supplied DSO" (aka vdso)
1158 on some Linux systems (e.g. Fedora 11). */
1159 return 0;
1160 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1161 /* This is a TLS section. */
1162 return 0;
1163
1164 return 1;
1165 }
1166
1167 /* Filter out overlapping sections where one section came from the real
1168 objfile, and the other from a separate debuginfo file.
1169 Return the size of table after redundant sections have been eliminated. */
1170
1171 static int
1172 filter_debuginfo_sections (struct obj_section **map, int map_size)
1173 {
1174 int i, j;
1175
1176 for (i = 0, j = 0; i < map_size - 1; i++)
1177 {
1178 struct obj_section *const sect1 = map[i];
1179 struct obj_section *const sect2 = map[i + 1];
1180 const struct objfile *const objfile1 = sect1->objfile;
1181 const struct objfile *const objfile2 = sect2->objfile;
1182 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1183 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1184
1185 if (sect1_addr == sect2_addr
1186 && (objfile1->separate_debug_objfile == objfile2
1187 || objfile2->separate_debug_objfile == objfile1))
1188 {
1189 map[j++] = preferred_obj_section (sect1, sect2);
1190 ++i;
1191 }
1192 else
1193 map[j++] = sect1;
1194 }
1195
1196 if (i < map_size)
1197 {
1198 gdb_assert (i == map_size - 1);
1199 map[j++] = map[i];
1200 }
1201
1202 /* The map should not have shrunk to less than half the original size. */
1203 gdb_assert (map_size / 2 <= j);
1204
1205 return j;
1206 }
1207
1208 /* Filter out overlapping sections, issuing a warning if any are found.
1209 Overlapping sections could really be overlay sections which we didn't
1210 classify as such in insert_section_p, or we could be dealing with a
1211 corrupt binary. */
1212
1213 static int
1214 filter_overlapping_sections (struct obj_section **map, int map_size)
1215 {
1216 int i, j;
1217
1218 for (i = 0, j = 0; i < map_size - 1; )
1219 {
1220 int k;
1221
1222 map[j++] = map[i];
1223 for (k = i + 1; k < map_size; k++)
1224 {
1225 struct obj_section *const sect1 = map[i];
1226 struct obj_section *const sect2 = map[k];
1227 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1228 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1229 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1230
1231 gdb_assert (sect1_addr <= sect2_addr);
1232
1233 if (sect1_endaddr <= sect2_addr)
1234 break;
1235 else
1236 {
1237 /* We have an overlap. Report it. */
1238
1239 struct objfile *const objf1 = sect1->objfile;
1240 struct objfile *const objf2 = sect2->objfile;
1241
1242 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1243 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1244
1245 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1246
1247 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1248
1249 complaint (&symfile_complaints,
1250 _("unexpected overlap between:\n"
1251 " (A) section `%s' from `%s' [%s, %s)\n"
1252 " (B) section `%s' from `%s' [%s, %s).\n"
1253 "Will ignore section B"),
1254 bfd_section_name (abfd1, bfds1), objf1->name,
1255 paddress (gdbarch, sect1_addr),
1256 paddress (gdbarch, sect1_endaddr),
1257 bfd_section_name (abfd2, bfds2), objf2->name,
1258 paddress (gdbarch, sect2_addr),
1259 paddress (gdbarch, sect2_endaddr));
1260 }
1261 }
1262 i = k;
1263 }
1264
1265 if (i < map_size)
1266 {
1267 gdb_assert (i == map_size - 1);
1268 map[j++] = map[i];
1269 }
1270
1271 return j;
1272 }
1273
1274
1275 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1276 TLS, overlay and overlapping sections. */
1277
1278 static void
1279 update_section_map (struct program_space *pspace,
1280 struct obj_section ***pmap, int *pmap_size)
1281 {
1282 int alloc_size, map_size, i;
1283 struct obj_section *s, **map;
1284 struct objfile *objfile;
1285
1286 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1287
1288 map = *pmap;
1289 xfree (map);
1290
1291 alloc_size = 0;
1292 ALL_PSPACE_OBJFILES (pspace, objfile)
1293 ALL_OBJFILE_OSECTIONS (objfile, s)
1294 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1295 alloc_size += 1;
1296
1297 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1298 if (alloc_size == 0)
1299 {
1300 *pmap = NULL;
1301 *pmap_size = 0;
1302 return;
1303 }
1304
1305 map = xmalloc (alloc_size * sizeof (*map));
1306
1307 i = 0;
1308 ALL_PSPACE_OBJFILES (pspace, objfile)
1309 ALL_OBJFILE_OSECTIONS (objfile, s)
1310 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1311 map[i++] = s;
1312
1313 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1314 map_size = filter_debuginfo_sections(map, alloc_size);
1315 map_size = filter_overlapping_sections(map, map_size);
1316
1317 if (map_size < alloc_size)
1318 /* Some sections were eliminated. Trim excess space. */
1319 map = xrealloc (map, map_size * sizeof (*map));
1320 else
1321 gdb_assert (alloc_size == map_size);
1322
1323 *pmap = map;
1324 *pmap_size = map_size;
1325 }
1326
1327 /* Bsearch comparison function. */
1328
1329 static int
1330 bsearch_cmp (const void *key, const void *elt)
1331 {
1332 const CORE_ADDR pc = *(CORE_ADDR *) key;
1333 const struct obj_section *section = *(const struct obj_section **) elt;
1334
1335 if (pc < obj_section_addr (section))
1336 return -1;
1337 if (pc < obj_section_endaddr (section))
1338 return 0;
1339 return 1;
1340 }
1341
1342 /* Returns a section whose range includes PC or NULL if none found. */
1343
1344 struct obj_section *
1345 find_pc_section (CORE_ADDR pc)
1346 {
1347 struct objfile_pspace_info *pspace_info;
1348 struct obj_section *s, **sp;
1349
1350 /* Check for mapped overlay section first. */
1351 s = find_pc_mapped_section (pc);
1352 if (s)
1353 return s;
1354
1355 pspace_info = get_objfile_pspace_data (current_program_space);
1356 if (pspace_info->objfiles_changed_p != 0)
1357 {
1358 update_section_map (current_program_space,
1359 &pspace_info->sections,
1360 &pspace_info->num_sections);
1361
1362 /* Don't need updates to section map until objfiles are added,
1363 removed or relocated. */
1364 pspace_info->objfiles_changed_p = 0;
1365 }
1366
1367 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1368 bsearch be non-NULL. */
1369 if (pspace_info->sections == NULL)
1370 {
1371 gdb_assert (pspace_info->num_sections == 0);
1372 return NULL;
1373 }
1374
1375 sp = (struct obj_section **) bsearch (&pc,
1376 pspace_info->sections,
1377 pspace_info->num_sections,
1378 sizeof (*pspace_info->sections),
1379 bsearch_cmp);
1380 if (sp != NULL)
1381 return *sp;
1382 return NULL;
1383 }
1384
1385
1386 /* In SVR4, we recognize a trampoline by it's section name.
1387 That is, if the pc is in a section named ".plt" then we are in
1388 a trampoline. */
1389
1390 int
1391 in_plt_section (CORE_ADDR pc, char *name)
1392 {
1393 struct obj_section *s;
1394 int retval = 0;
1395
1396 s = find_pc_section (pc);
1397
1398 retval = (s != NULL
1399 && s->the_bfd_section->name != NULL
1400 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1401 return (retval);
1402 }
1403 \f
1404
1405 /* Set objfiles_changed_p so section map will be rebuilt next time it
1406 is used. Called by reread_symbols. */
1407
1408 void
1409 objfiles_changed (void)
1410 {
1411 /* Rebuild section map next time we need it. */
1412 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1413 }
1414
1415 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1416 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1417 searching the objfiles in the order they are stored internally,
1418 ignoring CURRENT_OBJFILE.
1419
1420 On most platorms, it should be close enough to doing the best
1421 we can without some knowledge specific to the architecture. */
1422
1423 void
1424 default_iterate_over_objfiles_in_search_order
1425 (struct gdbarch *gdbarch,
1426 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1427 void *cb_data, struct objfile *current_objfile)
1428 {
1429 int stop = 0;
1430 struct objfile *objfile;
1431
1432 ALL_OBJFILES (objfile)
1433 {
1434 stop = cb (objfile, cb_data);
1435 if (stop)
1436 return;
1437 }
1438 }
1439
1440 /* Provide a prototype to silence -Wmissing-prototypes. */
1441 extern initialize_file_ftype _initialize_objfiles;
1442
1443 void
1444 _initialize_objfiles (void)
1445 {
1446 objfiles_pspace_data
1447 = register_program_space_data_with_cleanup (NULL,
1448 objfiles_pspace_data_cleanup);
1449
1450 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1451 objfile_bfd_data_free);
1452 }
This page took 0.058394 seconds and 4 git commands to generate.