2010-01-06 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53 #include "observer.h"
54 #include "complaints.h"
55
56 /* Prototypes for local functions */
57
58 static void objfile_alloc_data (struct objfile *objfile);
59 static void objfile_free_data (struct objfile *objfile);
60
61 /* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
64 struct objfile *current_objfile; /* For symbol file being read in */
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 struct objfile_pspace_info
68 {
69 int objfiles_changed_p;
70 struct obj_section **sections;
71 int num_sections;
72 };
73
74 /* Per-program-space data key. */
75 static const struct program_space_data *objfiles_pspace_data;
76
77 static void
78 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79 {
80 struct objfile_pspace_info *info;
81
82 info = program_space_data (pspace, objfiles_pspace_data);
83 if (info != NULL)
84 {
85 xfree (info->sections);
86 xfree (info);
87 }
88 }
89
90 /* Get the current svr4 data. If none is found yet, add it now. This
91 function always returns a valid object. */
92
93 static struct objfile_pspace_info *
94 get_objfile_pspace_data (struct program_space *pspace)
95 {
96 struct objfile_pspace_info *info;
97
98 info = program_space_data (pspace, objfiles_pspace_data);
99 if (info == NULL)
100 {
101 info = XZALLOC (struct objfile_pspace_info);
102 set_program_space_data (pspace, objfiles_pspace_data, info);
103 }
104
105 return info;
106 }
107
108 /* Records whether any objfiles appeared or disappeared since we last updated
109 address to obj section map. */
110
111 /* Locate all mappable sections of a BFD file.
112 objfile_p_char is a char * to get it through
113 bfd_map_over_sections; we cast it back to its proper type. */
114
115 /* Called via bfd_map_over_sections to build up the section table that
116 the objfile references. The objfile contains pointers to the start
117 of the table (objfile->sections) and to the first location after
118 the end of the table (objfile->sections_end). */
119
120 static void
121 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
122 void *objfile_p_char)
123 {
124 struct objfile *objfile = (struct objfile *) objfile_p_char;
125 struct obj_section section;
126 flagword aflag;
127
128 aflag = bfd_get_section_flags (abfd, asect);
129
130 if (!(aflag & SEC_ALLOC))
131 return;
132
133 if (0 == bfd_section_size (abfd, asect))
134 return;
135 section.objfile = objfile;
136 section.the_bfd_section = asect;
137 section.ovly_mapped = 0;
138 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
139 objfile->sections_end
140 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
141 }
142
143 /* Builds a section table for OBJFILE.
144 Returns 0 if OK, 1 on error (in which case bfd_error contains the
145 error).
146
147 Note that while we are building the table, which goes into the
148 psymbol obstack, we hijack the sections_end pointer to instead hold
149 a count of the number of sections. When bfd_map_over_sections
150 returns, this count is used to compute the pointer to the end of
151 the sections table, which then overwrites the count.
152
153 Also note that the OFFSET and OVLY_MAPPED in each table entry
154 are initialized to zero.
155
156 Also note that if anything else writes to the psymbol obstack while
157 we are building the table, we're pretty much hosed. */
158
159 int
160 build_objfile_section_table (struct objfile *objfile)
161 {
162 /* objfile->sections can be already set when reading a mapped symbol
163 file. I believe that we do need to rebuild the section table in
164 this case (we rebuild other things derived from the bfd), but we
165 can't free the old one (it's in the objfile_obstack). So we just
166 waste some memory. */
167
168 objfile->sections_end = 0;
169 bfd_map_over_sections (objfile->obfd,
170 add_to_objfile_sections, (void *) objfile);
171 objfile->sections = obstack_finish (&objfile->objfile_obstack);
172 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
173 return (0);
174 }
175
176 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
177 allocate a new objfile struct, fill it in as best we can, link it
178 into the list of all known objfiles, and return a pointer to the
179 new objfile struct.
180
181 The FLAGS word contains various bits (OBJF_*) that can be taken as
182 requests for specific operations. Other bits like OBJF_SHARED are
183 simply copied through to the new objfile flags member. */
184
185 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
186 by jv-lang.c, to create an artificial objfile used to hold
187 information about dynamically-loaded Java classes. Unfortunately,
188 that branch of this function doesn't get tested very frequently, so
189 it's prone to breakage. (E.g. at one time the name was set to NULL
190 in that situation, which broke a loop over all names in the dynamic
191 library loader.) If you change this function, please try to leave
192 things in a consistent state even if abfd is NULL. */
193
194 struct objfile *
195 allocate_objfile (bfd *abfd, int flags)
196 {
197 struct objfile *objfile;
198
199 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
200 objfile->psymbol_cache = bcache_xmalloc ();
201 objfile->macro_cache = bcache_xmalloc ();
202 objfile->filename_cache = bcache_xmalloc ();
203 /* We could use obstack_specify_allocation here instead, but
204 gdb_obstack.h specifies the alloc/dealloc functions. */
205 obstack_init (&objfile->objfile_obstack);
206 terminate_minimal_symbol_table (objfile);
207
208 objfile_alloc_data (objfile);
209
210 /* Update the per-objfile information that comes from the bfd, ensuring
211 that any data that is reference is saved in the per-objfile data
212 region. */
213
214 objfile->obfd = gdb_bfd_ref (abfd);
215 if (objfile->name != NULL)
216 {
217 xfree (objfile->name);
218 }
219 if (abfd != NULL)
220 {
221 /* Look up the gdbarch associated with the BFD. */
222 objfile->gdbarch = gdbarch_from_bfd (abfd);
223
224 objfile->name = xstrdup (bfd_get_filename (abfd));
225 objfile->mtime = bfd_get_mtime (abfd);
226
227 /* Build section table. */
228
229 if (build_objfile_section_table (objfile))
230 {
231 error (_("Can't find the file sections in `%s': %s"),
232 objfile->name, bfd_errmsg (bfd_get_error ()));
233 }
234 }
235 else
236 {
237 objfile->name = xstrdup ("<<anonymous objfile>>");
238 }
239
240 objfile->pspace = current_program_space;
241
242 /* Initialize the section indexes for this objfile, so that we can
243 later detect if they are used w/o being properly assigned to. */
244
245 objfile->sect_index_text = -1;
246 objfile->sect_index_data = -1;
247 objfile->sect_index_bss = -1;
248 objfile->sect_index_rodata = -1;
249
250 /* We don't yet have a C++-specific namespace symtab. */
251
252 objfile->cp_namespace_symtab = NULL;
253
254 /* Add this file onto the tail of the linked list of other such files. */
255
256 objfile->next = NULL;
257 if (object_files == NULL)
258 object_files = objfile;
259 else
260 {
261 struct objfile *last_one;
262
263 for (last_one = object_files;
264 last_one->next;
265 last_one = last_one->next);
266 last_one->next = objfile;
267 }
268
269 /* Save passed in flag bits. */
270 objfile->flags |= flags;
271
272 /* Rebuild section map next time we need it. */
273 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
274
275 return objfile;
276 }
277
278 /* Retrieve the gdbarch associated with OBJFILE. */
279 struct gdbarch *
280 get_objfile_arch (struct objfile *objfile)
281 {
282 return objfile->gdbarch;
283 }
284
285 /* Initialize entry point information for this objfile. */
286
287 void
288 init_entry_point_info (struct objfile *objfile)
289 {
290 /* Save startup file's range of PC addresses to help blockframe.c
291 decide where the bottom of the stack is. */
292
293 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
294 {
295 /* Executable file -- record its entry point so we'll recognize
296 the startup file because it contains the entry point. */
297 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
298 objfile->ei.entry_point_p = 1;
299 }
300 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
301 && bfd_get_start_address (objfile->obfd) != 0)
302 {
303 /* Some shared libraries may have entry points set and be
304 runnable. There's no clear way to indicate this, so just check
305 for values other than zero. */
306 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
307 objfile->ei.entry_point_p = 1;
308 }
309 else
310 {
311 /* Examination of non-executable.o files. Short-circuit this stuff. */
312 objfile->ei.entry_point_p = 0;
313 }
314 }
315
316 /* If there is a valid and known entry point, function fills *ENTRY_P with it
317 and returns non-zero; otherwise it returns zero. */
318
319 int
320 entry_point_address_query (CORE_ADDR *entry_p)
321 {
322 struct gdbarch *gdbarch;
323 CORE_ADDR entry_point;
324
325 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
326 return 0;
327
328 gdbarch = get_objfile_arch (symfile_objfile);
329
330 entry_point = symfile_objfile->ei.entry_point;
331
332 /* Make certain that the address points at real code, and not a
333 function descriptor. */
334 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
335 &current_target);
336
337 /* Remove any ISA markers, so that this matches entries in the
338 symbol table. */
339 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
340
341 *entry_p = entry_point;
342 return 1;
343 }
344
345 /* Get current entry point address. Call error if it is not known. */
346
347 CORE_ADDR
348 entry_point_address (void)
349 {
350 CORE_ADDR retval;
351
352 if (!entry_point_address_query (&retval))
353 error (_("Entry point address is not known."));
354
355 return retval;
356 }
357
358 /* Create the terminating entry of OBJFILE's minimal symbol table.
359 If OBJFILE->msymbols is zero, allocate a single entry from
360 OBJFILE->objfile_obstack; otherwise, just initialize
361 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
362 void
363 terminate_minimal_symbol_table (struct objfile *objfile)
364 {
365 if (! objfile->msymbols)
366 objfile->msymbols = ((struct minimal_symbol *)
367 obstack_alloc (&objfile->objfile_obstack,
368 sizeof (objfile->msymbols[0])));
369
370 {
371 struct minimal_symbol *m
372 = &objfile->msymbols[objfile->minimal_symbol_count];
373
374 memset (m, 0, sizeof (*m));
375 /* Don't rely on these enumeration values being 0's. */
376 MSYMBOL_TYPE (m) = mst_unknown;
377 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
378 }
379 }
380
381 /* Iterator on PARENT and every separate debug objfile of PARENT.
382 The usage pattern is:
383 for (objfile = parent;
384 objfile;
385 objfile = objfile_separate_debug_iterate (parent, objfile))
386 ...
387 */
388
389 struct objfile *
390 objfile_separate_debug_iterate (const struct objfile *parent,
391 const struct objfile *objfile)
392 {
393 struct objfile *res;
394
395 res = objfile->separate_debug_objfile;
396 if (res)
397 return res;
398
399 res = objfile->separate_debug_objfile_link;
400 if (res)
401 return res;
402
403 /* Common case where there is no separate debug objfile. */
404 if (objfile == parent)
405 return NULL;
406
407 for (res = objfile->separate_debug_objfile_backlink;
408 res != parent;
409 res = res->separate_debug_objfile_backlink)
410 {
411 gdb_assert (res != NULL);
412 if (res->separate_debug_objfile_link)
413 return res->separate_debug_objfile_link;
414 }
415 return NULL;
416 }
417
418 /* Put one object file before a specified on in the global list.
419 This can be used to make sure an object file is destroyed before
420 another when using ALL_OBJFILES_SAFE to free all objfiles. */
421 void
422 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
423 {
424 struct objfile **objp;
425
426 unlink_objfile (objfile);
427
428 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
429 {
430 if (*objp == before_this)
431 {
432 objfile->next = *objp;
433 *objp = objfile;
434 return;
435 }
436 }
437
438 internal_error (__FILE__, __LINE__,
439 _("put_objfile_before: before objfile not in list"));
440 }
441
442 /* Put OBJFILE at the front of the list. */
443
444 void
445 objfile_to_front (struct objfile *objfile)
446 {
447 struct objfile **objp;
448 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
449 {
450 if (*objp == objfile)
451 {
452 /* Unhook it from where it is. */
453 *objp = objfile->next;
454 /* Put it in the front. */
455 objfile->next = object_files;
456 object_files = objfile;
457 break;
458 }
459 }
460 }
461
462 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
463 list.
464
465 It is not a bug, or error, to call this function if OBJFILE is not known
466 to be in the current list. This is done in the case of mapped objfiles,
467 for example, just to ensure that the mapped objfile doesn't appear twice
468 in the list. Since the list is threaded, linking in a mapped objfile
469 twice would create a circular list.
470
471 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
472 unlinking it, just to ensure that we have completely severed any linkages
473 between the OBJFILE and the list. */
474
475 void
476 unlink_objfile (struct objfile *objfile)
477 {
478 struct objfile **objpp;
479
480 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
481 {
482 if (*objpp == objfile)
483 {
484 *objpp = (*objpp)->next;
485 objfile->next = NULL;
486 return;
487 }
488 }
489
490 internal_error (__FILE__, __LINE__,
491 _("unlink_objfile: objfile already unlinked"));
492 }
493
494 /* Add OBJFILE as a separate debug objfile of PARENT. */
495
496 void
497 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
498 {
499 gdb_assert (objfile && parent);
500
501 /* Must not be already in a list. */
502 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
503 gdb_assert (objfile->separate_debug_objfile_link == NULL);
504
505 objfile->separate_debug_objfile_backlink = parent;
506 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
507 parent->separate_debug_objfile = objfile;
508
509 /* Put the separate debug object before the normal one, this is so that
510 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
511 put_objfile_before (objfile, parent);
512 }
513
514 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
515 itself. */
516
517 void
518 free_objfile_separate_debug (struct objfile *objfile)
519 {
520 struct objfile *child;
521
522 for (child = objfile->separate_debug_objfile; child;)
523 {
524 struct objfile *next_child = child->separate_debug_objfile_link;
525 free_objfile (child);
526 child = next_child;
527 }
528 }
529
530 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
531 that as much as possible is allocated on the objfile_obstack
532 so that the memory can be efficiently freed.
533
534 Things which we do NOT free because they are not in malloc'd memory
535 or not in memory specific to the objfile include:
536
537 objfile -> sf
538
539 FIXME: If the objfile is using reusable symbol information (via mmalloc),
540 then we need to take into account the fact that more than one process
541 may be using the symbol information at the same time (when mmalloc is
542 extended to support cooperative locking). When more than one process
543 is using the mapped symbol info, we need to be more careful about when
544 we free objects in the reusable area. */
545
546 void
547 free_objfile (struct objfile *objfile)
548 {
549 /* Free all separate debug objfiles. */
550 free_objfile_separate_debug (objfile);
551
552 if (objfile->separate_debug_objfile_backlink)
553 {
554 /* We freed the separate debug file, make sure the base objfile
555 doesn't reference it. */
556 struct objfile *child;
557
558 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
559
560 if (child == objfile)
561 {
562 /* OBJFILE is the first child. */
563 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
564 objfile->separate_debug_objfile_link;
565 }
566 else
567 {
568 /* Find OBJFILE in the list. */
569 while (1)
570 {
571 if (child->separate_debug_objfile_link == objfile)
572 {
573 child->separate_debug_objfile_link =
574 objfile->separate_debug_objfile_link;
575 break;
576 }
577 child = child->separate_debug_objfile_link;
578 gdb_assert (child);
579 }
580 }
581 }
582
583 /* Remove any references to this objfile in the global value
584 lists. */
585 preserve_values (objfile);
586
587 /* First do any symbol file specific actions required when we are
588 finished with a particular symbol file. Note that if the objfile
589 is using reusable symbol information (via mmalloc) then each of
590 these routines is responsible for doing the correct thing, either
591 freeing things which are valid only during this particular gdb
592 execution, or leaving them to be reused during the next one. */
593
594 if (objfile->sf != NULL)
595 {
596 (*objfile->sf->sym_finish) (objfile);
597 }
598
599 /* Discard any data modules have associated with the objfile. */
600 objfile_free_data (objfile);
601
602 gdb_bfd_unref (objfile->obfd);
603
604 /* Remove it from the chain of all objfiles. */
605
606 unlink_objfile (objfile);
607
608 if (objfile == symfile_objfile)
609 symfile_objfile = NULL;
610
611 if (objfile == rt_common_objfile)
612 rt_common_objfile = NULL;
613
614 /* Before the symbol table code was redone to make it easier to
615 selectively load and remove information particular to a specific
616 linkage unit, gdb used to do these things whenever the monolithic
617 symbol table was blown away. How much still needs to be done
618 is unknown, but we play it safe for now and keep each action until
619 it is shown to be no longer needed. */
620
621 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
622 for example), so we need to call this here. */
623 clear_pc_function_cache ();
624
625 /* Clear globals which might have pointed into a removed objfile.
626 FIXME: It's not clear which of these are supposed to persist
627 between expressions and which ought to be reset each time. */
628 expression_context_block = NULL;
629 innermost_block = NULL;
630
631 /* Check to see if the current_source_symtab belongs to this objfile,
632 and if so, call clear_current_source_symtab_and_line. */
633
634 {
635 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
636 struct symtab *s;
637
638 ALL_OBJFILE_SYMTABS (objfile, s)
639 {
640 if (s == cursal.symtab)
641 clear_current_source_symtab_and_line ();
642 }
643 }
644
645 /* The last thing we do is free the objfile struct itself. */
646
647 if (objfile->name != NULL)
648 {
649 xfree (objfile->name);
650 }
651 if (objfile->global_psymbols.list)
652 xfree (objfile->global_psymbols.list);
653 if (objfile->static_psymbols.list)
654 xfree (objfile->static_psymbols.list);
655 /* Free the obstacks for non-reusable objfiles */
656 bcache_xfree (objfile->psymbol_cache);
657 bcache_xfree (objfile->macro_cache);
658 bcache_xfree (objfile->filename_cache);
659 if (objfile->demangled_names_hash)
660 htab_delete (objfile->demangled_names_hash);
661 obstack_free (&objfile->objfile_obstack, 0);
662
663 /* Rebuild section map next time we need it. */
664 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
665
666 xfree (objfile);
667 }
668
669 static void
670 do_free_objfile_cleanup (void *obj)
671 {
672 free_objfile (obj);
673 }
674
675 struct cleanup *
676 make_cleanup_free_objfile (struct objfile *obj)
677 {
678 return make_cleanup (do_free_objfile_cleanup, obj);
679 }
680
681 /* Free all the object files at once and clean up their users. */
682
683 void
684 free_all_objfiles (void)
685 {
686 struct objfile *objfile, *temp;
687
688 ALL_OBJFILES_SAFE (objfile, temp)
689 {
690 free_objfile (objfile);
691 }
692 clear_symtab_users ();
693 }
694 \f
695 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
696 entries in new_offsets. */
697 void
698 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
699 {
700 struct obj_section *s;
701 struct section_offsets *delta =
702 ((struct section_offsets *)
703 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
704
705 {
706 int i;
707 int something_changed = 0;
708 for (i = 0; i < objfile->num_sections; ++i)
709 {
710 delta->offsets[i] =
711 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
712 if (ANOFFSET (delta, i) != 0)
713 something_changed = 1;
714 }
715 if (!something_changed)
716 return;
717 }
718
719 /* OK, get all the symtabs. */
720 {
721 struct symtab *s;
722
723 ALL_OBJFILE_SYMTABS (objfile, s)
724 {
725 struct linetable *l;
726 struct blockvector *bv;
727 int i;
728
729 /* First the line table. */
730 l = LINETABLE (s);
731 if (l)
732 {
733 for (i = 0; i < l->nitems; ++i)
734 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
735 }
736
737 /* Don't relocate a shared blockvector more than once. */
738 if (!s->primary)
739 continue;
740
741 bv = BLOCKVECTOR (s);
742 if (BLOCKVECTOR_MAP (bv))
743 addrmap_relocate (BLOCKVECTOR_MAP (bv),
744 ANOFFSET (delta, s->block_line_section));
745
746 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
747 {
748 struct block *b;
749 struct symbol *sym;
750 struct dict_iterator iter;
751
752 b = BLOCKVECTOR_BLOCK (bv, i);
753 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
754 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
755
756 ALL_BLOCK_SYMBOLS (b, iter, sym)
757 {
758 fixup_symbol_section (sym, objfile);
759
760 /* The RS6000 code from which this was taken skipped
761 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
762 But I'm leaving out that test, on the theory that
763 they can't possibly pass the tests below. */
764 if ((SYMBOL_CLASS (sym) == LOC_LABEL
765 || SYMBOL_CLASS (sym) == LOC_STATIC)
766 && SYMBOL_SECTION (sym) >= 0)
767 {
768 SYMBOL_VALUE_ADDRESS (sym) +=
769 ANOFFSET (delta, SYMBOL_SECTION (sym));
770 }
771 }
772 }
773 }
774 }
775
776 if (objfile->psymtabs_addrmap)
777 addrmap_relocate (objfile->psymtabs_addrmap,
778 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
779
780 {
781 struct partial_symtab *p;
782
783 ALL_OBJFILE_PSYMTABS (objfile, p)
784 {
785 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
786 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
787 }
788 }
789
790 {
791 struct partial_symbol **psym;
792
793 for (psym = objfile->global_psymbols.list;
794 psym < objfile->global_psymbols.next;
795 psym++)
796 {
797 fixup_psymbol_section (*psym, objfile);
798 if (SYMBOL_SECTION (*psym) >= 0)
799 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
800 SYMBOL_SECTION (*psym));
801 }
802 for (psym = objfile->static_psymbols.list;
803 psym < objfile->static_psymbols.next;
804 psym++)
805 {
806 fixup_psymbol_section (*psym, objfile);
807 if (SYMBOL_SECTION (*psym) >= 0)
808 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
809 SYMBOL_SECTION (*psym));
810 }
811 }
812
813 {
814 struct minimal_symbol *msym;
815 ALL_OBJFILE_MSYMBOLS (objfile, msym)
816 if (SYMBOL_SECTION (msym) >= 0)
817 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
818 }
819 /* Relocating different sections by different amounts may cause the symbols
820 to be out of order. */
821 msymbols_sort (objfile);
822
823 if (objfile->ei.entry_point_p)
824 {
825 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
826 only as a fallback. */
827 struct obj_section *s;
828 s = find_pc_section (objfile->ei.entry_point);
829 if (s)
830 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
831 else
832 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
833 }
834
835 {
836 int i;
837 for (i = 0; i < objfile->num_sections; ++i)
838 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
839 }
840
841 /* Rebuild section map next time we need it. */
842 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
843
844 /* Update the table in exec_ops, used to read memory. */
845 ALL_OBJFILE_OSECTIONS (objfile, s)
846 {
847 int idx = s->the_bfd_section->index;
848
849 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
850 obj_section_addr (s));
851 }
852
853 /* Relocate breakpoints as necessary, after things are relocated. */
854 breakpoint_re_set ();
855 }
856 \f
857 /* Return non-zero if OBJFILE has partial symbols. */
858
859 int
860 objfile_has_partial_symbols (struct objfile *objfile)
861 {
862 return objfile->psymtabs != NULL;
863 }
864
865 /* Return non-zero if OBJFILE has full symbols. */
866
867 int
868 objfile_has_full_symbols (struct objfile *objfile)
869 {
870 return objfile->symtabs != NULL;
871 }
872
873 /* Return non-zero if OBJFILE has full or partial symbols, either directly
874 or through a separate debug file. */
875
876 int
877 objfile_has_symbols (struct objfile *objfile)
878 {
879 struct objfile *o;
880
881 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
882 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
883 return 1;
884 return 0;
885 }
886
887
888 /* Many places in gdb want to test just to see if we have any partial
889 symbols available. This function returns zero if none are currently
890 available, nonzero otherwise. */
891
892 int
893 have_partial_symbols (void)
894 {
895 struct objfile *ofp;
896
897 ALL_OBJFILES (ofp)
898 {
899 if (objfile_has_partial_symbols (ofp))
900 return 1;
901 }
902 return 0;
903 }
904
905 /* Many places in gdb want to test just to see if we have any full
906 symbols available. This function returns zero if none are currently
907 available, nonzero otherwise. */
908
909 int
910 have_full_symbols (void)
911 {
912 struct objfile *ofp;
913
914 ALL_OBJFILES (ofp)
915 {
916 if (objfile_has_full_symbols (ofp))
917 return 1;
918 }
919 return 0;
920 }
921
922
923 /* This operations deletes all objfile entries that represent solibs that
924 weren't explicitly loaded by the user, via e.g., the add-symbol-file
925 command.
926 */
927 void
928 objfile_purge_solibs (void)
929 {
930 struct objfile *objf;
931 struct objfile *temp;
932
933 ALL_OBJFILES_SAFE (objf, temp)
934 {
935 /* We assume that the solib package has been purged already, or will
936 be soon.
937 */
938 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
939 free_objfile (objf);
940 }
941 }
942
943
944 /* Many places in gdb want to test just to see if we have any minimal
945 symbols available. This function returns zero if none are currently
946 available, nonzero otherwise. */
947
948 int
949 have_minimal_symbols (void)
950 {
951 struct objfile *ofp;
952
953 ALL_OBJFILES (ofp)
954 {
955 if (ofp->minimal_symbol_count > 0)
956 {
957 return 1;
958 }
959 }
960 return 0;
961 }
962
963 /* Qsort comparison function. */
964
965 static int
966 qsort_cmp (const void *a, const void *b)
967 {
968 const struct obj_section *sect1 = *(const struct obj_section **) a;
969 const struct obj_section *sect2 = *(const struct obj_section **) b;
970 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
971 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
972
973 if (sect1_addr < sect2_addr)
974 return -1;
975 else if (sect1_addr > sect2_addr)
976 return 1;
977 else
978 {
979 /* Sections are at the same address. This could happen if
980 A) we have an objfile and a separate debuginfo.
981 B) we are confused, and have added sections without proper relocation,
982 or something like that. */
983
984 const struct objfile *const objfile1 = sect1->objfile;
985 const struct objfile *const objfile2 = sect2->objfile;
986
987 if (objfile1->separate_debug_objfile == objfile2
988 || objfile2->separate_debug_objfile == objfile1)
989 {
990 /* Case A. The ordering doesn't matter: separate debuginfo files
991 will be filtered out later. */
992
993 return 0;
994 }
995
996 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
997 triage. This section could be slow (since we iterate over all
998 objfiles in each call to qsort_cmp), but this shouldn't happen
999 very often (GDB is already in a confused state; one hopes this
1000 doesn't happen at all). If you discover that significant time is
1001 spent in the loops below, do 'set complaints 100' and examine the
1002 resulting complaints. */
1003
1004 if (objfile1 == objfile2)
1005 {
1006 /* Both sections came from the same objfile. We are really confused.
1007 Sort on sequence order of sections within the objfile. */
1008
1009 const struct obj_section *osect;
1010
1011 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1012 if (osect == sect1)
1013 return -1;
1014 else if (osect == sect2)
1015 return 1;
1016
1017 /* We should have found one of the sections before getting here. */
1018 gdb_assert (0);
1019 }
1020 else
1021 {
1022 /* Sort on sequence number of the objfile in the chain. */
1023
1024 const struct objfile *objfile;
1025
1026 ALL_OBJFILES (objfile)
1027 if (objfile == objfile1)
1028 return -1;
1029 else if (objfile == objfile2)
1030 return 1;
1031
1032 /* We should have found one of the objfiles before getting here. */
1033 gdb_assert (0);
1034 }
1035
1036 }
1037
1038 /* Unreachable. */
1039 gdb_assert (0);
1040 return 0;
1041 }
1042
1043 /* Select "better" obj_section to keep. We prefer the one that came from
1044 the real object, rather than the one from separate debuginfo.
1045 Most of the time the two sections are exactly identical, but with
1046 prelinking the .rel.dyn section in the real object may have different
1047 size. */
1048
1049 static struct obj_section *
1050 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1051 {
1052 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1053 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1054 || (b->objfile->separate_debug_objfile == a->objfile));
1055 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1056 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1057
1058 if (a->objfile->separate_debug_objfile != NULL)
1059 return a;
1060 return b;
1061 }
1062
1063 /* Return 1 if SECTION should be inserted into the section map.
1064 We want to insert only non-overlay and non-TLS section. */
1065
1066 static int
1067 insert_section_p (const struct bfd *abfd,
1068 const struct bfd_section *section)
1069 {
1070 const bfd_vma lma = bfd_section_lma (abfd, section);
1071
1072 if (lma != 0 && lma != bfd_section_vma (abfd, section)
1073 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1074 /* This is an overlay section. IN_MEMORY check is needed to avoid
1075 discarding sections from the "system supplied DSO" (aka vdso)
1076 on some Linux systems (e.g. Fedora 11). */
1077 return 0;
1078 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1079 /* This is a TLS section. */
1080 return 0;
1081
1082 return 1;
1083 }
1084
1085 /* Filter out overlapping sections where one section came from the real
1086 objfile, and the other from a separate debuginfo file.
1087 Return the size of table after redundant sections have been eliminated. */
1088
1089 static int
1090 filter_debuginfo_sections (struct obj_section **map, int map_size)
1091 {
1092 int i, j;
1093
1094 for (i = 0, j = 0; i < map_size - 1; i++)
1095 {
1096 struct obj_section *const sect1 = map[i];
1097 struct obj_section *const sect2 = map[i + 1];
1098 const struct objfile *const objfile1 = sect1->objfile;
1099 const struct objfile *const objfile2 = sect2->objfile;
1100 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1101 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1102
1103 if (sect1_addr == sect2_addr
1104 && (objfile1->separate_debug_objfile == objfile2
1105 || objfile2->separate_debug_objfile == objfile1))
1106 {
1107 map[j++] = preferred_obj_section (sect1, sect2);
1108 ++i;
1109 }
1110 else
1111 map[j++] = sect1;
1112 }
1113
1114 if (i < map_size)
1115 {
1116 gdb_assert (i == map_size - 1);
1117 map[j++] = map[i];
1118 }
1119
1120 /* The map should not have shrunk to less than half the original size. */
1121 gdb_assert (map_size / 2 <= j);
1122
1123 return j;
1124 }
1125
1126 /* Filter out overlapping sections, issuing a warning if any are found.
1127 Overlapping sections could really be overlay sections which we didn't
1128 classify as such in insert_section_p, or we could be dealing with a
1129 corrupt binary. */
1130
1131 static int
1132 filter_overlapping_sections (struct obj_section **map, int map_size)
1133 {
1134 int i, j;
1135
1136 for (i = 0, j = 0; i < map_size - 1; )
1137 {
1138 int k;
1139
1140 map[j++] = map[i];
1141 for (k = i + 1; k < map_size; k++)
1142 {
1143 struct obj_section *const sect1 = map[i];
1144 struct obj_section *const sect2 = map[k];
1145 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1146 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1147 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1148
1149 gdb_assert (sect1_addr <= sect2_addr);
1150
1151 if (sect1_endaddr <= sect2_addr)
1152 break;
1153 else
1154 {
1155 /* We have an overlap. Report it. */
1156
1157 struct objfile *const objf1 = sect1->objfile;
1158 struct objfile *const objf2 = sect2->objfile;
1159
1160 const struct bfd *const abfd1 = objf1->obfd;
1161 const struct bfd *const abfd2 = objf2->obfd;
1162
1163 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1164 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1165
1166 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1167
1168 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1169
1170 complaint (&symfile_complaints,
1171 _("unexpected overlap between:\n"
1172 " (A) section `%s' from `%s' [%s, %s)\n"
1173 " (B) section `%s' from `%s' [%s, %s).\n"
1174 "Will ignore section B"),
1175 bfd_section_name (abfd1, bfds1), objf1->name,
1176 paddress (gdbarch, sect1_addr),
1177 paddress (gdbarch, sect1_endaddr),
1178 bfd_section_name (abfd2, bfds2), objf2->name,
1179 paddress (gdbarch, sect2_addr),
1180 paddress (gdbarch, sect2_endaddr));
1181 }
1182 }
1183 i = k;
1184 }
1185
1186 if (i < map_size)
1187 {
1188 gdb_assert (i == map_size - 1);
1189 map[j++] = map[i];
1190 }
1191
1192 return j;
1193 }
1194
1195
1196 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1197 TLS, overlay and overlapping sections. */
1198
1199 static void
1200 update_section_map (struct program_space *pspace,
1201 struct obj_section ***pmap, int *pmap_size)
1202 {
1203 int alloc_size, map_size, i;
1204 struct obj_section *s, **map;
1205 struct objfile *objfile;
1206
1207 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1208
1209 map = *pmap;
1210 xfree (map);
1211
1212 alloc_size = 0;
1213 ALL_PSPACE_OBJFILES (pspace, objfile)
1214 ALL_OBJFILE_OSECTIONS (objfile, s)
1215 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1216 alloc_size += 1;
1217
1218 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1219 if (alloc_size == 0)
1220 {
1221 *pmap = NULL;
1222 *pmap_size = 0;
1223 return;
1224 }
1225
1226 map = xmalloc (alloc_size * sizeof (*map));
1227
1228 i = 0;
1229 ALL_PSPACE_OBJFILES (pspace, objfile)
1230 ALL_OBJFILE_OSECTIONS (objfile, s)
1231 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1232 map[i++] = s;
1233
1234 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1235 map_size = filter_debuginfo_sections(map, alloc_size);
1236 map_size = filter_overlapping_sections(map, map_size);
1237
1238 if (map_size < alloc_size)
1239 /* Some sections were eliminated. Trim excess space. */
1240 map = xrealloc (map, map_size * sizeof (*map));
1241 else
1242 gdb_assert (alloc_size == map_size);
1243
1244 *pmap = map;
1245 *pmap_size = map_size;
1246 }
1247
1248 /* Bsearch comparison function. */
1249
1250 static int
1251 bsearch_cmp (const void *key, const void *elt)
1252 {
1253 const CORE_ADDR pc = *(CORE_ADDR *) key;
1254 const struct obj_section *section = *(const struct obj_section **) elt;
1255
1256 if (pc < obj_section_addr (section))
1257 return -1;
1258 if (pc < obj_section_endaddr (section))
1259 return 0;
1260 return 1;
1261 }
1262
1263 /* Returns a section whose range includes PC or NULL if none found. */
1264
1265 struct obj_section *
1266 find_pc_section (CORE_ADDR pc)
1267 {
1268 struct objfile_pspace_info *pspace_info;
1269 struct obj_section *s, **sp;
1270
1271 /* Check for mapped overlay section first. */
1272 s = find_pc_mapped_section (pc);
1273 if (s)
1274 return s;
1275
1276 pspace_info = get_objfile_pspace_data (current_program_space);
1277 if (pspace_info->objfiles_changed_p != 0)
1278 {
1279 update_section_map (current_program_space,
1280 &pspace_info->sections,
1281 &pspace_info->num_sections);
1282
1283 /* Don't need updates to section map until objfiles are added,
1284 removed or relocated. */
1285 pspace_info->objfiles_changed_p = 0;
1286 }
1287
1288 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1289 bsearch be non-NULL. */
1290 if (pspace_info->sections == NULL)
1291 {
1292 gdb_assert (pspace_info->num_sections == 0);
1293 return NULL;
1294 }
1295
1296 sp = (struct obj_section **) bsearch (&pc,
1297 pspace_info->sections,
1298 pspace_info->num_sections,
1299 sizeof (*pspace_info->sections),
1300 bsearch_cmp);
1301 if (sp != NULL)
1302 return *sp;
1303 return NULL;
1304 }
1305
1306
1307 /* In SVR4, we recognize a trampoline by it's section name.
1308 That is, if the pc is in a section named ".plt" then we are in
1309 a trampoline. */
1310
1311 int
1312 in_plt_section (CORE_ADDR pc, char *name)
1313 {
1314 struct obj_section *s;
1315 int retval = 0;
1316
1317 s = find_pc_section (pc);
1318
1319 retval = (s != NULL
1320 && s->the_bfd_section->name != NULL
1321 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1322 return (retval);
1323 }
1324 \f
1325
1326 /* Keep a registry of per-objfile data-pointers required by other GDB
1327 modules. */
1328
1329 struct objfile_data
1330 {
1331 unsigned index;
1332 void (*save) (struct objfile *, void *);
1333 void (*free) (struct objfile *, void *);
1334 };
1335
1336 struct objfile_data_registration
1337 {
1338 struct objfile_data *data;
1339 struct objfile_data_registration *next;
1340 };
1341
1342 struct objfile_data_registry
1343 {
1344 struct objfile_data_registration *registrations;
1345 unsigned num_registrations;
1346 };
1347
1348 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1349
1350 const struct objfile_data *
1351 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1352 void (*free) (struct objfile *, void *))
1353 {
1354 struct objfile_data_registration **curr;
1355
1356 /* Append new registration. */
1357 for (curr = &objfile_data_registry.registrations;
1358 *curr != NULL; curr = &(*curr)->next);
1359
1360 *curr = XMALLOC (struct objfile_data_registration);
1361 (*curr)->next = NULL;
1362 (*curr)->data = XMALLOC (struct objfile_data);
1363 (*curr)->data->index = objfile_data_registry.num_registrations++;
1364 (*curr)->data->save = save;
1365 (*curr)->data->free = free;
1366
1367 return (*curr)->data;
1368 }
1369
1370 const struct objfile_data *
1371 register_objfile_data (void)
1372 {
1373 return register_objfile_data_with_cleanup (NULL, NULL);
1374 }
1375
1376 static void
1377 objfile_alloc_data (struct objfile *objfile)
1378 {
1379 gdb_assert (objfile->data == NULL);
1380 objfile->num_data = objfile_data_registry.num_registrations;
1381 objfile->data = XCALLOC (objfile->num_data, void *);
1382 }
1383
1384 static void
1385 objfile_free_data (struct objfile *objfile)
1386 {
1387 gdb_assert (objfile->data != NULL);
1388 clear_objfile_data (objfile);
1389 xfree (objfile->data);
1390 objfile->data = NULL;
1391 }
1392
1393 void
1394 clear_objfile_data (struct objfile *objfile)
1395 {
1396 struct objfile_data_registration *registration;
1397 int i;
1398
1399 gdb_assert (objfile->data != NULL);
1400
1401 /* Process all the save handlers. */
1402
1403 for (registration = objfile_data_registry.registrations, i = 0;
1404 i < objfile->num_data;
1405 registration = registration->next, i++)
1406 if (objfile->data[i] != NULL && registration->data->save != NULL)
1407 registration->data->save (objfile, objfile->data[i]);
1408
1409 /* Now process all the free handlers. */
1410
1411 for (registration = objfile_data_registry.registrations, i = 0;
1412 i < objfile->num_data;
1413 registration = registration->next, i++)
1414 if (objfile->data[i] != NULL && registration->data->free != NULL)
1415 registration->data->free (objfile, objfile->data[i]);
1416
1417 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1418 }
1419
1420 void
1421 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1422 void *value)
1423 {
1424 gdb_assert (data->index < objfile->num_data);
1425 objfile->data[data->index] = value;
1426 }
1427
1428 void *
1429 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1430 {
1431 gdb_assert (data->index < objfile->num_data);
1432 return objfile->data[data->index];
1433 }
1434
1435 /* Set objfiles_changed_p so section map will be rebuilt next time it
1436 is used. Called by reread_symbols. */
1437
1438 void
1439 objfiles_changed (void)
1440 {
1441 /* Rebuild section map next time we need it. */
1442 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1443 }
1444
1445 /* Add reference to ABFD. Returns ABFD. */
1446 struct bfd *
1447 gdb_bfd_ref (struct bfd *abfd)
1448 {
1449 int *p_refcount = bfd_usrdata (abfd);
1450
1451 if (p_refcount != NULL)
1452 {
1453 *p_refcount += 1;
1454 return abfd;
1455 }
1456
1457 p_refcount = xmalloc (sizeof (*p_refcount));
1458 *p_refcount = 1;
1459 bfd_usrdata (abfd) = p_refcount;
1460
1461 return abfd;
1462 }
1463
1464 /* Unreference and possibly close ABFD. */
1465 void
1466 gdb_bfd_unref (struct bfd *abfd)
1467 {
1468 int *p_refcount;
1469 char *name;
1470
1471 if (abfd == NULL)
1472 return;
1473
1474 p_refcount = bfd_usrdata (abfd);
1475
1476 /* Valid range for p_refcount: a pointer to int counter, which has a
1477 value of 1 (single owner) or 2 (shared). */
1478 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1479
1480 *p_refcount -= 1;
1481 if (*p_refcount > 0)
1482 return;
1483
1484 xfree (p_refcount);
1485 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1486
1487 name = bfd_get_filename (abfd);
1488 if (!bfd_close (abfd))
1489 warning (_("cannot close \"%s\": %s"),
1490 name, bfd_errmsg (bfd_get_error ()));
1491 xfree (name);
1492 }
1493
1494 /* Provide a prototype to silence -Wmissing-prototypes. */
1495 extern initialize_file_ftype _initialize_objfiles;
1496
1497 void
1498 _initialize_objfiles (void)
1499 {
1500 objfiles_pspace_data
1501 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1502 }
This page took 0.071214 seconds and 4 git commands to generate.