fix stabs.texinfo xref bugs
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29
30 #include <sys/types.h>
31 #include <sys/stat.h>
32 #include <fcntl.h>
33 #include <obstack.h>
34
35 /* Prototypes for local functions */
36
37 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
38
39 static int
40 open_existing_mapped_file PARAMS ((char *, long, int));
41
42 static int
43 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
44
45 static CORE_ADDR
46 map_to_address PARAMS ((void));
47
48 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
49
50 /* Message to be printed before the error message, when an error occurs. */
51
52 extern char *error_pre_print;
53
54 /* Externally visible variables that are owned by this module.
55 See declarations in objfile.h for more info. */
56
57 struct objfile *object_files; /* Linked list of all objfiles */
58 struct objfile *current_objfile; /* For symbol file being read in */
59 struct objfile *symfile_objfile; /* Main symbol table loaded from */
60
61 int mapped_symbol_files; /* Try to use mapped symbol files */
62
63 /* Locate all mappable sections of a BFD file.
64 objfile_p_char is a char * to get it through
65 bfd_map_over_sections; we cast it back to its proper type. */
66
67 static void
68 add_to_objfile_sections (abfd, asect, objfile_p_char)
69 bfd *abfd;
70 sec_ptr asect;
71 PTR objfile_p_char;
72 {
73 struct objfile *objfile = (struct objfile *) objfile_p_char;
74 struct obj_section section;
75 flagword aflag;
76
77 aflag = bfd_get_section_flags (abfd, asect);
78 /* FIXME, we need to handle BSS segment here...it alloc's but doesn't load */
79 if (!(aflag & SEC_LOAD))
80 return;
81 if (0 == bfd_section_size (abfd, asect))
82 return;
83 section.offset = 0;
84 section.sec_ptr = asect;
85 section.addr = bfd_section_vma (abfd, asect);
86 section.endaddr = section.addr + bfd_section_size (abfd, asect);
87 obstack_grow (&objfile->psymbol_obstack, &section, sizeof(section));
88 objfile->sections_end = (struct obj_section *) (((int) objfile->sections_end) + 1);
89 }
90
91 /* Builds a section table for OBJFILE.
92 Returns 0 if OK, 1 on error. */
93
94 static int
95 build_objfile_section_table (objfile)
96 struct objfile *objfile;
97 {
98 if (objfile->sections)
99 abort();
100
101 objfile->sections_end = 0;
102 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
103 objfile->sections = (struct obj_section *)
104 obstack_finish (&objfile->psymbol_obstack);
105 objfile->sections_end = objfile->sections + (int) objfile->sections_end;
106 return(0);
107 }
108
109 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
110 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
111 struct, fill it in as best we can, link it into the list of all known
112 objfiles, and return a pointer to the new objfile struct. */
113
114 struct objfile *
115 allocate_objfile (abfd, mapped)
116 bfd *abfd;
117 int mapped;
118 {
119 struct objfile *objfile = NULL;
120 int fd;
121 void *md;
122 CORE_ADDR mapto;
123
124 mapped |= mapped_symbol_files;
125
126 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
127
128 /* If we can support mapped symbol files, try to open/reopen the mapped file
129 that corresponds to the file from which we wish to read symbols. If the
130 objfile is to be mapped, we must malloc the structure itself using the
131 mmap version, and arrange that all memory allocation for the objfile uses
132 the mmap routines. If we are reusing an existing mapped file, from which
133 we get our objfile pointer, we have to make sure that we update the
134 pointers to the alloc/free functions in the obstack, in case these
135 functions have moved within the current gdb. */
136
137 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
138 mapped);
139 if (fd >= 0)
140 {
141 if (((mapto = map_to_address ()) == 0) ||
142 ((md = mmalloc_attach (fd, (void *) mapto)) == NULL))
143 {
144 close (fd);
145 }
146 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
147 {
148 /* Update memory corruption handler function addresses. */
149 init_malloc (md);
150 objfile -> md = md;
151 objfile -> mmfd = fd;
152 /* Update pointers to functions to *our* copies */
153 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
154 obstack_freefun (&objfile -> psymbol_obstack, mfree);
155 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
156 obstack_freefun (&objfile -> symbol_obstack, mfree);
157 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
158 obstack_freefun (&objfile -> type_obstack, mfree);
159 /* If already in objfile list, unlink it. */
160 unlink_objfile (objfile);
161 /* Forget things specific to a particular gdb, may have changed. */
162 objfile -> sf = NULL;
163 }
164 else
165 {
166 /* Set up to detect internal memory corruption. MUST be done before
167 the first malloc. See comments in init_malloc() and mmcheck(). */
168 init_malloc (md);
169 objfile = (struct objfile *) xmmalloc (md, sizeof (struct objfile));
170 memset (objfile, 0, sizeof (struct objfile));
171 objfile -> md = md;
172 objfile -> mmfd = fd;
173 objfile -> flags |= OBJF_MAPPED;
174 mmalloc_setkey (objfile -> md, 0, objfile);
175 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
176 0, 0, xmmalloc, mfree,
177 objfile -> md);
178 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
179 0, 0, xmmalloc, mfree,
180 objfile -> md);
181 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
182 0, 0, xmmalloc, mfree,
183 objfile -> md);
184 }
185 }
186
187 if (mapped && (objfile == NULL))
188 {
189 warning ("symbol table for '%s' will not be mapped",
190 bfd_get_filename (abfd));
191 }
192
193 #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */
194
195 if (mapped)
196 {
197 warning ("this version of gdb does not support mapped symbol tables.");
198
199 /* Turn off the global flag so we don't try to do mapped symbol tables
200 any more, which shuts up gdb unless the user specifically gives the
201 "mapped" keyword again. */
202
203 mapped_symbol_files = 0;
204 }
205
206 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
207
208 /* If we don't support mapped symbol files, didn't ask for the file to be
209 mapped, or failed to open the mapped file for some reason, then revert
210 back to an unmapped objfile. */
211
212 if (objfile == NULL)
213 {
214 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
215 memset (objfile, 0, sizeof (struct objfile));
216 objfile -> md = NULL;
217 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
218 free);
219 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
220 free);
221 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
222 free);
223 }
224
225 /* Update the per-objfile information that comes from the bfd, ensuring
226 that any data that is reference is saved in the per-objfile data
227 region. */
228
229 objfile -> obfd = abfd;
230 if (objfile -> name != NULL)
231 {
232 mfree (objfile -> md, objfile -> name);
233 }
234 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
235 objfile -> mtime = bfd_get_mtime (abfd);
236
237 /* Build section table. */
238
239 if (build_objfile_section_table (objfile))
240 {
241 error ("Can't find the file sections in `%s': %s",
242 objfile -> name, bfd_errmsg (bfd_error));
243 }
244
245 /* Push this file onto the head of the linked list of other such files. */
246
247 objfile -> next = object_files;
248 object_files = objfile;
249
250 return (objfile);
251 }
252
253 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
254 list.
255
256 It is not a bug, or error, to call this function if OBJFILE is not known
257 to be in the current list. This is done in the case of mapped objfiles,
258 for example, just to ensure that the mapped objfile doesn't appear twice
259 in the list. Since the list is threaded, linking in a mapped objfile
260 twice would create a circular list.
261
262 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
263 unlinking it, just to ensure that we have completely severed any linkages
264 between the OBJFILE and the list. */
265
266 void
267 unlink_objfile (objfile)
268 struct objfile *objfile;
269 {
270 struct objfile** objpp;
271
272 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
273 {
274 if (*objpp == objfile)
275 {
276 *objpp = (*objpp) -> next;
277 objfile -> next = NULL;
278 break;
279 }
280 }
281 }
282
283
284 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
285 that as much as possible is allocated on the symbol_obstack and
286 psymbol_obstack, so that the memory can be efficiently freed.
287
288 Things which we do NOT free because they are not in malloc'd memory
289 or not in memory specific to the objfile include:
290
291 objfile -> sf
292
293 FIXME: If the objfile is using reusable symbol information (via mmalloc),
294 then we need to take into account the fact that more than one process
295 may be using the symbol information at the same time (when mmalloc is
296 extended to support cooperative locking). When more than one process
297 is using the mapped symbol info, we need to be more careful about when
298 we free objects in the reusable area. */
299
300 void
301 free_objfile (objfile)
302 struct objfile *objfile;
303 {
304 int mmfd;
305
306 /* First do any symbol file specific actions required when we are
307 finished with a particular symbol file. Note that if the objfile
308 is using reusable symbol information (via mmalloc) then each of
309 these routines is responsible for doing the correct thing, either
310 freeing things which are valid only during this particular gdb
311 execution, or leaving them to be reused during the next one. */
312
313 if (objfile -> sf != NULL)
314 {
315 (*objfile -> sf -> sym_finish) (objfile);
316 }
317
318 /* We always close the bfd. */
319
320 if (objfile -> obfd != NULL)
321 {
322 char *name = bfd_get_filename (objfile->obfd);
323 bfd_close (objfile -> obfd);
324 free (name);
325 }
326
327 /* Remove it from the chain of all objfiles. */
328
329 unlink_objfile (objfile);
330
331 /* Before the symbol table code was redone to make it easier to
332 selectively load and remove information particular to a specific
333 linkage unit, gdb used to do these things whenever the monolithic
334 symbol table was blown away. How much still needs to be done
335 is unknown, but we play it safe for now and keep each action until
336 it is shown to be no longer needed. */
337
338 clear_symtab_users_once ();
339 #if defined (CLEAR_SOLIB)
340 CLEAR_SOLIB ();
341 #endif
342 clear_pc_function_cache ();
343
344 /* The last thing we do is free the objfile struct itself for the
345 non-reusable case, or detach from the mapped file for the reusable
346 case. Note that the mmalloc_detach or the mfree is the last thing
347 we can do with this objfile. */
348
349 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
350
351 if (objfile -> flags & OBJF_MAPPED)
352 {
353 /* Remember the fd so we can close it. We can't close it before
354 doing the detach, and after the detach the objfile is gone. */
355 mmfd = objfile -> mmfd;
356 mmalloc_detach (objfile -> md);
357 objfile = NULL;
358 close (mmfd);
359 }
360
361 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
362
363 /* If we still have an objfile, then either we don't support reusable
364 objfiles or this one was not reusable. So free it normally. */
365
366 if (objfile != NULL)
367 {
368 if (objfile -> name != NULL)
369 {
370 mfree (objfile -> md, objfile -> name);
371 }
372 if (objfile->global_psymbols.list)
373 mfree (objfile->md, objfile->global_psymbols.list);
374 if (objfile->static_psymbols.list)
375 mfree (objfile->md, objfile->static_psymbols.list);
376 /* Free the obstacks for non-reusable objfiles */
377 obstack_free (&objfile -> psymbol_obstack, 0);
378 obstack_free (&objfile -> symbol_obstack, 0);
379 obstack_free (&objfile -> type_obstack, 0);
380 mfree (objfile -> md, objfile);
381 objfile = NULL;
382 }
383 }
384
385
386 /* Free all the object files at once. */
387
388 void
389 free_all_objfiles ()
390 {
391 struct objfile *objfile, *temp;
392
393 ALL_OBJFILES_SAFE (objfile, temp)
394 {
395 free_objfile (objfile);
396 }
397 }
398 \f
399 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
400 entries in new_offsets. */
401 void
402 objfile_relocate (objfile, new_offsets)
403 struct objfile *objfile;
404 struct section_offsets *new_offsets;
405 {
406 struct section_offsets *delta = (struct section_offsets *) alloca
407 (sizeof (struct section_offsets)
408 + objfile->num_sections * sizeof (delta->offsets));
409
410 {
411 int i;
412 int something_changed = 0;
413 for (i = 0; i < objfile->num_sections; ++i)
414 {
415 ANOFFSET (delta, i) =
416 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
417 if (ANOFFSET (delta, i) != 0)
418 something_changed = 1;
419 }
420 if (!something_changed)
421 return;
422 }
423
424 /* OK, get all the symtabs. */
425 {
426 struct symtab *s;
427
428 for (s = objfile->symtabs; s; s = s->next)
429 {
430 struct linetable *l;
431 struct blockvector *bv;
432 int i;
433
434 /* First the line table. */
435 l = LINETABLE (s);
436 if (l)
437 {
438 for (i = 0; i < l->nitems; ++i)
439 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
440 }
441
442 /* Don't relocate a shared blockvector more than once. */
443 if (!s->primary)
444 continue;
445
446 bv = BLOCKVECTOR (s);
447 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
448 {
449 struct block *b;
450 int j;
451
452 b = BLOCKVECTOR_BLOCK (bv, i);
453 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
454 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
455
456 for (j = 0; j < BLOCK_NSYMS (b); ++j)
457 {
458 struct symbol *sym = BLOCK_SYM (b, j);
459 /* The RS6000 code from which this was taken skipped
460 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
461 But I'm leaving out that test, on the theory that
462 they can't possibly pass the tests below. */
463 if ((SYMBOL_CLASS (sym) == LOC_LABEL
464 || SYMBOL_CLASS (sym) == LOC_STATIC)
465 && SYMBOL_SECTION (sym) >= 0)
466 {
467 SYMBOL_VALUE_ADDRESS (sym) +=
468 ANOFFSET (delta, SYMBOL_SECTION (sym));
469 }
470 }
471 }
472 }
473 }
474
475 {
476 struct minimal_symbol *msym;
477 ALL_OBJFILE_MSYMBOLS (objfile, msym)
478 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
479 }
480
481 {
482 int i;
483 for (i = 0; i < objfile->num_sections; ++i)
484 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
485 }
486 }
487 \f
488 /* Many places in gdb want to test just to see if we have any partial
489 symbols available. This function returns zero if none are currently
490 available, nonzero otherwise. */
491
492 int
493 have_partial_symbols ()
494 {
495 struct objfile *ofp;
496
497 ALL_OBJFILES (ofp)
498 {
499 if (ofp -> psymtabs != NULL)
500 {
501 return 1;
502 }
503 }
504 return 0;
505 }
506
507 /* Many places in gdb want to test just to see if we have any full
508 symbols available. This function returns zero if none are currently
509 available, nonzero otherwise. */
510
511 int
512 have_full_symbols ()
513 {
514 struct objfile *ofp;
515
516 ALL_OBJFILES (ofp)
517 {
518 if (ofp -> symtabs != NULL)
519 {
520 return 1;
521 }
522 }
523 return 0;
524 }
525
526 /* Many places in gdb want to test just to see if we have any minimal
527 symbols available. This function returns zero if none are currently
528 available, nonzero otherwise. */
529
530 int
531 have_minimal_symbols ()
532 {
533 struct objfile *ofp;
534
535 ALL_OBJFILES (ofp)
536 {
537 if (ofp -> msymbols != NULL)
538 {
539 return 1;
540 }
541 }
542 return 0;
543 }
544
545 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
546
547 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
548 of the corresponding symbol file in MTIME, try to open an existing file
549 with the name SYMSFILENAME and verify it is more recent than the base
550 file by checking it's timestamp against MTIME.
551
552 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
553
554 If SYMSFILENAME does exist, but is out of date, we check to see if the
555 user has specified creation of a mapped file. If so, we don't issue
556 any warning message because we will be creating a new mapped file anyway,
557 overwriting the old one. If not, then we issue a warning message so that
558 the user will know why we aren't using this existing mapped symbol file.
559 In either case, we return -1.
560
561 If SYMSFILENAME does exist and is not out of date, but can't be opened for
562 some reason, then prints an appropriate system error message and returns -1.
563
564 Otherwise, returns the open file descriptor. */
565
566 static int
567 open_existing_mapped_file (symsfilename, mtime, mapped)
568 char *symsfilename;
569 long mtime;
570 int mapped;
571 {
572 int fd = -1;
573 struct stat sbuf;
574
575 if (stat (symsfilename, &sbuf) == 0)
576 {
577 if (sbuf.st_mtime < mtime)
578 {
579 if (!mapped)
580 {
581 warning ("mapped symbol file `%s' is out of date, ignored it",
582 symsfilename);
583 }
584 }
585 else if ((fd = open (symsfilename, O_RDWR)) < 0)
586 {
587 if (error_pre_print)
588 {
589 printf (error_pre_print);
590 }
591 print_sys_errmsg (symsfilename, errno);
592 }
593 }
594 return (fd);
595 }
596
597 /* Look for a mapped symbol file that corresponds to FILENAME and is more
598 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
599 use a mapped symbol file for this file, so create a new one if one does
600 not currently exist.
601
602 If found, then return an open file descriptor for the file, otherwise
603 return -1.
604
605 This routine is responsible for implementing the policy that generates
606 the name of the mapped symbol file from the name of a file containing
607 symbols that gdb would like to read. Currently this policy is to append
608 ".syms" to the name of the file.
609
610 This routine is also responsible for implementing the policy that
611 determines where the mapped symbol file is found (the search path).
612 This policy is that when reading an existing mapped file, a file of
613 the correct name in the current directory takes precedence over a
614 file of the correct name in the same directory as the symbol file.
615 When creating a new mapped file, it is always created in the current
616 directory. This helps to minimize the chances of a user unknowingly
617 creating big mapped files in places like /bin and /usr/local/bin, and
618 allows a local copy to override a manually installed global copy (in
619 /bin for example). */
620
621 static int
622 open_mapped_file (filename, mtime, mapped)
623 char *filename;
624 long mtime;
625 int mapped;
626 {
627 int fd;
628 char *symsfilename;
629
630 /* First try to open an existing file in the current directory, and
631 then try the directory where the symbol file is located. */
632
633 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
634 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
635 {
636 free (symsfilename);
637 symsfilename = concat (filename, ".syms", (char *) NULL);
638 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
639 }
640
641 /* If we don't have an open file by now, then either the file does not
642 already exist, or the base file has changed since it was created. In
643 either case, if the user has specified use of a mapped file, then
644 create a new mapped file, truncating any existing one. If we can't
645 create one, print a system error message saying why we can't.
646
647 By default the file is rw for everyone, with the user's umask taking
648 care of turning off the permissions the user wants off. */
649
650 if ((fd < 0) && mapped)
651 {
652 free (symsfilename);
653 symsfilename = concat ("./", basename (filename), ".syms",
654 (char *) NULL);
655 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
656 {
657 if (error_pre_print)
658 {
659 printf (error_pre_print);
660 }
661 print_sys_errmsg (symsfilename, errno);
662 }
663 }
664
665 free (symsfilename);
666 return (fd);
667 }
668
669 /* Return the base address at which we would like the next objfile's
670 mapped data to start.
671
672 For now, we use the kludge that the configuration specifies a base
673 address to which it is safe to map the first mmalloc heap, and an
674 increment to add to this address for each successive heap. There are
675 a lot of issues to deal with here to make this work reasonably, including:
676
677 Avoid memory collisions with existing mapped address spaces
678
679 Reclaim address spaces when their mmalloc heaps are unmapped
680
681 When mmalloc heaps are shared between processes they have to be
682 mapped at the same addresses in each
683
684 Once created, a mmalloc heap that is to be mapped back in must be
685 mapped at the original address. I.E. each objfile will expect to
686 be remapped at it's original address. This becomes a problem if
687 the desired address is already in use.
688
689 etc, etc, etc.
690
691 */
692
693
694 static CORE_ADDR
695 map_to_address ()
696 {
697
698 #if defined(MMAP_BASE_ADDRESS) && defined (MMAP_INCREMENT)
699
700 static CORE_ADDR next = MMAP_BASE_ADDRESS;
701 CORE_ADDR mapto = next;
702
703 next += MMAP_INCREMENT;
704 return (mapto);
705
706 #else
707
708 return (0);
709
710 #endif
711
712 }
713
714 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
715
716 /* Returns a section whose range includes PC or NULL if none found. */
717
718 sec_ptr
719 find_pc_section(pc)
720 CORE_ADDR pc;
721 {
722 struct obj_section *s;
723 struct objfile *objfile;
724
725 ALL_OBJFILES (objfile)
726 for (s = objfile->sections; s < objfile->sections_end; ++s)
727 if (s->addr <= pc
728 && pc < s->endaddr)
729 return(s->sec_ptr);
730
731 return(NULL);
732 }
This page took 0.074247 seconds and 4 git commands to generate.