Add inclusive range support for Rust
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "common/pathstuff.h"
56
57 #include <vector>
58
59 /* Keep a registry of per-objfile data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile_pspace_info
68 {
69 struct obj_section **sections;
70 int num_sections;
71
72 /* Nonzero if object files have been added since the section map
73 was last updated. */
74 int new_objfiles_available;
75
76 /* Nonzero if the section map MUST be updated before use. */
77 int section_map_dirty;
78
79 /* Nonzero if section map updates should be inhibited if possible. */
80 int inhibit_updates;
81 };
82
83 /* Per-program-space data key. */
84 static const struct program_space_data *objfiles_pspace_data;
85
86 static void
87 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
88 {
89 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg;
90
91 xfree (info->sections);
92 xfree (info);
93 }
94
95 /* Get the current svr4 data. If none is found yet, add it now. This
96 function always returns a valid object. */
97
98 static struct objfile_pspace_info *
99 get_objfile_pspace_data (struct program_space *pspace)
100 {
101 struct objfile_pspace_info *info;
102
103 info = ((struct objfile_pspace_info *)
104 program_space_data (pspace, objfiles_pspace_data));
105 if (info == NULL)
106 {
107 info = XCNEW (struct objfile_pspace_info);
108 set_program_space_data (pspace, objfiles_pspace_data, info);
109 }
110
111 return info;
112 }
113
114 \f
115
116 /* Per-BFD data key. */
117
118 static const struct bfd_data *objfiles_bfd_data;
119
120 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
121 NULL, and it already has a per-BFD storage object, use that.
122 Otherwise, allocate a new per-BFD storage object. If ABFD is not
123 NULL, the object is allocated on the BFD; otherwise it is allocated
124 on OBJFILE's obstack. Note that it is not safe to call this
125 multiple times for a given OBJFILE -- it can only be called when
126 allocating or re-initializing OBJFILE. */
127
128 static struct objfile_per_bfd_storage *
129 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
130 {
131 struct objfile_per_bfd_storage *storage = NULL;
132
133 if (abfd != NULL)
134 storage = ((struct objfile_per_bfd_storage *)
135 bfd_data (abfd, objfiles_bfd_data));
136
137 if (storage == NULL)
138 {
139 /* If the object requires gdb to do relocations, we simply fall
140 back to not sharing data across users. These cases are rare
141 enough that this seems reasonable. */
142 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
143 {
144 storage
145 = ((struct objfile_per_bfd_storage *)
146 bfd_alloc (abfd, sizeof (struct objfile_per_bfd_storage)));
147 set_bfd_data (abfd, objfiles_bfd_data, storage);
148 }
149 else
150 {
151 storage = (objfile_per_bfd_storage *)
152 obstack_alloc (&objfile->objfile_obstack,
153 sizeof (objfile_per_bfd_storage));
154 }
155
156 /* objfile_per_bfd_storage is not trivially constructible, must
157 call the ctor manually. */
158 storage = new (storage) objfile_per_bfd_storage ();
159
160 /* Look up the gdbarch associated with the BFD. */
161 if (abfd != NULL)
162 storage->gdbarch = gdbarch_from_bfd (abfd);
163
164 storage->filename_cache = bcache_xmalloc (NULL, NULL);
165 storage->macro_cache = bcache_xmalloc (NULL, NULL);
166 storage->language_of_main = language_unknown;
167 }
168
169 return storage;
170 }
171
172 /* Free STORAGE. */
173
174 static void
175 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
176 {
177 bcache_xfree (storage->filename_cache);
178 bcache_xfree (storage->macro_cache);
179 if (storage->demangled_names_hash)
180 htab_delete (storage->demangled_names_hash);
181 storage->~objfile_per_bfd_storage ();
182 }
183
184 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
185 cleanup function to the BFD registry. */
186
187 static void
188 objfile_bfd_data_free (struct bfd *unused, void *d)
189 {
190 free_objfile_per_bfd_storage ((struct objfile_per_bfd_storage *) d);
191 }
192
193 /* See objfiles.h. */
194
195 void
196 set_objfile_per_bfd (struct objfile *objfile)
197 {
198 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
199 }
200
201 /* Set the objfile's per-BFD notion of the "main" name and
202 language. */
203
204 void
205 set_objfile_main_name (struct objfile *objfile,
206 const char *name, enum language lang)
207 {
208 if (objfile->per_bfd->name_of_main == NULL
209 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
210 objfile->per_bfd->name_of_main
211 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
212 strlen (name));
213 objfile->per_bfd->language_of_main = lang;
214 }
215
216 /* Helper structure to map blocks to static link properties in hash tables. */
217
218 struct static_link_htab_entry
219 {
220 const struct block *block;
221 const struct dynamic_prop *static_link;
222 };
223
224 /* Return a hash code for struct static_link_htab_entry *P. */
225
226 static hashval_t
227 static_link_htab_entry_hash (const void *p)
228 {
229 const struct static_link_htab_entry *e
230 = (const struct static_link_htab_entry *) p;
231
232 return htab_hash_pointer (e->block);
233 }
234
235 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
236 mappings for the same block. */
237
238 static int
239 static_link_htab_entry_eq (const void *p1, const void *p2)
240 {
241 const struct static_link_htab_entry *e1
242 = (const struct static_link_htab_entry *) p1;
243 const struct static_link_htab_entry *e2
244 = (const struct static_link_htab_entry *) p2;
245
246 return e1->block == e2->block;
247 }
248
249 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
250 Must not be called more than once for each BLOCK. */
251
252 void
253 objfile_register_static_link (struct objfile *objfile,
254 const struct block *block,
255 const struct dynamic_prop *static_link)
256 {
257 void **slot;
258 struct static_link_htab_entry lookup_entry;
259 struct static_link_htab_entry *entry;
260
261 if (objfile->static_links == NULL)
262 objfile->static_links = htab_create_alloc
263 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
264 xcalloc, xfree);
265
266 /* Create a slot for the mapping, make sure it's the first mapping for this
267 block and then create the mapping itself. */
268 lookup_entry.block = block;
269 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
270 gdb_assert (*slot == NULL);
271
272 entry = (struct static_link_htab_entry *) obstack_alloc
273 (&objfile->objfile_obstack, sizeof (*entry));
274 entry->block = block;
275 entry->static_link = static_link;
276 *slot = (void *) entry;
277 }
278
279 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
280 none was found. */
281
282 const struct dynamic_prop *
283 objfile_lookup_static_link (struct objfile *objfile,
284 const struct block *block)
285 {
286 struct static_link_htab_entry *entry;
287 struct static_link_htab_entry lookup_entry;
288
289 if (objfile->static_links == NULL)
290 return NULL;
291 lookup_entry.block = block;
292 entry
293 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
294 &lookup_entry);
295 if (entry == NULL)
296 return NULL;
297
298 gdb_assert (entry->block == block);
299 return entry->static_link;
300 }
301
302 \f
303
304 /* Called via bfd_map_over_sections to build up the section table that
305 the objfile references. The objfile contains pointers to the start
306 of the table (objfile->sections) and to the first location after
307 the end of the table (objfile->sections_end). */
308
309 static void
310 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
311 struct objfile *objfile, int force)
312 {
313 struct obj_section *section;
314
315 if (!force)
316 {
317 flagword aflag;
318
319 aflag = bfd_get_section_flags (abfd, asect);
320 if (!(aflag & SEC_ALLOC))
321 return;
322 }
323
324 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
325 section->objfile = objfile;
326 section->the_bfd_section = asect;
327 section->ovly_mapped = 0;
328 }
329
330 static void
331 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
332 void *objfilep)
333 {
334 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
335 }
336
337 /* Builds a section table for OBJFILE.
338
339 Note that the OFFSET and OVLY_MAPPED in each table entry are
340 initialized to zero. */
341
342 void
343 build_objfile_section_table (struct objfile *objfile)
344 {
345 int count = gdb_bfd_count_sections (objfile->obfd);
346
347 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
348 count,
349 struct obj_section);
350 objfile->sections_end = (objfile->sections + count);
351 bfd_map_over_sections (objfile->obfd,
352 add_to_objfile_sections, (void *) objfile);
353
354 /* See gdb_bfd_section_index. */
355 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
356 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
357 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
358 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
359 }
360
361 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
362 initialize the new objfile as best we can and link it into the list
363 of all known objfiles.
364
365 NAME should contain original non-canonicalized filename or other
366 identifier as entered by user. If there is no better source use
367 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
368 NAME content is copied into returned objfile.
369
370 The FLAGS word contains various bits (OBJF_*) that can be taken as
371 requests for specific operations. Other bits like OBJF_SHARED are
372 simply copied through to the new objfile flags member. */
373
374 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
375 : flags (flags_),
376 pspace (current_program_space),
377 obfd (abfd),
378 psymbol_cache (psymbol_bcache_init ())
379 {
380 const char *expanded_name;
381
382 /* We could use obstack_specify_allocation here instead, but
383 gdb_obstack.h specifies the alloc/dealloc functions. */
384 obstack_init (&objfile_obstack);
385
386 objfile_alloc_data (this);
387
388 gdb::unique_xmalloc_ptr<char> name_holder;
389 if (name == NULL)
390 {
391 gdb_assert (abfd == NULL);
392 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
393 expanded_name = "<<anonymous objfile>>";
394 }
395 else if ((flags & OBJF_NOT_FILENAME) != 0
396 || is_target_filename (name))
397 expanded_name = name;
398 else
399 {
400 name_holder = gdb_abspath (name);
401 expanded_name = name_holder.get ();
402 }
403 original_name
404 = (char *) obstack_copy0 (&objfile_obstack,
405 expanded_name,
406 strlen (expanded_name));
407
408 /* Update the per-objfile information that comes from the bfd, ensuring
409 that any data that is reference is saved in the per-objfile data
410 region. */
411
412 gdb_bfd_ref (abfd);
413 if (abfd != NULL)
414 {
415 mtime = bfd_get_mtime (abfd);
416
417 /* Build section table. */
418 build_objfile_section_table (this);
419 }
420
421 per_bfd = get_objfile_bfd_data (this, abfd);
422
423 terminate_minimal_symbol_table (this);
424
425 /* Add this file onto the tail of the linked list of other such files. */
426
427 if (object_files == NULL)
428 object_files = this;
429 else
430 {
431 struct objfile *last_one;
432
433 for (last_one = object_files;
434 last_one->next;
435 last_one = last_one->next);
436 last_one->next = this;
437 }
438
439 /* Rebuild section map next time we need it. */
440 get_objfile_pspace_data (pspace)->new_objfiles_available = 1;
441 }
442
443 /* Retrieve the gdbarch associated with OBJFILE. */
444
445 struct gdbarch *
446 get_objfile_arch (const struct objfile *objfile)
447 {
448 return objfile->per_bfd->gdbarch;
449 }
450
451 /* If there is a valid and known entry point, function fills *ENTRY_P with it
452 and returns non-zero; otherwise it returns zero. */
453
454 int
455 entry_point_address_query (CORE_ADDR *entry_p)
456 {
457 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
458 return 0;
459
460 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
461 + ANOFFSET (symfile_objfile->section_offsets,
462 symfile_objfile->per_bfd->ei.the_bfd_section_index));
463
464 return 1;
465 }
466
467 /* Get current entry point address. Call error if it is not known. */
468
469 CORE_ADDR
470 entry_point_address (void)
471 {
472 CORE_ADDR retval;
473
474 if (!entry_point_address_query (&retval))
475 error (_("Entry point address is not known."));
476
477 return retval;
478 }
479
480 /* Iterator on PARENT and every separate debug objfile of PARENT.
481 The usage pattern is:
482 for (objfile = parent;
483 objfile;
484 objfile = objfile_separate_debug_iterate (parent, objfile))
485 ...
486 */
487
488 struct objfile *
489 objfile_separate_debug_iterate (const struct objfile *parent,
490 const struct objfile *objfile)
491 {
492 struct objfile *res;
493
494 /* If any, return the first child. */
495 res = objfile->separate_debug_objfile;
496 if (res)
497 return res;
498
499 /* Common case where there is no separate debug objfile. */
500 if (objfile == parent)
501 return NULL;
502
503 /* Return the brother if any. Note that we don't iterate on brothers of
504 the parents. */
505 res = objfile->separate_debug_objfile_link;
506 if (res)
507 return res;
508
509 for (res = objfile->separate_debug_objfile_backlink;
510 res != parent;
511 res = res->separate_debug_objfile_backlink)
512 {
513 gdb_assert (res != NULL);
514 if (res->separate_debug_objfile_link)
515 return res->separate_debug_objfile_link;
516 }
517 return NULL;
518 }
519
520 /* Put one object file before a specified on in the global list.
521 This can be used to make sure an object file is destroyed before
522 another when using ALL_OBJFILES_SAFE to free all objfiles. */
523 void
524 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
525 {
526 struct objfile **objp;
527
528 unlink_objfile (objfile);
529
530 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
531 {
532 if (*objp == before_this)
533 {
534 objfile->next = *objp;
535 *objp = objfile;
536 return;
537 }
538 }
539
540 internal_error (__FILE__, __LINE__,
541 _("put_objfile_before: before objfile not in list"));
542 }
543
544 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
545 list.
546
547 It is not a bug, or error, to call this function if OBJFILE is not known
548 to be in the current list. This is done in the case of mapped objfiles,
549 for example, just to ensure that the mapped objfile doesn't appear twice
550 in the list. Since the list is threaded, linking in a mapped objfile
551 twice would create a circular list.
552
553 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
554 unlinking it, just to ensure that we have completely severed any linkages
555 between the OBJFILE and the list. */
556
557 void
558 unlink_objfile (struct objfile *objfile)
559 {
560 struct objfile **objpp;
561
562 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
563 {
564 if (*objpp == objfile)
565 {
566 *objpp = (*objpp)->next;
567 objfile->next = NULL;
568 return;
569 }
570 }
571
572 internal_error (__FILE__, __LINE__,
573 _("unlink_objfile: objfile already unlinked"));
574 }
575
576 /* Add OBJFILE as a separate debug objfile of PARENT. */
577
578 void
579 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
580 {
581 gdb_assert (objfile && parent);
582
583 /* Must not be already in a list. */
584 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
585 gdb_assert (objfile->separate_debug_objfile_link == NULL);
586 gdb_assert (objfile->separate_debug_objfile == NULL);
587 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
588 gdb_assert (parent->separate_debug_objfile_link == NULL);
589
590 objfile->separate_debug_objfile_backlink = parent;
591 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
592 parent->separate_debug_objfile = objfile;
593
594 /* Put the separate debug object before the normal one, this is so that
595 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
596 put_objfile_before (objfile, parent);
597 }
598
599 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
600 itself. */
601
602 void
603 free_objfile_separate_debug (struct objfile *objfile)
604 {
605 struct objfile *child;
606
607 for (child = objfile->separate_debug_objfile; child;)
608 {
609 struct objfile *next_child = child->separate_debug_objfile_link;
610 delete child;
611 child = next_child;
612 }
613 }
614
615 /* Destroy an objfile and all the symtabs and psymtabs under it. */
616
617 objfile::~objfile ()
618 {
619 /* First notify observers that this objfile is about to be freed. */
620 gdb::observers::free_objfile.notify (this);
621
622 /* Free all separate debug objfiles. */
623 free_objfile_separate_debug (this);
624
625 if (separate_debug_objfile_backlink)
626 {
627 /* We freed the separate debug file, make sure the base objfile
628 doesn't reference it. */
629 struct objfile *child;
630
631 child = separate_debug_objfile_backlink->separate_debug_objfile;
632
633 if (child == this)
634 {
635 /* THIS is the first child. */
636 separate_debug_objfile_backlink->separate_debug_objfile =
637 separate_debug_objfile_link;
638 }
639 else
640 {
641 /* Find THIS in the list. */
642 while (1)
643 {
644 if (child->separate_debug_objfile_link == this)
645 {
646 child->separate_debug_objfile_link =
647 separate_debug_objfile_link;
648 break;
649 }
650 child = child->separate_debug_objfile_link;
651 gdb_assert (child);
652 }
653 }
654 }
655
656 /* Remove any references to this objfile in the global value
657 lists. */
658 preserve_values (this);
659
660 /* It still may reference data modules have associated with the objfile and
661 the symbol file data. */
662 forget_cached_source_info_for_objfile (this);
663
664 breakpoint_free_objfile (this);
665 btrace_free_objfile (this);
666
667 /* First do any symbol file specific actions required when we are
668 finished with a particular symbol file. Note that if the objfile
669 is using reusable symbol information (via mmalloc) then each of
670 these routines is responsible for doing the correct thing, either
671 freeing things which are valid only during this particular gdb
672 execution, or leaving them to be reused during the next one. */
673
674 if (sf != NULL)
675 (*sf->sym_finish) (this);
676
677 /* Discard any data modules have associated with the objfile. The function
678 still may reference obfd. */
679 objfile_free_data (this);
680
681 if (obfd)
682 gdb_bfd_unref (obfd);
683 else
684 free_objfile_per_bfd_storage (per_bfd);
685
686 /* Remove it from the chain of all objfiles. */
687
688 unlink_objfile (this);
689
690 if (this == symfile_objfile)
691 symfile_objfile = NULL;
692
693 /* Before the symbol table code was redone to make it easier to
694 selectively load and remove information particular to a specific
695 linkage unit, gdb used to do these things whenever the monolithic
696 symbol table was blown away. How much still needs to be done
697 is unknown, but we play it safe for now and keep each action until
698 it is shown to be no longer needed. */
699
700 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
701 for example), so we need to call this here. */
702 clear_pc_function_cache ();
703
704 /* Clear globals which might have pointed into a removed objfile.
705 FIXME: It's not clear which of these are supposed to persist
706 between expressions and which ought to be reset each time. */
707 expression_context_block = NULL;
708 innermost_block.reset ();
709
710 /* Check to see if the current_source_symtab belongs to this objfile,
711 and if so, call clear_current_source_symtab_and_line. */
712
713 {
714 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
715
716 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
717 clear_current_source_symtab_and_line ();
718 }
719
720 /* Free the obstacks for non-reusable objfiles. */
721 psymbol_bcache_free (psymbol_cache);
722 obstack_free (&objfile_obstack, 0);
723
724 /* Rebuild section map next time we need it. */
725 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
726
727 /* Free the map for static links. There's no need to free static link
728 themselves since they were allocated on the objstack. */
729 if (static_links != NULL)
730 htab_delete (static_links);
731 }
732
733 /* Free all the object files at once and clean up their users. */
734
735 void
736 free_all_objfiles (void)
737 {
738 struct objfile *objfile, *temp;
739 struct so_list *so;
740
741 /* Any objfile referencewould become stale. */
742 for (so = master_so_list (); so; so = so->next)
743 gdb_assert (so->objfile == NULL);
744
745 ALL_OBJFILES_SAFE (objfile, temp)
746 {
747 delete objfile;
748 }
749 clear_symtab_users (0);
750 }
751 \f
752 /* A helper function for objfile_relocate1 that relocates a single
753 symbol. */
754
755 static void
756 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
757 struct section_offsets *delta)
758 {
759 fixup_symbol_section (sym, objfile);
760
761 /* The RS6000 code from which this was taken skipped
762 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
763 But I'm leaving out that test, on the theory that
764 they can't possibly pass the tests below. */
765 if ((SYMBOL_CLASS (sym) == LOC_LABEL
766 || SYMBOL_CLASS (sym) == LOC_STATIC)
767 && SYMBOL_SECTION (sym) >= 0)
768 {
769 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
770 }
771 }
772
773 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
774 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
775 Return non-zero iff any change happened. */
776
777 static int
778 objfile_relocate1 (struct objfile *objfile,
779 const struct section_offsets *new_offsets)
780 {
781 struct obj_section *s;
782 struct section_offsets *delta =
783 ((struct section_offsets *)
784 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
785
786 int i;
787 int something_changed = 0;
788
789 for (i = 0; i < objfile->num_sections; ++i)
790 {
791 delta->offsets[i] =
792 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
793 if (ANOFFSET (delta, i) != 0)
794 something_changed = 1;
795 }
796 if (!something_changed)
797 return 0;
798
799 /* OK, get all the symtabs. */
800 {
801 struct compunit_symtab *cust;
802 struct symtab *s;
803
804 ALL_OBJFILE_FILETABS (objfile, cust, s)
805 {
806 struct linetable *l;
807 int i;
808
809 /* First the line table. */
810 l = SYMTAB_LINETABLE (s);
811 if (l)
812 {
813 for (i = 0; i < l->nitems; ++i)
814 l->item[i].pc += ANOFFSET (delta,
815 COMPUNIT_BLOCK_LINE_SECTION
816 (cust));
817 }
818 }
819
820 ALL_OBJFILE_COMPUNITS (objfile, cust)
821 {
822 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
823 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
824
825 if (BLOCKVECTOR_MAP (bv))
826 addrmap_relocate (BLOCKVECTOR_MAP (bv),
827 ANOFFSET (delta, block_line_section));
828
829 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
830 {
831 struct block *b;
832 struct symbol *sym;
833 struct dict_iterator iter;
834
835 b = BLOCKVECTOR_BLOCK (bv, i);
836 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
837 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
838
839 /* We only want to iterate over the local symbols, not any
840 symbols in included symtabs. */
841 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
842 {
843 relocate_one_symbol (sym, objfile, delta);
844 }
845 }
846 }
847 }
848
849 /* Relocate isolated symbols. */
850 {
851 struct symbol *iter;
852
853 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
854 relocate_one_symbol (iter, objfile, delta);
855 }
856
857 if (objfile->psymtabs_addrmap)
858 addrmap_relocate (objfile->psymtabs_addrmap,
859 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
860
861 if (objfile->sf)
862 objfile->sf->qf->relocate (objfile, new_offsets, delta);
863
864 {
865 int i;
866
867 for (i = 0; i < objfile->num_sections; ++i)
868 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
869 }
870
871 /* Rebuild section map next time we need it. */
872 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
873
874 /* Update the table in exec_ops, used to read memory. */
875 ALL_OBJFILE_OSECTIONS (objfile, s)
876 {
877 int idx = s - objfile->sections;
878
879 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
880 obj_section_addr (s));
881 }
882
883 /* Data changed. */
884 return 1;
885 }
886
887 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
888 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
889
890 The number and ordering of sections does differ between the two objfiles.
891 Only their names match. Also the file offsets will differ (objfile being
892 possibly prelinked but separate_debug_objfile is probably not prelinked) but
893 the in-memory absolute address as specified by NEW_OFFSETS must match both
894 files. */
895
896 void
897 objfile_relocate (struct objfile *objfile,
898 const struct section_offsets *new_offsets)
899 {
900 struct objfile *debug_objfile;
901 int changed = 0;
902
903 changed |= objfile_relocate1 (objfile, new_offsets);
904
905 for (debug_objfile = objfile->separate_debug_objfile;
906 debug_objfile;
907 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
908 {
909 section_addr_info objfile_addrs
910 = build_section_addr_info_from_objfile (objfile);
911
912 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
913 relative ones must be already created according to debug_objfile. */
914
915 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
916
917 gdb_assert (debug_objfile->num_sections
918 == gdb_bfd_count_sections (debug_objfile->obfd));
919 std::vector<struct section_offsets>
920 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
921 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
922 debug_objfile->num_sections,
923 objfile_addrs);
924
925 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
926 }
927
928 /* Relocate breakpoints as necessary, after things are relocated. */
929 if (changed)
930 breakpoint_re_set ();
931 }
932
933 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
934 not touched here.
935 Return non-zero iff any change happened. */
936
937 static int
938 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
939 {
940 struct section_offsets *new_offsets =
941 ((struct section_offsets *)
942 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
943 int i;
944
945 for (i = 0; i < objfile->num_sections; ++i)
946 new_offsets->offsets[i] = slide;
947
948 return objfile_relocate1 (objfile, new_offsets);
949 }
950
951 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
952 SEPARATE_DEBUG_OBJFILEs. */
953
954 void
955 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
956 {
957 struct objfile *debug_objfile;
958 int changed = 0;
959
960 changed |= objfile_rebase1 (objfile, slide);
961
962 for (debug_objfile = objfile->separate_debug_objfile;
963 debug_objfile;
964 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
965 changed |= objfile_rebase1 (debug_objfile, slide);
966
967 /* Relocate breakpoints as necessary, after things are relocated. */
968 if (changed)
969 breakpoint_re_set ();
970 }
971 \f
972 /* Return non-zero if OBJFILE has partial symbols. */
973
974 int
975 objfile_has_partial_symbols (struct objfile *objfile)
976 {
977 if (!objfile->sf)
978 return 0;
979
980 /* If we have not read psymbols, but we have a function capable of reading
981 them, then that is an indication that they are in fact available. Without
982 this function the symbols may have been already read in but they also may
983 not be present in this objfile. */
984 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
985 && objfile->sf->sym_read_psymbols != NULL)
986 return 1;
987
988 return objfile->sf->qf->has_symbols (objfile);
989 }
990
991 /* Return non-zero if OBJFILE has full symbols. */
992
993 int
994 objfile_has_full_symbols (struct objfile *objfile)
995 {
996 return objfile->compunit_symtabs != NULL;
997 }
998
999 /* Return non-zero if OBJFILE has full or partial symbols, either directly
1000 or through a separate debug file. */
1001
1002 int
1003 objfile_has_symbols (struct objfile *objfile)
1004 {
1005 struct objfile *o;
1006
1007 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
1008 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1009 return 1;
1010 return 0;
1011 }
1012
1013
1014 /* Many places in gdb want to test just to see if we have any partial
1015 symbols available. This function returns zero if none are currently
1016 available, nonzero otherwise. */
1017
1018 int
1019 have_partial_symbols (void)
1020 {
1021 struct objfile *ofp;
1022
1023 ALL_OBJFILES (ofp)
1024 {
1025 if (objfile_has_partial_symbols (ofp))
1026 return 1;
1027 }
1028 return 0;
1029 }
1030
1031 /* Many places in gdb want to test just to see if we have any full
1032 symbols available. This function returns zero if none are currently
1033 available, nonzero otherwise. */
1034
1035 int
1036 have_full_symbols (void)
1037 {
1038 struct objfile *ofp;
1039
1040 ALL_OBJFILES (ofp)
1041 {
1042 if (objfile_has_full_symbols (ofp))
1043 return 1;
1044 }
1045 return 0;
1046 }
1047
1048
1049 /* This operations deletes all objfile entries that represent solibs that
1050 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1051 command. */
1052
1053 void
1054 objfile_purge_solibs (void)
1055 {
1056 struct objfile *objf;
1057 struct objfile *temp;
1058
1059 ALL_OBJFILES_SAFE (objf, temp)
1060 {
1061 /* We assume that the solib package has been purged already, or will
1062 be soon. */
1063
1064 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1065 delete objf;
1066 }
1067 }
1068
1069
1070 /* Many places in gdb want to test just to see if we have any minimal
1071 symbols available. This function returns zero if none are currently
1072 available, nonzero otherwise. */
1073
1074 int
1075 have_minimal_symbols (void)
1076 {
1077 struct objfile *ofp;
1078
1079 ALL_OBJFILES (ofp)
1080 {
1081 if (ofp->per_bfd->minimal_symbol_count > 0)
1082 {
1083 return 1;
1084 }
1085 }
1086 return 0;
1087 }
1088
1089 /* Qsort comparison function. */
1090
1091 static int
1092 qsort_cmp (const void *a, const void *b)
1093 {
1094 const struct obj_section *sect1 = *(const struct obj_section **) a;
1095 const struct obj_section *sect2 = *(const struct obj_section **) b;
1096 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1097 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1098
1099 if (sect1_addr < sect2_addr)
1100 return -1;
1101 else if (sect1_addr > sect2_addr)
1102 return 1;
1103 else
1104 {
1105 /* Sections are at the same address. This could happen if
1106 A) we have an objfile and a separate debuginfo.
1107 B) we are confused, and have added sections without proper relocation,
1108 or something like that. */
1109
1110 const struct objfile *const objfile1 = sect1->objfile;
1111 const struct objfile *const objfile2 = sect2->objfile;
1112
1113 if (objfile1->separate_debug_objfile == objfile2
1114 || objfile2->separate_debug_objfile == objfile1)
1115 {
1116 /* Case A. The ordering doesn't matter: separate debuginfo files
1117 will be filtered out later. */
1118
1119 return 0;
1120 }
1121
1122 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1123 triage. This section could be slow (since we iterate over all
1124 objfiles in each call to qsort_cmp), but this shouldn't happen
1125 very often (GDB is already in a confused state; one hopes this
1126 doesn't happen at all). If you discover that significant time is
1127 spent in the loops below, do 'set complaints 100' and examine the
1128 resulting complaints. */
1129
1130 if (objfile1 == objfile2)
1131 {
1132 /* Both sections came from the same objfile. We are really confused.
1133 Sort on sequence order of sections within the objfile. */
1134
1135 const struct obj_section *osect;
1136
1137 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1138 if (osect == sect1)
1139 return -1;
1140 else if (osect == sect2)
1141 return 1;
1142
1143 /* We should have found one of the sections before getting here. */
1144 gdb_assert_not_reached ("section not found");
1145 }
1146 else
1147 {
1148 /* Sort on sequence number of the objfile in the chain. */
1149
1150 const struct objfile *objfile;
1151
1152 ALL_OBJFILES (objfile)
1153 if (objfile == objfile1)
1154 return -1;
1155 else if (objfile == objfile2)
1156 return 1;
1157
1158 /* We should have found one of the objfiles before getting here. */
1159 gdb_assert_not_reached ("objfile not found");
1160 }
1161 }
1162
1163 /* Unreachable. */
1164 gdb_assert_not_reached ("unexpected code path");
1165 return 0;
1166 }
1167
1168 /* Select "better" obj_section to keep. We prefer the one that came from
1169 the real object, rather than the one from separate debuginfo.
1170 Most of the time the two sections are exactly identical, but with
1171 prelinking the .rel.dyn section in the real object may have different
1172 size. */
1173
1174 static struct obj_section *
1175 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1176 {
1177 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1178 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1179 || (b->objfile->separate_debug_objfile == a->objfile));
1180 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1181 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1182
1183 if (a->objfile->separate_debug_objfile != NULL)
1184 return a;
1185 return b;
1186 }
1187
1188 /* Return 1 if SECTION should be inserted into the section map.
1189 We want to insert only non-overlay and non-TLS section. */
1190
1191 static int
1192 insert_section_p (const struct bfd *abfd,
1193 const struct bfd_section *section)
1194 {
1195 const bfd_vma lma = bfd_section_lma (abfd, section);
1196
1197 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1198 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1199 /* This is an overlay section. IN_MEMORY check is needed to avoid
1200 discarding sections from the "system supplied DSO" (aka vdso)
1201 on some Linux systems (e.g. Fedora 11). */
1202 return 0;
1203 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1204 /* This is a TLS section. */
1205 return 0;
1206
1207 return 1;
1208 }
1209
1210 /* Filter out overlapping sections where one section came from the real
1211 objfile, and the other from a separate debuginfo file.
1212 Return the size of table after redundant sections have been eliminated. */
1213
1214 static int
1215 filter_debuginfo_sections (struct obj_section **map, int map_size)
1216 {
1217 int i, j;
1218
1219 for (i = 0, j = 0; i < map_size - 1; i++)
1220 {
1221 struct obj_section *const sect1 = map[i];
1222 struct obj_section *const sect2 = map[i + 1];
1223 const struct objfile *const objfile1 = sect1->objfile;
1224 const struct objfile *const objfile2 = sect2->objfile;
1225 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1226 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1227
1228 if (sect1_addr == sect2_addr
1229 && (objfile1->separate_debug_objfile == objfile2
1230 || objfile2->separate_debug_objfile == objfile1))
1231 {
1232 map[j++] = preferred_obj_section (sect1, sect2);
1233 ++i;
1234 }
1235 else
1236 map[j++] = sect1;
1237 }
1238
1239 if (i < map_size)
1240 {
1241 gdb_assert (i == map_size - 1);
1242 map[j++] = map[i];
1243 }
1244
1245 /* The map should not have shrunk to less than half the original size. */
1246 gdb_assert (map_size / 2 <= j);
1247
1248 return j;
1249 }
1250
1251 /* Filter out overlapping sections, issuing a warning if any are found.
1252 Overlapping sections could really be overlay sections which we didn't
1253 classify as such in insert_section_p, or we could be dealing with a
1254 corrupt binary. */
1255
1256 static int
1257 filter_overlapping_sections (struct obj_section **map, int map_size)
1258 {
1259 int i, j;
1260
1261 for (i = 0, j = 0; i < map_size - 1; )
1262 {
1263 int k;
1264
1265 map[j++] = map[i];
1266 for (k = i + 1; k < map_size; k++)
1267 {
1268 struct obj_section *const sect1 = map[i];
1269 struct obj_section *const sect2 = map[k];
1270 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1271 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1272 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1273
1274 gdb_assert (sect1_addr <= sect2_addr);
1275
1276 if (sect1_endaddr <= sect2_addr)
1277 break;
1278 else
1279 {
1280 /* We have an overlap. Report it. */
1281
1282 struct objfile *const objf1 = sect1->objfile;
1283 struct objfile *const objf2 = sect2->objfile;
1284
1285 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1286 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1287
1288 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1289
1290 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1291
1292 complaint (&symfile_complaints,
1293 _("unexpected overlap between:\n"
1294 " (A) section `%s' from `%s' [%s, %s)\n"
1295 " (B) section `%s' from `%s' [%s, %s).\n"
1296 "Will ignore section B"),
1297 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1298 paddress (gdbarch, sect1_addr),
1299 paddress (gdbarch, sect1_endaddr),
1300 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1301 paddress (gdbarch, sect2_addr),
1302 paddress (gdbarch, sect2_endaddr));
1303 }
1304 }
1305 i = k;
1306 }
1307
1308 if (i < map_size)
1309 {
1310 gdb_assert (i == map_size - 1);
1311 map[j++] = map[i];
1312 }
1313
1314 return j;
1315 }
1316
1317
1318 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1319 TLS, overlay and overlapping sections. */
1320
1321 static void
1322 update_section_map (struct program_space *pspace,
1323 struct obj_section ***pmap, int *pmap_size)
1324 {
1325 struct objfile_pspace_info *pspace_info;
1326 int alloc_size, map_size, i;
1327 struct obj_section *s, **map;
1328 struct objfile *objfile;
1329
1330 pspace_info = get_objfile_pspace_data (pspace);
1331 gdb_assert (pspace_info->section_map_dirty != 0
1332 || pspace_info->new_objfiles_available != 0);
1333
1334 map = *pmap;
1335 xfree (map);
1336
1337 alloc_size = 0;
1338 ALL_PSPACE_OBJFILES (pspace, objfile)
1339 ALL_OBJFILE_OSECTIONS (objfile, s)
1340 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1341 alloc_size += 1;
1342
1343 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1344 if (alloc_size == 0)
1345 {
1346 *pmap = NULL;
1347 *pmap_size = 0;
1348 return;
1349 }
1350
1351 map = XNEWVEC (struct obj_section *, alloc_size);
1352
1353 i = 0;
1354 ALL_PSPACE_OBJFILES (pspace, objfile)
1355 ALL_OBJFILE_OSECTIONS (objfile, s)
1356 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1357 map[i++] = s;
1358
1359 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1360 map_size = filter_debuginfo_sections(map, alloc_size);
1361 map_size = filter_overlapping_sections(map, map_size);
1362
1363 if (map_size < alloc_size)
1364 /* Some sections were eliminated. Trim excess space. */
1365 map = XRESIZEVEC (struct obj_section *, map, map_size);
1366 else
1367 gdb_assert (alloc_size == map_size);
1368
1369 *pmap = map;
1370 *pmap_size = map_size;
1371 }
1372
1373 /* Bsearch comparison function. */
1374
1375 static int
1376 bsearch_cmp (const void *key, const void *elt)
1377 {
1378 const CORE_ADDR pc = *(CORE_ADDR *) key;
1379 const struct obj_section *section = *(const struct obj_section **) elt;
1380
1381 if (pc < obj_section_addr (section))
1382 return -1;
1383 if (pc < obj_section_endaddr (section))
1384 return 0;
1385 return 1;
1386 }
1387
1388 /* Returns a section whose range includes PC or NULL if none found. */
1389
1390 struct obj_section *
1391 find_pc_section (CORE_ADDR pc)
1392 {
1393 struct objfile_pspace_info *pspace_info;
1394 struct obj_section *s, **sp;
1395
1396 /* Check for mapped overlay section first. */
1397 s = find_pc_mapped_section (pc);
1398 if (s)
1399 return s;
1400
1401 pspace_info = get_objfile_pspace_data (current_program_space);
1402 if (pspace_info->section_map_dirty
1403 || (pspace_info->new_objfiles_available
1404 && !pspace_info->inhibit_updates))
1405 {
1406 update_section_map (current_program_space,
1407 &pspace_info->sections,
1408 &pspace_info->num_sections);
1409
1410 /* Don't need updates to section map until objfiles are added,
1411 removed or relocated. */
1412 pspace_info->new_objfiles_available = 0;
1413 pspace_info->section_map_dirty = 0;
1414 }
1415
1416 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1417 bsearch be non-NULL. */
1418 if (pspace_info->sections == NULL)
1419 {
1420 gdb_assert (pspace_info->num_sections == 0);
1421 return NULL;
1422 }
1423
1424 sp = (struct obj_section **) bsearch (&pc,
1425 pspace_info->sections,
1426 pspace_info->num_sections,
1427 sizeof (*pspace_info->sections),
1428 bsearch_cmp);
1429 if (sp != NULL)
1430 return *sp;
1431 return NULL;
1432 }
1433
1434
1435 /* Return non-zero if PC is in a section called NAME. */
1436
1437 int
1438 pc_in_section (CORE_ADDR pc, const char *name)
1439 {
1440 struct obj_section *s;
1441 int retval = 0;
1442
1443 s = find_pc_section (pc);
1444
1445 retval = (s != NULL
1446 && s->the_bfd_section->name != NULL
1447 && strcmp (s->the_bfd_section->name, name) == 0);
1448 return (retval);
1449 }
1450 \f
1451
1452 /* Set section_map_dirty so section map will be rebuilt next time it
1453 is used. Called by reread_symbols. */
1454
1455 void
1456 objfiles_changed (void)
1457 {
1458 /* Rebuild section map next time we need it. */
1459 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1460 }
1461
1462 /* See comments in objfiles.h. */
1463
1464 void
1465 inhibit_section_map_updates (struct program_space *pspace)
1466 {
1467 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1468 }
1469
1470 /* See comments in objfiles.h. */
1471
1472 void
1473 resume_section_map_updates (struct program_space *pspace)
1474 {
1475 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1476 }
1477
1478 /* See comments in objfiles.h. */
1479
1480 void
1481 resume_section_map_updates_cleanup (void *arg)
1482 {
1483 resume_section_map_updates ((struct program_space *) arg);
1484 }
1485
1486 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1487 otherwise. */
1488
1489 int
1490 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1491 {
1492 struct obj_section *osect;
1493
1494 if (objfile == NULL)
1495 return 0;
1496
1497 ALL_OBJFILE_OSECTIONS (objfile, osect)
1498 {
1499 if (section_is_overlay (osect) && !section_is_mapped (osect))
1500 continue;
1501
1502 if (obj_section_addr (osect) <= addr
1503 && addr < obj_section_endaddr (osect))
1504 return 1;
1505 }
1506 return 0;
1507 }
1508
1509 int
1510 shared_objfile_contains_address_p (struct program_space *pspace,
1511 CORE_ADDR address)
1512 {
1513 struct objfile *objfile;
1514
1515 ALL_PSPACE_OBJFILES (pspace, objfile)
1516 {
1517 if ((objfile->flags & OBJF_SHARED) != 0
1518 && is_addr_in_objfile (address, objfile))
1519 return 1;
1520 }
1521
1522 return 0;
1523 }
1524
1525 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1526 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1527 searching the objfiles in the order they are stored internally,
1528 ignoring CURRENT_OBJFILE.
1529
1530 On most platorms, it should be close enough to doing the best
1531 we can without some knowledge specific to the architecture. */
1532
1533 void
1534 default_iterate_over_objfiles_in_search_order
1535 (struct gdbarch *gdbarch,
1536 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1537 void *cb_data, struct objfile *current_objfile)
1538 {
1539 int stop = 0;
1540 struct objfile *objfile;
1541
1542 ALL_OBJFILES (objfile)
1543 {
1544 stop = cb (objfile, cb_data);
1545 if (stop)
1546 return;
1547 }
1548 }
1549
1550 /* See objfiles.h. */
1551
1552 const char *
1553 objfile_name (const struct objfile *objfile)
1554 {
1555 if (objfile->obfd != NULL)
1556 return bfd_get_filename (objfile->obfd);
1557
1558 return objfile->original_name;
1559 }
1560
1561 /* See objfiles.h. */
1562
1563 const char *
1564 objfile_filename (const struct objfile *objfile)
1565 {
1566 if (objfile->obfd != NULL)
1567 return bfd_get_filename (objfile->obfd);
1568
1569 return NULL;
1570 }
1571
1572 /* See objfiles.h. */
1573
1574 const char *
1575 objfile_debug_name (const struct objfile *objfile)
1576 {
1577 return lbasename (objfile->original_name);
1578 }
1579
1580 /* See objfiles.h. */
1581
1582 const char *
1583 objfile_flavour_name (struct objfile *objfile)
1584 {
1585 if (objfile->obfd != NULL)
1586 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1587 return NULL;
1588 }
1589
1590 void
1591 _initialize_objfiles (void)
1592 {
1593 objfiles_pspace_data
1594 = register_program_space_data_with_cleanup (NULL,
1595 objfiles_pspace_data_cleanup);
1596
1597 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1598 objfile_bfd_data_free);
1599 }
This page took 0.066516 seconds and 4 git commands to generate.