2002-08-14 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* This file contains support routines for creating, manipulating, and
26 destroying objfile structures. */
27
28 #include "defs.h"
29 #include "bfd.h" /* Binary File Description */
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "target.h"
35 #include "bcache.h"
36
37 #include <sys/types.h>
38 #include "gdb_stat.h"
39 #include <fcntl.h>
40 #include "gdb_obstack.h"
41 #include "gdb_string.h"
42
43 #include "breakpoint.h"
44
45 /* Prototypes for local functions */
46
47 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
48
49 #include "mmalloc.h"
50
51 static int open_existing_mapped_file (char *, long, int);
52
53 static int open_mapped_file (char *filename, long mtime, int flags);
54
55 static PTR map_to_file (int);
56
57 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
58
59 static void add_to_objfile_sections (bfd *, sec_ptr, PTR);
60
61 /* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
64 struct objfile *object_files; /* Linked list of all objfiles */
65 struct objfile *current_objfile; /* For symbol file being read in */
66 struct objfile *symfile_objfile; /* Main symbol table loaded from */
67 struct objfile *rt_common_objfile; /* For runtime common symbols */
68
69 int mapped_symbol_files; /* Try to use mapped symbol files */
70
71 /* Locate all mappable sections of a BFD file.
72 objfile_p_char is a char * to get it through
73 bfd_map_over_sections; we cast it back to its proper type. */
74
75 #ifndef TARGET_KEEP_SECTION
76 #define TARGET_KEEP_SECTION(ASECT) 0
77 #endif
78
79 /* Called via bfd_map_over_sections to build up the section table that
80 the objfile references. The objfile contains pointers to the start
81 of the table (objfile->sections) and to the first location after
82 the end of the table (objfile->sections_end). */
83
84 static void
85 add_to_objfile_sections (bfd *abfd, sec_ptr asect, PTR objfile_p_char)
86 {
87 struct objfile *objfile = (struct objfile *) objfile_p_char;
88 struct obj_section section;
89 flagword aflag;
90
91 aflag = bfd_get_section_flags (abfd, asect);
92
93 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
94 return;
95
96 if (0 == bfd_section_size (abfd, asect))
97 return;
98 section.offset = 0;
99 section.objfile = objfile;
100 section.the_bfd_section = asect;
101 section.ovly_mapped = 0;
102 section.addr = bfd_section_vma (abfd, asect);
103 section.endaddr = section.addr + bfd_section_size (abfd, asect);
104 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
105 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
106 }
107
108 /* Builds a section table for OBJFILE.
109 Returns 0 if OK, 1 on error (in which case bfd_error contains the
110 error).
111
112 Note that while we are building the table, which goes into the
113 psymbol obstack, we hijack the sections_end pointer to instead hold
114 a count of the number of sections. When bfd_map_over_sections
115 returns, this count is used to compute the pointer to the end of
116 the sections table, which then overwrites the count.
117
118 Also note that the OFFSET and OVLY_MAPPED in each table entry
119 are initialized to zero.
120
121 Also note that if anything else writes to the psymbol obstack while
122 we are building the table, we're pretty much hosed. */
123
124 int
125 build_objfile_section_table (struct objfile *objfile)
126 {
127 /* objfile->sections can be already set when reading a mapped symbol
128 file. I believe that we do need to rebuild the section table in
129 this case (we rebuild other things derived from the bfd), but we
130 can't free the old one (it's in the psymbol_obstack). So we just
131 waste some memory. */
132
133 objfile->sections_end = 0;
134 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
135 objfile->sections = (struct obj_section *)
136 obstack_finish (&objfile->psymbol_obstack);
137 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
138 return (0);
139 }
140
141 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
142 allocate a new objfile struct, fill it in as best we can, link it
143 into the list of all known objfiles, and return a pointer to the
144 new objfile struct.
145
146 The FLAGS word contains various bits (OBJF_*) that can be taken as
147 requests for specific operations, like trying to open a mapped
148 version of the objfile (OBJF_MAPPED). Other bits like
149 OBJF_SHARED are simply copied through to the new objfile flags
150 member. */
151
152 struct objfile *
153 allocate_objfile (bfd *abfd, int flags)
154 {
155 struct objfile *objfile = NULL;
156 struct objfile *last_one = NULL;
157
158 if (mapped_symbol_files)
159 flags |= OBJF_MAPPED;
160
161 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
162 if (abfd != NULL)
163 {
164
165 /* If we can support mapped symbol files, try to open/reopen the
166 mapped file that corresponds to the file from which we wish to
167 read symbols. If the objfile is to be mapped, we must malloc
168 the structure itself using the mmap version, and arrange that
169 all memory allocation for the objfile uses the mmap routines.
170 If we are reusing an existing mapped file, from which we get
171 our objfile pointer, we have to make sure that we update the
172 pointers to the alloc/free functions in the obstack, in case
173 these functions have moved within the current gdb. */
174
175 int fd;
176
177 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
178 flags);
179 if (fd >= 0)
180 {
181 PTR md;
182
183 if ((md = map_to_file (fd)) == NULL)
184 {
185 close (fd);
186 }
187 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
188 {
189 /* Update memory corruption handler function addresses. */
190 init_malloc (md);
191 objfile->md = md;
192 objfile->mmfd = fd;
193 /* Update pointers to functions to *our* copies */
194 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
195 obstack_freefun (&objfile->psymbol_cache.cache, xmfree);
196 obstack_chunkfun (&objfile->macro_cache.cache, xmmalloc);
197 obstack_freefun (&objfile->macro_cache.cache, xmfree);
198 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
199 obstack_freefun (&objfile->psymbol_obstack, xmfree);
200 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
201 obstack_freefun (&objfile->symbol_obstack, xmfree);
202 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
203 obstack_freefun (&objfile->type_obstack, xmfree);
204 /* If already in objfile list, unlink it. */
205 unlink_objfile (objfile);
206 /* Forget things specific to a particular gdb, may have changed. */
207 objfile->sf = NULL;
208 }
209 else
210 {
211
212 /* Set up to detect internal memory corruption. MUST be
213 done before the first malloc. See comments in
214 init_malloc() and mmcheck(). */
215
216 init_malloc (md);
217
218 objfile = (struct objfile *)
219 xmmalloc (md, sizeof (struct objfile));
220 memset (objfile, 0, sizeof (struct objfile));
221 objfile->md = md;
222 objfile->mmfd = fd;
223 objfile->flags |= OBJF_MAPPED;
224 mmalloc_setkey (objfile->md, 0, objfile);
225 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
226 0, 0, xmmalloc, xmfree,
227 objfile->md);
228 obstack_specify_allocation_with_arg (&objfile->macro_cache.cache,
229 0, 0, xmmalloc, xmfree,
230 objfile->md);
231 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
232 0, 0, xmmalloc, xmfree,
233 objfile->md);
234 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
235 0, 0, xmmalloc, xmfree,
236 objfile->md);
237 obstack_specify_allocation_with_arg (&objfile->type_obstack,
238 0, 0, xmmalloc, xmfree,
239 objfile->md);
240 }
241 }
242
243 if ((flags & OBJF_MAPPED) && (objfile == NULL))
244 {
245 warning ("symbol table for '%s' will not be mapped",
246 bfd_get_filename (abfd));
247 flags &= ~OBJF_MAPPED;
248 }
249 }
250 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
251
252 if (flags & OBJF_MAPPED)
253 {
254 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
255
256 /* Turn off the global flag so we don't try to do mapped symbol tables
257 any more, which shuts up gdb unless the user specifically gives the
258 "mapped" keyword again. */
259
260 mapped_symbol_files = 0;
261 flags &= ~OBJF_MAPPED;
262 }
263
264 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
265
266 /* If we don't support mapped symbol files, didn't ask for the file to be
267 mapped, or failed to open the mapped file for some reason, then revert
268 back to an unmapped objfile. */
269
270 if (objfile == NULL)
271 {
272 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
273 memset (objfile, 0, sizeof (struct objfile));
274 objfile->md = NULL;
275 objfile->psymbol_cache = bcache_xmalloc ();
276 objfile->macro_cache = bcache_xmalloc ();
277 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
278 xfree);
279 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
280 xfree);
281 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
282 xfree);
283 flags &= ~OBJF_MAPPED;
284 }
285
286 /* Update the per-objfile information that comes from the bfd, ensuring
287 that any data that is reference is saved in the per-objfile data
288 region. */
289
290 objfile->obfd = abfd;
291 if (objfile->name != NULL)
292 {
293 xmfree (objfile->md, objfile->name);
294 }
295 if (abfd != NULL)
296 {
297 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
298 objfile->mtime = bfd_get_mtime (abfd);
299
300 /* Build section table. */
301
302 if (build_objfile_section_table (objfile))
303 {
304 error ("Can't find the file sections in `%s': %s",
305 objfile->name, bfd_errmsg (bfd_get_error ()));
306 }
307 }
308
309 /* Initialize the section indexes for this objfile, so that we can
310 later detect if they are used w/o being properly assigned to. */
311
312 objfile->sect_index_text = -1;
313 objfile->sect_index_data = -1;
314 objfile->sect_index_bss = -1;
315 objfile->sect_index_rodata = -1;
316
317 /* Add this file onto the tail of the linked list of other such files. */
318
319 objfile->next = NULL;
320 if (object_files == NULL)
321 object_files = objfile;
322 else
323 {
324 for (last_one = object_files;
325 last_one->next;
326 last_one = last_one->next);
327 last_one->next = objfile;
328 }
329
330 /* Save passed in flag bits. */
331 objfile->flags |= flags;
332
333 return (objfile);
334 }
335
336 /* Put OBJFILE at the front of the list. */
337
338 void
339 objfile_to_front (struct objfile *objfile)
340 {
341 struct objfile **objp;
342 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
343 {
344 if (*objp == objfile)
345 {
346 /* Unhook it from where it is. */
347 *objp = objfile->next;
348 /* Put it in the front. */
349 objfile->next = object_files;
350 object_files = objfile;
351 break;
352 }
353 }
354 }
355
356 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
357 list.
358
359 It is not a bug, or error, to call this function if OBJFILE is not known
360 to be in the current list. This is done in the case of mapped objfiles,
361 for example, just to ensure that the mapped objfile doesn't appear twice
362 in the list. Since the list is threaded, linking in a mapped objfile
363 twice would create a circular list.
364
365 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
366 unlinking it, just to ensure that we have completely severed any linkages
367 between the OBJFILE and the list. */
368
369 void
370 unlink_objfile (struct objfile *objfile)
371 {
372 struct objfile **objpp;
373
374 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
375 {
376 if (*objpp == objfile)
377 {
378 *objpp = (*objpp)->next;
379 objfile->next = NULL;
380 return;
381 }
382 }
383
384 internal_error (__FILE__, __LINE__,
385 "unlink_objfile: objfile already unlinked");
386 }
387
388
389 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
390 that as much as possible is allocated on the symbol_obstack and
391 psymbol_obstack, so that the memory can be efficiently freed.
392
393 Things which we do NOT free because they are not in malloc'd memory
394 or not in memory specific to the objfile include:
395
396 objfile -> sf
397
398 FIXME: If the objfile is using reusable symbol information (via mmalloc),
399 then we need to take into account the fact that more than one process
400 may be using the symbol information at the same time (when mmalloc is
401 extended to support cooperative locking). When more than one process
402 is using the mapped symbol info, we need to be more careful about when
403 we free objects in the reusable area. */
404
405 void
406 free_objfile (struct objfile *objfile)
407 {
408 /* First do any symbol file specific actions required when we are
409 finished with a particular symbol file. Note that if the objfile
410 is using reusable symbol information (via mmalloc) then each of
411 these routines is responsible for doing the correct thing, either
412 freeing things which are valid only during this particular gdb
413 execution, or leaving them to be reused during the next one. */
414
415 if (objfile->sf != NULL)
416 {
417 (*objfile->sf->sym_finish) (objfile);
418 }
419
420 /* We always close the bfd. */
421
422 if (objfile->obfd != NULL)
423 {
424 char *name = bfd_get_filename (objfile->obfd);
425 if (!bfd_close (objfile->obfd))
426 warning ("cannot close \"%s\": %s",
427 name, bfd_errmsg (bfd_get_error ()));
428 xfree (name);
429 }
430
431 /* Remove it from the chain of all objfiles. */
432
433 unlink_objfile (objfile);
434
435 /* If we are going to free the runtime common objfile, mark it
436 as unallocated. */
437
438 if (objfile == rt_common_objfile)
439 rt_common_objfile = NULL;
440
441 /* Before the symbol table code was redone to make it easier to
442 selectively load and remove information particular to a specific
443 linkage unit, gdb used to do these things whenever the monolithic
444 symbol table was blown away. How much still needs to be done
445 is unknown, but we play it safe for now and keep each action until
446 it is shown to be no longer needed. */
447
448 /* I *think* all our callers call clear_symtab_users. If so, no need
449 to call this here. */
450 clear_pc_function_cache ();
451
452 /* The last thing we do is free the objfile struct itself for the
453 non-reusable case, or detach from the mapped file for the
454 reusable case. Note that the mmalloc_detach or the xmfree() is
455 the last thing we can do with this objfile. */
456
457 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
458
459 if (objfile->flags & OBJF_MAPPED)
460 {
461 /* Remember the fd so we can close it. We can't close it before
462 doing the detach, and after the detach the objfile is gone. */
463 int mmfd;
464
465 mmfd = objfile->mmfd;
466 mmalloc_detach (objfile->md);
467 objfile = NULL;
468 close (mmfd);
469 }
470
471 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
472
473 /* If we still have an objfile, then either we don't support reusable
474 objfiles or this one was not reusable. So free it normally. */
475
476 if (objfile != NULL)
477 {
478 if (objfile->name != NULL)
479 {
480 xmfree (objfile->md, objfile->name);
481 }
482 if (objfile->global_psymbols.list)
483 xmfree (objfile->md, objfile->global_psymbols.list);
484 if (objfile->static_psymbols.list)
485 xmfree (objfile->md, objfile->static_psymbols.list);
486 /* Free the obstacks for non-reusable objfiles */
487 bcache_xfree (objfile->psymbol_cache);
488 bcache_xfree (objfile->macro_cache);
489 obstack_free (&objfile->psymbol_obstack, 0);
490 obstack_free (&objfile->symbol_obstack, 0);
491 obstack_free (&objfile->type_obstack, 0);
492 xmfree (objfile->md, objfile);
493 objfile = NULL;
494 }
495 }
496
497 static void
498 do_free_objfile_cleanup (void *obj)
499 {
500 free_objfile (obj);
501 }
502
503 struct cleanup *
504 make_cleanup_free_objfile (struct objfile *obj)
505 {
506 return make_cleanup (do_free_objfile_cleanup, obj);
507 }
508
509 /* Free all the object files at once and clean up their users. */
510
511 void
512 free_all_objfiles (void)
513 {
514 struct objfile *objfile, *temp;
515
516 ALL_OBJFILES_SAFE (objfile, temp)
517 {
518 free_objfile (objfile);
519 }
520 clear_symtab_users ();
521 }
522 \f
523 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
524 entries in new_offsets. */
525 void
526 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
527 {
528 struct section_offsets *delta =
529 (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
530
531 {
532 int i;
533 int something_changed = 0;
534 for (i = 0; i < objfile->num_sections; ++i)
535 {
536 delta->offsets[i] =
537 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
538 if (ANOFFSET (delta, i) != 0)
539 something_changed = 1;
540 }
541 if (!something_changed)
542 return;
543 }
544
545 /* OK, get all the symtabs. */
546 {
547 struct symtab *s;
548
549 ALL_OBJFILE_SYMTABS (objfile, s)
550 {
551 struct linetable *l;
552 struct blockvector *bv;
553 int i;
554
555 /* First the line table. */
556 l = LINETABLE (s);
557 if (l)
558 {
559 for (i = 0; i < l->nitems; ++i)
560 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
561 }
562
563 /* Don't relocate a shared blockvector more than once. */
564 if (!s->primary)
565 continue;
566
567 bv = BLOCKVECTOR (s);
568 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
569 {
570 struct block *b;
571 struct symbol *sym;
572 int j;
573
574 b = BLOCKVECTOR_BLOCK (bv, i);
575 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
576 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
577
578 ALL_BLOCK_SYMBOLS (b, j, sym)
579 {
580 fixup_symbol_section (sym, objfile);
581
582 /* The RS6000 code from which this was taken skipped
583 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
584 But I'm leaving out that test, on the theory that
585 they can't possibly pass the tests below. */
586 if ((SYMBOL_CLASS (sym) == LOC_LABEL
587 || SYMBOL_CLASS (sym) == LOC_STATIC
588 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
589 && SYMBOL_SECTION (sym) >= 0)
590 {
591 SYMBOL_VALUE_ADDRESS (sym) +=
592 ANOFFSET (delta, SYMBOL_SECTION (sym));
593 }
594 #ifdef MIPS_EFI_SYMBOL_NAME
595 /* Relocate Extra Function Info for ecoff. */
596
597 else if (SYMBOL_CLASS (sym) == LOC_CONST
598 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
599 && strcmp (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
600 ecoff_relocate_efi (sym, ANOFFSET (delta,
601 s->block_line_section));
602 #endif
603 }
604 }
605 }
606 }
607
608 {
609 struct partial_symtab *p;
610
611 ALL_OBJFILE_PSYMTABS (objfile, p)
612 {
613 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
614 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
615 }
616 }
617
618 {
619 struct partial_symbol **psym;
620
621 for (psym = objfile->global_psymbols.list;
622 psym < objfile->global_psymbols.next;
623 psym++)
624 {
625 fixup_psymbol_section (*psym, objfile);
626 if (SYMBOL_SECTION (*psym) >= 0)
627 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
628 SYMBOL_SECTION (*psym));
629 }
630 for (psym = objfile->static_psymbols.list;
631 psym < objfile->static_psymbols.next;
632 psym++)
633 {
634 fixup_psymbol_section (*psym, objfile);
635 if (SYMBOL_SECTION (*psym) >= 0)
636 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
637 SYMBOL_SECTION (*psym));
638 }
639 }
640
641 {
642 struct minimal_symbol *msym;
643 ALL_OBJFILE_MSYMBOLS (objfile, msym)
644 if (SYMBOL_SECTION (msym) >= 0)
645 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
646 }
647 /* Relocating different sections by different amounts may cause the symbols
648 to be out of order. */
649 msymbols_sort (objfile);
650
651 {
652 int i;
653 for (i = 0; i < objfile->num_sections; ++i)
654 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
655 }
656
657 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
658 {
659 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
660 only as a fallback. */
661 struct obj_section *s;
662 s = find_pc_section (objfile->ei.entry_point);
663 if (s)
664 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
665 else
666 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
667 }
668
669 {
670 struct obj_section *s;
671 bfd *abfd;
672
673 abfd = objfile->obfd;
674
675 ALL_OBJFILE_OSECTIONS (objfile, s)
676 {
677 int idx = s->the_bfd_section->index;
678
679 s->addr += ANOFFSET (delta, idx);
680 s->endaddr += ANOFFSET (delta, idx);
681 }
682 }
683
684 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
685 {
686 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
687 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
688 }
689
690 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
691 {
692 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
693 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
694 }
695
696 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
697 {
698 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
699 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
700 }
701
702 /* Relocate breakpoints as necessary, after things are relocated. */
703 breakpoint_re_set ();
704 }
705 \f
706 /* Many places in gdb want to test just to see if we have any partial
707 symbols available. This function returns zero if none are currently
708 available, nonzero otherwise. */
709
710 int
711 have_partial_symbols (void)
712 {
713 struct objfile *ofp;
714
715 ALL_OBJFILES (ofp)
716 {
717 if (ofp->psymtabs != NULL)
718 {
719 return 1;
720 }
721 }
722 return 0;
723 }
724
725 /* Many places in gdb want to test just to see if we have any full
726 symbols available. This function returns zero if none are currently
727 available, nonzero otherwise. */
728
729 int
730 have_full_symbols (void)
731 {
732 struct objfile *ofp;
733
734 ALL_OBJFILES (ofp)
735 {
736 if (ofp->symtabs != NULL)
737 {
738 return 1;
739 }
740 }
741 return 0;
742 }
743
744
745 /* This operations deletes all objfile entries that represent solibs that
746 weren't explicitly loaded by the user, via e.g., the add-symbol-file
747 command.
748 */
749 void
750 objfile_purge_solibs (void)
751 {
752 struct objfile *objf;
753 struct objfile *temp;
754
755 ALL_OBJFILES_SAFE (objf, temp)
756 {
757 /* We assume that the solib package has been purged already, or will
758 be soon.
759 */
760 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
761 free_objfile (objf);
762 }
763 }
764
765
766 /* Many places in gdb want to test just to see if we have any minimal
767 symbols available. This function returns zero if none are currently
768 available, nonzero otherwise. */
769
770 int
771 have_minimal_symbols (void)
772 {
773 struct objfile *ofp;
774
775 ALL_OBJFILES (ofp)
776 {
777 if (ofp->msymbols != NULL)
778 {
779 return 1;
780 }
781 }
782 return 0;
783 }
784
785 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
786
787 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
788 of the corresponding symbol file in MTIME, try to open an existing file
789 with the name SYMSFILENAME and verify it is more recent than the base
790 file by checking it's timestamp against MTIME.
791
792 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
793
794 If SYMSFILENAME does exist, but is out of date, we check to see if the
795 user has specified creation of a mapped file. If so, we don't issue
796 any warning message because we will be creating a new mapped file anyway,
797 overwriting the old one. If not, then we issue a warning message so that
798 the user will know why we aren't using this existing mapped symbol file.
799 In either case, we return -1.
800
801 If SYMSFILENAME does exist and is not out of date, but can't be opened for
802 some reason, then prints an appropriate system error message and returns -1.
803
804 Otherwise, returns the open file descriptor. */
805
806 static int
807 open_existing_mapped_file (char *symsfilename, long mtime, int flags)
808 {
809 int fd = -1;
810 struct stat sbuf;
811
812 if (stat (symsfilename, &sbuf) == 0)
813 {
814 if (sbuf.st_mtime < mtime)
815 {
816 if (!(flags & OBJF_MAPPED))
817 {
818 warning ("mapped symbol file `%s' is out of date, ignored it",
819 symsfilename);
820 }
821 }
822 else if ((fd = open (symsfilename, O_RDWR)) < 0)
823 {
824 if (error_pre_print)
825 {
826 printf_unfiltered (error_pre_print);
827 }
828 print_sys_errmsg (symsfilename, errno);
829 }
830 }
831 return (fd);
832 }
833
834 /* Look for a mapped symbol file that corresponds to FILENAME and is more
835 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
836 use a mapped symbol file for this file, so create a new one if one does
837 not currently exist.
838
839 If found, then return an open file descriptor for the file, otherwise
840 return -1.
841
842 This routine is responsible for implementing the policy that generates
843 the name of the mapped symbol file from the name of a file containing
844 symbols that gdb would like to read. Currently this policy is to append
845 ".syms" to the name of the file.
846
847 This routine is also responsible for implementing the policy that
848 determines where the mapped symbol file is found (the search path).
849 This policy is that when reading an existing mapped file, a file of
850 the correct name in the current directory takes precedence over a
851 file of the correct name in the same directory as the symbol file.
852 When creating a new mapped file, it is always created in the current
853 directory. This helps to minimize the chances of a user unknowingly
854 creating big mapped files in places like /bin and /usr/local/bin, and
855 allows a local copy to override a manually installed global copy (in
856 /bin for example). */
857
858 static int
859 open_mapped_file (char *filename, long mtime, int flags)
860 {
861 int fd;
862 char *symsfilename;
863
864 /* First try to open an existing file in the current directory, and
865 then try the directory where the symbol file is located. */
866
867 symsfilename = concat ("./", lbasename (filename), ".syms", (char *) NULL);
868 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
869 {
870 xfree (symsfilename);
871 symsfilename = concat (filename, ".syms", (char *) NULL);
872 fd = open_existing_mapped_file (symsfilename, mtime, flags);
873 }
874
875 /* If we don't have an open file by now, then either the file does not
876 already exist, or the base file has changed since it was created. In
877 either case, if the user has specified use of a mapped file, then
878 create a new mapped file, truncating any existing one. If we can't
879 create one, print a system error message saying why we can't.
880
881 By default the file is rw for everyone, with the user's umask taking
882 care of turning off the permissions the user wants off. */
883
884 if ((fd < 0) && (flags & OBJF_MAPPED))
885 {
886 xfree (symsfilename);
887 symsfilename = concat ("./", lbasename (filename), ".syms",
888 (char *) NULL);
889 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
890 {
891 if (error_pre_print)
892 {
893 printf_unfiltered (error_pre_print);
894 }
895 print_sys_errmsg (symsfilename, errno);
896 }
897 }
898
899 xfree (symsfilename);
900 return (fd);
901 }
902
903 static PTR
904 map_to_file (int fd)
905 {
906 PTR md;
907 CORE_ADDR mapto;
908
909 md = mmalloc_attach (fd, (PTR) 0);
910 if (md != NULL)
911 {
912 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
913 md = mmalloc_detach (md);
914 if (md != NULL)
915 {
916 /* FIXME: should figure out why detach failed */
917 md = NULL;
918 }
919 else if (mapto != (CORE_ADDR) NULL)
920 {
921 /* This mapping file needs to be remapped at "mapto" */
922 md = mmalloc_attach (fd, (PTR) mapto);
923 }
924 else
925 {
926 /* This is a freshly created mapping file. */
927 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
928 if (mapto != 0)
929 {
930 /* To avoid reusing the freshly created mapping file, at the
931 address selected by mmap, we must truncate it before trying
932 to do an attach at the address we want. */
933 ftruncate (fd, 0);
934 md = mmalloc_attach (fd, (PTR) mapto);
935 if (md != NULL)
936 {
937 mmalloc_setkey (md, 1, (PTR) mapto);
938 }
939 }
940 }
941 }
942 return (md);
943 }
944
945 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
946
947 /* Returns a section whose range includes PC and SECTION,
948 or NULL if none found. Note the distinction between the return type,
949 struct obj_section (which is defined in gdb), and the input type
950 struct sec (which is a bfd-defined data type). The obj_section
951 contains a pointer to the bfd struct sec section. */
952
953 struct obj_section *
954 find_pc_sect_section (CORE_ADDR pc, struct sec *section)
955 {
956 struct obj_section *s;
957 struct objfile *objfile;
958
959 ALL_OBJSECTIONS (objfile, s)
960 if ((section == 0 || section == s->the_bfd_section) &&
961 s->addr <= pc && pc < s->endaddr)
962 return (s);
963
964 return (NULL);
965 }
966
967 /* Returns a section whose range includes PC or NULL if none found.
968 Backward compatibility, no section. */
969
970 struct obj_section *
971 find_pc_section (CORE_ADDR pc)
972 {
973 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
974 }
975
976
977 /* In SVR4, we recognize a trampoline by it's section name.
978 That is, if the pc is in a section named ".plt" then we are in
979 a trampoline. */
980
981 int
982 in_plt_section (CORE_ADDR pc, char *name)
983 {
984 struct obj_section *s;
985 int retval = 0;
986
987 s = find_pc_section (pc);
988
989 retval = (s != NULL
990 && s->the_bfd_section->name != NULL
991 && STREQ (s->the_bfd_section->name, ".plt"));
992 return (retval);
993 }
994
995 /* Return nonzero if NAME is in the import list of OBJFILE. Else
996 return zero. */
997
998 int
999 is_in_import_list (char *name, struct objfile *objfile)
1000 {
1001 register int i;
1002
1003 if (!objfile || !name || !*name)
1004 return 0;
1005
1006 for (i = 0; i < objfile->import_list_size; i++)
1007 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
1008 return 1;
1009 return 0;
1010 }
1011
This page took 0.056001 seconds and 4 git commands to generate.