* breakpoint.c (bpdisp_text): Constify bpdisps.
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53 #include "observer.h"
54 #include "complaints.h"
55 #include "psymtab.h"
56 #include "solist.h"
57
58 /* Prototypes for local functions */
59
60 static void objfile_alloc_data (struct objfile *objfile);
61 static void objfile_free_data (struct objfile *objfile);
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile *current_objfile; /* For symbol file being read in */
67 struct objfile *rt_common_objfile; /* For runtime common symbols */
68
69 struct objfile_pspace_info
70 {
71 int objfiles_changed_p;
72 struct obj_section **sections;
73 int num_sections;
74 };
75
76 /* Per-program-space data key. */
77 static const struct program_space_data *objfiles_pspace_data;
78
79 static void
80 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
81 {
82 struct objfile_pspace_info *info;
83
84 info = program_space_data (pspace, objfiles_pspace_data);
85 if (info != NULL)
86 {
87 xfree (info->sections);
88 xfree (info);
89 }
90 }
91
92 /* Get the current svr4 data. If none is found yet, add it now. This
93 function always returns a valid object. */
94
95 static struct objfile_pspace_info *
96 get_objfile_pspace_data (struct program_space *pspace)
97 {
98 struct objfile_pspace_info *info;
99
100 info = program_space_data (pspace, objfiles_pspace_data);
101 if (info == NULL)
102 {
103 info = XZALLOC (struct objfile_pspace_info);
104 set_program_space_data (pspace, objfiles_pspace_data, info);
105 }
106
107 return info;
108 }
109
110 /* Records whether any objfiles appeared or disappeared since we last updated
111 address to obj section map. */
112
113 /* Locate all mappable sections of a BFD file.
114 objfile_p_char is a char * to get it through
115 bfd_map_over_sections; we cast it back to its proper type. */
116
117 /* Called via bfd_map_over_sections to build up the section table that
118 the objfile references. The objfile contains pointers to the start
119 of the table (objfile->sections) and to the first location after
120 the end of the table (objfile->sections_end). */
121
122 static void
123 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
124 void *objfile_p_char)
125 {
126 struct objfile *objfile = (struct objfile *) objfile_p_char;
127 struct obj_section section;
128 flagword aflag;
129
130 aflag = bfd_get_section_flags (abfd, asect);
131
132 if (!(aflag & SEC_ALLOC))
133 return;
134
135 if (0 == bfd_section_size (abfd, asect))
136 return;
137 section.objfile = objfile;
138 section.the_bfd_section = asect;
139 section.ovly_mapped = 0;
140 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
141 objfile->sections_end
142 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
143 }
144
145 /* Builds a section table for OBJFILE.
146 Returns 0 if OK, 1 on error (in which case bfd_error contains the
147 error).
148
149 Note that while we are building the table, which goes into the
150 psymbol obstack, we hijack the sections_end pointer to instead hold
151 a count of the number of sections. When bfd_map_over_sections
152 returns, this count is used to compute the pointer to the end of
153 the sections table, which then overwrites the count.
154
155 Also note that the OFFSET and OVLY_MAPPED in each table entry
156 are initialized to zero.
157
158 Also note that if anything else writes to the psymbol obstack while
159 we are building the table, we're pretty much hosed. */
160
161 int
162 build_objfile_section_table (struct objfile *objfile)
163 {
164 /* objfile->sections can be already set when reading a mapped symbol
165 file. I believe that we do need to rebuild the section table in
166 this case (we rebuild other things derived from the bfd), but we
167 can't free the old one (it's in the objfile_obstack). So we just
168 waste some memory. */
169
170 objfile->sections_end = 0;
171 bfd_map_over_sections (objfile->obfd,
172 add_to_objfile_sections, (void *) objfile);
173 objfile->sections = obstack_finish (&objfile->objfile_obstack);
174 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
175 return (0);
176 }
177
178 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
179 allocate a new objfile struct, fill it in as best we can, link it
180 into the list of all known objfiles, and return a pointer to the
181 new objfile struct.
182
183 The FLAGS word contains various bits (OBJF_*) that can be taken as
184 requests for specific operations. Other bits like OBJF_SHARED are
185 simply copied through to the new objfile flags member. */
186
187 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
188 by jv-lang.c, to create an artificial objfile used to hold
189 information about dynamically-loaded Java classes. Unfortunately,
190 that branch of this function doesn't get tested very frequently, so
191 it's prone to breakage. (E.g. at one time the name was set to NULL
192 in that situation, which broke a loop over all names in the dynamic
193 library loader.) If you change this function, please try to leave
194 things in a consistent state even if abfd is NULL. */
195
196 struct objfile *
197 allocate_objfile (bfd *abfd, int flags)
198 {
199 struct objfile *objfile;
200
201 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
202 objfile->psymbol_cache = bcache_xmalloc ();
203 objfile->macro_cache = bcache_xmalloc ();
204 objfile->filename_cache = bcache_xmalloc ();
205 /* We could use obstack_specify_allocation here instead, but
206 gdb_obstack.h specifies the alloc/dealloc functions. */
207 obstack_init (&objfile->objfile_obstack);
208 terminate_minimal_symbol_table (objfile);
209
210 objfile_alloc_data (objfile);
211
212 /* Update the per-objfile information that comes from the bfd, ensuring
213 that any data that is reference is saved in the per-objfile data
214 region. */
215
216 objfile->obfd = gdb_bfd_ref (abfd);
217 if (objfile->name != NULL)
218 {
219 xfree (objfile->name);
220 }
221 if (abfd != NULL)
222 {
223 /* Look up the gdbarch associated with the BFD. */
224 objfile->gdbarch = gdbarch_from_bfd (abfd);
225
226 objfile->name = xstrdup (bfd_get_filename (abfd));
227 objfile->mtime = bfd_get_mtime (abfd);
228
229 /* Build section table. */
230
231 if (build_objfile_section_table (objfile))
232 {
233 error (_("Can't find the file sections in `%s': %s"),
234 objfile->name, bfd_errmsg (bfd_get_error ()));
235 }
236 }
237 else
238 {
239 objfile->name = xstrdup ("<<anonymous objfile>>");
240 }
241
242 objfile->pspace = current_program_space;
243
244 /* Initialize the section indexes for this objfile, so that we can
245 later detect if they are used w/o being properly assigned to. */
246
247 objfile->sect_index_text = -1;
248 objfile->sect_index_data = -1;
249 objfile->sect_index_bss = -1;
250 objfile->sect_index_rodata = -1;
251
252 /* We don't yet have a C++-specific namespace symtab. */
253
254 objfile->cp_namespace_symtab = NULL;
255
256 /* Add this file onto the tail of the linked list of other such files. */
257
258 objfile->next = NULL;
259 if (object_files == NULL)
260 object_files = objfile;
261 else
262 {
263 struct objfile *last_one;
264
265 for (last_one = object_files;
266 last_one->next;
267 last_one = last_one->next);
268 last_one->next = objfile;
269 }
270
271 /* Save passed in flag bits. */
272 objfile->flags |= flags;
273
274 /* Rebuild section map next time we need it. */
275 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
276
277 return objfile;
278 }
279
280 /* Retrieve the gdbarch associated with OBJFILE. */
281 struct gdbarch *
282 get_objfile_arch (struct objfile *objfile)
283 {
284 return objfile->gdbarch;
285 }
286
287 /* Initialize entry point information for this objfile. */
288
289 void
290 init_entry_point_info (struct objfile *objfile)
291 {
292 /* Save startup file's range of PC addresses to help blockframe.c
293 decide where the bottom of the stack is. */
294
295 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
296 {
297 /* Executable file -- record its entry point so we'll recognize
298 the startup file because it contains the entry point. */
299 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
300 objfile->ei.entry_point_p = 1;
301 }
302 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
303 && bfd_get_start_address (objfile->obfd) != 0)
304 {
305 /* Some shared libraries may have entry points set and be
306 runnable. There's no clear way to indicate this, so just check
307 for values other than zero. */
308 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
309 objfile->ei.entry_point_p = 1;
310 }
311 else
312 {
313 /* Examination of non-executable.o files. Short-circuit this stuff. */
314 objfile->ei.entry_point_p = 0;
315 }
316 }
317
318 /* If there is a valid and known entry point, function fills *ENTRY_P with it
319 and returns non-zero; otherwise it returns zero. */
320
321 int
322 entry_point_address_query (CORE_ADDR *entry_p)
323 {
324 struct gdbarch *gdbarch;
325 CORE_ADDR entry_point;
326
327 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
328 return 0;
329
330 gdbarch = get_objfile_arch (symfile_objfile);
331
332 entry_point = symfile_objfile->ei.entry_point;
333
334 /* Make certain that the address points at real code, and not a
335 function descriptor. */
336 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
337 &current_target);
338
339 /* Remove any ISA markers, so that this matches entries in the
340 symbol table. */
341 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
342
343 *entry_p = entry_point;
344 return 1;
345 }
346
347 /* Get current entry point address. Call error if it is not known. */
348
349 CORE_ADDR
350 entry_point_address (void)
351 {
352 CORE_ADDR retval;
353
354 if (!entry_point_address_query (&retval))
355 error (_("Entry point address is not known."));
356
357 return retval;
358 }
359
360 /* Create the terminating entry of OBJFILE's minimal symbol table.
361 If OBJFILE->msymbols is zero, allocate a single entry from
362 OBJFILE->objfile_obstack; otherwise, just initialize
363 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
364 void
365 terminate_minimal_symbol_table (struct objfile *objfile)
366 {
367 if (! objfile->msymbols)
368 objfile->msymbols = ((struct minimal_symbol *)
369 obstack_alloc (&objfile->objfile_obstack,
370 sizeof (objfile->msymbols[0])));
371
372 {
373 struct minimal_symbol *m
374 = &objfile->msymbols[objfile->minimal_symbol_count];
375
376 memset (m, 0, sizeof (*m));
377 /* Don't rely on these enumeration values being 0's. */
378 MSYMBOL_TYPE (m) = mst_unknown;
379 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
380 }
381 }
382
383 /* Iterator on PARENT and every separate debug objfile of PARENT.
384 The usage pattern is:
385 for (objfile = parent;
386 objfile;
387 objfile = objfile_separate_debug_iterate (parent, objfile))
388 ...
389 */
390
391 struct objfile *
392 objfile_separate_debug_iterate (const struct objfile *parent,
393 const struct objfile *objfile)
394 {
395 struct objfile *res;
396
397 /* If any, return the first child. */
398 res = objfile->separate_debug_objfile;
399 if (res)
400 return res;
401
402 /* Common case where there is no separate debug objfile. */
403 if (objfile == parent)
404 return NULL;
405
406 /* Return the brother if any. Note that we don't iterate on brothers of
407 the parents. */
408 res = objfile->separate_debug_objfile_link;
409 if (res)
410 return res;
411
412 for (res = objfile->separate_debug_objfile_backlink;
413 res != parent;
414 res = res->separate_debug_objfile_backlink)
415 {
416 gdb_assert (res != NULL);
417 if (res->separate_debug_objfile_link)
418 return res->separate_debug_objfile_link;
419 }
420 return NULL;
421 }
422
423 /* Put one object file before a specified on in the global list.
424 This can be used to make sure an object file is destroyed before
425 another when using ALL_OBJFILES_SAFE to free all objfiles. */
426 void
427 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
428 {
429 struct objfile **objp;
430
431 unlink_objfile (objfile);
432
433 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
434 {
435 if (*objp == before_this)
436 {
437 objfile->next = *objp;
438 *objp = objfile;
439 return;
440 }
441 }
442
443 internal_error (__FILE__, __LINE__,
444 _("put_objfile_before: before objfile not in list"));
445 }
446
447 /* Put OBJFILE at the front of the list. */
448
449 void
450 objfile_to_front (struct objfile *objfile)
451 {
452 struct objfile **objp;
453 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
454 {
455 if (*objp == objfile)
456 {
457 /* Unhook it from where it is. */
458 *objp = objfile->next;
459 /* Put it in the front. */
460 objfile->next = object_files;
461 object_files = objfile;
462 break;
463 }
464 }
465 }
466
467 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
468 list.
469
470 It is not a bug, or error, to call this function if OBJFILE is not known
471 to be in the current list. This is done in the case of mapped objfiles,
472 for example, just to ensure that the mapped objfile doesn't appear twice
473 in the list. Since the list is threaded, linking in a mapped objfile
474 twice would create a circular list.
475
476 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
477 unlinking it, just to ensure that we have completely severed any linkages
478 between the OBJFILE and the list. */
479
480 void
481 unlink_objfile (struct objfile *objfile)
482 {
483 struct objfile **objpp;
484
485 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
486 {
487 if (*objpp == objfile)
488 {
489 *objpp = (*objpp)->next;
490 objfile->next = NULL;
491 return;
492 }
493 }
494
495 internal_error (__FILE__, __LINE__,
496 _("unlink_objfile: objfile already unlinked"));
497 }
498
499 /* Add OBJFILE as a separate debug objfile of PARENT. */
500
501 void
502 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
503 {
504 gdb_assert (objfile && parent);
505
506 /* Must not be already in a list. */
507 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
508 gdb_assert (objfile->separate_debug_objfile_link == NULL);
509
510 objfile->separate_debug_objfile_backlink = parent;
511 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
512 parent->separate_debug_objfile = objfile;
513
514 /* Put the separate debug object before the normal one, this is so that
515 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
516 put_objfile_before (objfile, parent);
517 }
518
519 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
520 itself. */
521
522 void
523 free_objfile_separate_debug (struct objfile *objfile)
524 {
525 struct objfile *child;
526
527 for (child = objfile->separate_debug_objfile; child;)
528 {
529 struct objfile *next_child = child->separate_debug_objfile_link;
530 free_objfile (child);
531 child = next_child;
532 }
533 }
534
535 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
536 that as much as possible is allocated on the objfile_obstack
537 so that the memory can be efficiently freed.
538
539 Things which we do NOT free because they are not in malloc'd memory
540 or not in memory specific to the objfile include:
541
542 objfile -> sf
543
544 FIXME: If the objfile is using reusable symbol information (via mmalloc),
545 then we need to take into account the fact that more than one process
546 may be using the symbol information at the same time (when mmalloc is
547 extended to support cooperative locking). When more than one process
548 is using the mapped symbol info, we need to be more careful about when
549 we free objects in the reusable area. */
550
551 void
552 free_objfile (struct objfile *objfile)
553 {
554 /* Free all separate debug objfiles. */
555 free_objfile_separate_debug (objfile);
556
557 if (objfile->separate_debug_objfile_backlink)
558 {
559 /* We freed the separate debug file, make sure the base objfile
560 doesn't reference it. */
561 struct objfile *child;
562
563 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
564
565 if (child == objfile)
566 {
567 /* OBJFILE is the first child. */
568 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
569 objfile->separate_debug_objfile_link;
570 }
571 else
572 {
573 /* Find OBJFILE in the list. */
574 while (1)
575 {
576 if (child->separate_debug_objfile_link == objfile)
577 {
578 child->separate_debug_objfile_link =
579 objfile->separate_debug_objfile_link;
580 break;
581 }
582 child = child->separate_debug_objfile_link;
583 gdb_assert (child);
584 }
585 }
586 }
587
588 /* Remove any references to this objfile in the global value
589 lists. */
590 preserve_values (objfile);
591
592 /* First do any symbol file specific actions required when we are
593 finished with a particular symbol file. Note that if the objfile
594 is using reusable symbol information (via mmalloc) then each of
595 these routines is responsible for doing the correct thing, either
596 freeing things which are valid only during this particular gdb
597 execution, or leaving them to be reused during the next one. */
598
599 if (objfile->sf != NULL)
600 {
601 (*objfile->sf->sym_finish) (objfile);
602 }
603
604 /* Discard any data modules have associated with the objfile. */
605 objfile_free_data (objfile);
606
607 gdb_bfd_unref (objfile->obfd);
608
609 /* Remove it from the chain of all objfiles. */
610
611 unlink_objfile (objfile);
612
613 if (objfile == symfile_objfile)
614 symfile_objfile = NULL;
615
616 if (objfile == rt_common_objfile)
617 rt_common_objfile = NULL;
618
619 /* Before the symbol table code was redone to make it easier to
620 selectively load and remove information particular to a specific
621 linkage unit, gdb used to do these things whenever the monolithic
622 symbol table was blown away. How much still needs to be done
623 is unknown, but we play it safe for now and keep each action until
624 it is shown to be no longer needed. */
625
626 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
627 for example), so we need to call this here. */
628 clear_pc_function_cache ();
629
630 /* Clear globals which might have pointed into a removed objfile.
631 FIXME: It's not clear which of these are supposed to persist
632 between expressions and which ought to be reset each time. */
633 expression_context_block = NULL;
634 innermost_block = NULL;
635
636 /* Check to see if the current_source_symtab belongs to this objfile,
637 and if so, call clear_current_source_symtab_and_line. */
638
639 {
640 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
641 struct symtab *s;
642
643 ALL_OBJFILE_SYMTABS (objfile, s)
644 {
645 if (s == cursal.symtab)
646 clear_current_source_symtab_and_line ();
647 }
648 }
649
650 /* The last thing we do is free the objfile struct itself. */
651
652 if (objfile->name != NULL)
653 {
654 xfree (objfile->name);
655 }
656 if (objfile->global_psymbols.list)
657 xfree (objfile->global_psymbols.list);
658 if (objfile->static_psymbols.list)
659 xfree (objfile->static_psymbols.list);
660 /* Free the obstacks for non-reusable objfiles */
661 bcache_xfree (objfile->psymbol_cache);
662 bcache_xfree (objfile->macro_cache);
663 bcache_xfree (objfile->filename_cache);
664 if (objfile->demangled_names_hash)
665 htab_delete (objfile->demangled_names_hash);
666 obstack_free (&objfile->objfile_obstack, 0);
667
668 /* Rebuild section map next time we need it. */
669 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
670
671 xfree (objfile);
672 }
673
674 static void
675 do_free_objfile_cleanup (void *obj)
676 {
677 free_objfile (obj);
678 }
679
680 struct cleanup *
681 make_cleanup_free_objfile (struct objfile *obj)
682 {
683 return make_cleanup (do_free_objfile_cleanup, obj);
684 }
685
686 /* Free all the object files at once and clean up their users. */
687
688 void
689 free_all_objfiles (void)
690 {
691 struct objfile *objfile, *temp;
692 struct so_list *so;
693
694 /* Any objfile referencewould become stale. */
695 for (so = master_so_list (); so; so = so->next)
696 gdb_assert (so->objfile == NULL);
697
698 ALL_OBJFILES_SAFE (objfile, temp)
699 {
700 free_objfile (objfile);
701 }
702 clear_symtab_users ();
703 }
704 \f
705 /* A helper function for objfile_relocate1 that relocates a single
706 symbol. */
707
708 static void
709 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
710 struct section_offsets *delta)
711 {
712 fixup_symbol_section (sym, objfile);
713
714 /* The RS6000 code from which this was taken skipped
715 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
716 But I'm leaving out that test, on the theory that
717 they can't possibly pass the tests below. */
718 if ((SYMBOL_CLASS (sym) == LOC_LABEL
719 || SYMBOL_CLASS (sym) == LOC_STATIC)
720 && SYMBOL_SECTION (sym) >= 0)
721 {
722 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
723 }
724 }
725
726 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
727 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
728 Return non-zero iff any change happened. */
729
730 static int
731 objfile_relocate1 (struct objfile *objfile,
732 struct section_offsets *new_offsets)
733 {
734 struct obj_section *s;
735 struct section_offsets *delta =
736 ((struct section_offsets *)
737 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
738
739 int i;
740 int something_changed = 0;
741
742 for (i = 0; i < objfile->num_sections; ++i)
743 {
744 delta->offsets[i] =
745 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
746 if (ANOFFSET (delta, i) != 0)
747 something_changed = 1;
748 }
749 if (!something_changed)
750 return 0;
751
752 /* OK, get all the symtabs. */
753 {
754 struct symtab *s;
755
756 ALL_OBJFILE_SYMTABS (objfile, s)
757 {
758 struct linetable *l;
759 struct blockvector *bv;
760 int i;
761
762 /* First the line table. */
763 l = LINETABLE (s);
764 if (l)
765 {
766 for (i = 0; i < l->nitems; ++i)
767 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
768 }
769
770 /* Don't relocate a shared blockvector more than once. */
771 if (!s->primary)
772 continue;
773
774 bv = BLOCKVECTOR (s);
775 if (BLOCKVECTOR_MAP (bv))
776 addrmap_relocate (BLOCKVECTOR_MAP (bv),
777 ANOFFSET (delta, s->block_line_section));
778
779 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
780 {
781 struct block *b;
782 struct symbol *sym;
783 struct dict_iterator iter;
784
785 b = BLOCKVECTOR_BLOCK (bv, i);
786 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
787 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
788
789 ALL_BLOCK_SYMBOLS (b, iter, sym)
790 {
791 relocate_one_symbol (sym, objfile, delta);
792 }
793 }
794 }
795 }
796
797 /* Relocate isolated symbols. */
798 {
799 struct symbol *iter;
800
801 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
802 relocate_one_symbol (iter, objfile, delta);
803 }
804
805 if (objfile->psymtabs_addrmap)
806 addrmap_relocate (objfile->psymtabs_addrmap,
807 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
808
809 if (objfile->sf)
810 objfile->sf->qf->relocate (objfile, new_offsets, delta);
811
812 {
813 struct minimal_symbol *msym;
814
815 ALL_OBJFILE_MSYMBOLS (objfile, msym)
816 if (SYMBOL_SECTION (msym) >= 0)
817 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
818 }
819 /* Relocating different sections by different amounts may cause the symbols
820 to be out of order. */
821 msymbols_sort (objfile);
822
823 if (objfile->ei.entry_point_p)
824 {
825 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
826 only as a fallback. */
827 struct obj_section *s;
828 s = find_pc_section (objfile->ei.entry_point);
829 if (s)
830 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
831 else
832 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
833 }
834
835 {
836 int i;
837
838 for (i = 0; i < objfile->num_sections; ++i)
839 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
840 }
841
842 /* Rebuild section map next time we need it. */
843 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
844
845 /* Update the table in exec_ops, used to read memory. */
846 ALL_OBJFILE_OSECTIONS (objfile, s)
847 {
848 int idx = s->the_bfd_section->index;
849
850 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
851 obj_section_addr (s));
852 }
853
854 /* Data changed. */
855 return 1;
856 }
857
858 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
859 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
860
861 The number and ordering of sections does differ between the two objfiles.
862 Only their names match. Also the file offsets will differ (objfile being
863 possibly prelinked but separate_debug_objfile is probably not prelinked) but
864 the in-memory absolute address as specified by NEW_OFFSETS must match both
865 files. */
866
867 void
868 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
869 {
870 struct objfile *debug_objfile;
871 int changed = 0;
872
873 changed |= objfile_relocate1 (objfile, new_offsets);
874
875 for (debug_objfile = objfile->separate_debug_objfile;
876 debug_objfile;
877 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
878 {
879 struct section_addr_info *objfile_addrs;
880 struct section_offsets *new_debug_offsets;
881 struct cleanup *my_cleanups;
882
883 objfile_addrs = build_section_addr_info_from_objfile (objfile);
884 my_cleanups = make_cleanup (xfree, objfile_addrs);
885
886 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
887 relative ones must be already created according to debug_objfile. */
888
889 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
890
891 gdb_assert (debug_objfile->num_sections
892 == bfd_count_sections (debug_objfile->obfd));
893 new_debug_offsets =
894 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
895 make_cleanup (xfree, new_debug_offsets);
896 relative_addr_info_to_section_offsets (new_debug_offsets,
897 debug_objfile->num_sections,
898 objfile_addrs);
899
900 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
901
902 do_cleanups (my_cleanups);
903 }
904
905 /* Relocate breakpoints as necessary, after things are relocated. */
906 if (changed)
907 breakpoint_re_set ();
908 }
909 \f
910 /* Return non-zero if OBJFILE has partial symbols. */
911
912 int
913 objfile_has_partial_symbols (struct objfile *objfile)
914 {
915 return objfile->sf ? objfile->sf->qf->has_symbols (objfile) : 0;
916 }
917
918 /* Return non-zero if OBJFILE has full symbols. */
919
920 int
921 objfile_has_full_symbols (struct objfile *objfile)
922 {
923 return objfile->symtabs != NULL;
924 }
925
926 /* Return non-zero if OBJFILE has full or partial symbols, either directly
927 or through a separate debug file. */
928
929 int
930 objfile_has_symbols (struct objfile *objfile)
931 {
932 struct objfile *o;
933
934 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
935 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
936 return 1;
937 return 0;
938 }
939
940
941 /* Many places in gdb want to test just to see if we have any partial
942 symbols available. This function returns zero if none are currently
943 available, nonzero otherwise. */
944
945 int
946 have_partial_symbols (void)
947 {
948 struct objfile *ofp;
949
950 ALL_OBJFILES (ofp)
951 {
952 if (objfile_has_partial_symbols (ofp))
953 return 1;
954 }
955 return 0;
956 }
957
958 /* Many places in gdb want to test just to see if we have any full
959 symbols available. This function returns zero if none are currently
960 available, nonzero otherwise. */
961
962 int
963 have_full_symbols (void)
964 {
965 struct objfile *ofp;
966
967 ALL_OBJFILES (ofp)
968 {
969 if (objfile_has_full_symbols (ofp))
970 return 1;
971 }
972 return 0;
973 }
974
975
976 /* This operations deletes all objfile entries that represent solibs that
977 weren't explicitly loaded by the user, via e.g., the add-symbol-file
978 command.
979 */
980 void
981 objfile_purge_solibs (void)
982 {
983 struct objfile *objf;
984 struct objfile *temp;
985
986 ALL_OBJFILES_SAFE (objf, temp)
987 {
988 /* We assume that the solib package has been purged already, or will
989 be soon.
990 */
991 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
992 free_objfile (objf);
993 }
994 }
995
996
997 /* Many places in gdb want to test just to see if we have any minimal
998 symbols available. This function returns zero if none are currently
999 available, nonzero otherwise. */
1000
1001 int
1002 have_minimal_symbols (void)
1003 {
1004 struct objfile *ofp;
1005
1006 ALL_OBJFILES (ofp)
1007 {
1008 if (ofp->minimal_symbol_count > 0)
1009 {
1010 return 1;
1011 }
1012 }
1013 return 0;
1014 }
1015
1016 /* Qsort comparison function. */
1017
1018 static int
1019 qsort_cmp (const void *a, const void *b)
1020 {
1021 const struct obj_section *sect1 = *(const struct obj_section **) a;
1022 const struct obj_section *sect2 = *(const struct obj_section **) b;
1023 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1024 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1025
1026 if (sect1_addr < sect2_addr)
1027 return -1;
1028 else if (sect1_addr > sect2_addr)
1029 return 1;
1030 else
1031 {
1032 /* Sections are at the same address. This could happen if
1033 A) we have an objfile and a separate debuginfo.
1034 B) we are confused, and have added sections without proper relocation,
1035 or something like that. */
1036
1037 const struct objfile *const objfile1 = sect1->objfile;
1038 const struct objfile *const objfile2 = sect2->objfile;
1039
1040 if (objfile1->separate_debug_objfile == objfile2
1041 || objfile2->separate_debug_objfile == objfile1)
1042 {
1043 /* Case A. The ordering doesn't matter: separate debuginfo files
1044 will be filtered out later. */
1045
1046 return 0;
1047 }
1048
1049 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1050 triage. This section could be slow (since we iterate over all
1051 objfiles in each call to qsort_cmp), but this shouldn't happen
1052 very often (GDB is already in a confused state; one hopes this
1053 doesn't happen at all). If you discover that significant time is
1054 spent in the loops below, do 'set complaints 100' and examine the
1055 resulting complaints. */
1056
1057 if (objfile1 == objfile2)
1058 {
1059 /* Both sections came from the same objfile. We are really confused.
1060 Sort on sequence order of sections within the objfile. */
1061
1062 const struct obj_section *osect;
1063
1064 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1065 if (osect == sect1)
1066 return -1;
1067 else if (osect == sect2)
1068 return 1;
1069
1070 /* We should have found one of the sections before getting here. */
1071 gdb_assert (0);
1072 }
1073 else
1074 {
1075 /* Sort on sequence number of the objfile in the chain. */
1076
1077 const struct objfile *objfile;
1078
1079 ALL_OBJFILES (objfile)
1080 if (objfile == objfile1)
1081 return -1;
1082 else if (objfile == objfile2)
1083 return 1;
1084
1085 /* We should have found one of the objfiles before getting here. */
1086 gdb_assert (0);
1087 }
1088 }
1089
1090 /* Unreachable. */
1091 gdb_assert (0);
1092 return 0;
1093 }
1094
1095 /* Select "better" obj_section to keep. We prefer the one that came from
1096 the real object, rather than the one from separate debuginfo.
1097 Most of the time the two sections are exactly identical, but with
1098 prelinking the .rel.dyn section in the real object may have different
1099 size. */
1100
1101 static struct obj_section *
1102 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1103 {
1104 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1105 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1106 || (b->objfile->separate_debug_objfile == a->objfile));
1107 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1108 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1109
1110 if (a->objfile->separate_debug_objfile != NULL)
1111 return a;
1112 return b;
1113 }
1114
1115 /* Return 1 if SECTION should be inserted into the section map.
1116 We want to insert only non-overlay and non-TLS section. */
1117
1118 static int
1119 insert_section_p (const struct bfd *abfd,
1120 const struct bfd_section *section)
1121 {
1122 const bfd_vma lma = bfd_section_lma (abfd, section);
1123
1124 if (lma != 0 && lma != bfd_section_vma (abfd, section)
1125 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1126 /* This is an overlay section. IN_MEMORY check is needed to avoid
1127 discarding sections from the "system supplied DSO" (aka vdso)
1128 on some Linux systems (e.g. Fedora 11). */
1129 return 0;
1130 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1131 /* This is a TLS section. */
1132 return 0;
1133
1134 return 1;
1135 }
1136
1137 /* Filter out overlapping sections where one section came from the real
1138 objfile, and the other from a separate debuginfo file.
1139 Return the size of table after redundant sections have been eliminated. */
1140
1141 static int
1142 filter_debuginfo_sections (struct obj_section **map, int map_size)
1143 {
1144 int i, j;
1145
1146 for (i = 0, j = 0; i < map_size - 1; i++)
1147 {
1148 struct obj_section *const sect1 = map[i];
1149 struct obj_section *const sect2 = map[i + 1];
1150 const struct objfile *const objfile1 = sect1->objfile;
1151 const struct objfile *const objfile2 = sect2->objfile;
1152 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1153 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1154
1155 if (sect1_addr == sect2_addr
1156 && (objfile1->separate_debug_objfile == objfile2
1157 || objfile2->separate_debug_objfile == objfile1))
1158 {
1159 map[j++] = preferred_obj_section (sect1, sect2);
1160 ++i;
1161 }
1162 else
1163 map[j++] = sect1;
1164 }
1165
1166 if (i < map_size)
1167 {
1168 gdb_assert (i == map_size - 1);
1169 map[j++] = map[i];
1170 }
1171
1172 /* The map should not have shrunk to less than half the original size. */
1173 gdb_assert (map_size / 2 <= j);
1174
1175 return j;
1176 }
1177
1178 /* Filter out overlapping sections, issuing a warning if any are found.
1179 Overlapping sections could really be overlay sections which we didn't
1180 classify as such in insert_section_p, or we could be dealing with a
1181 corrupt binary. */
1182
1183 static int
1184 filter_overlapping_sections (struct obj_section **map, int map_size)
1185 {
1186 int i, j;
1187
1188 for (i = 0, j = 0; i < map_size - 1; )
1189 {
1190 int k;
1191
1192 map[j++] = map[i];
1193 for (k = i + 1; k < map_size; k++)
1194 {
1195 struct obj_section *const sect1 = map[i];
1196 struct obj_section *const sect2 = map[k];
1197 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1198 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1199 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1200
1201 gdb_assert (sect1_addr <= sect2_addr);
1202
1203 if (sect1_endaddr <= sect2_addr)
1204 break;
1205 else
1206 {
1207 /* We have an overlap. Report it. */
1208
1209 struct objfile *const objf1 = sect1->objfile;
1210 struct objfile *const objf2 = sect2->objfile;
1211
1212 const struct bfd *const abfd1 = objf1->obfd;
1213 const struct bfd *const abfd2 = objf2->obfd;
1214
1215 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1216 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1217
1218 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1219
1220 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1221
1222 complaint (&symfile_complaints,
1223 _("unexpected overlap between:\n"
1224 " (A) section `%s' from `%s' [%s, %s)\n"
1225 " (B) section `%s' from `%s' [%s, %s).\n"
1226 "Will ignore section B"),
1227 bfd_section_name (abfd1, bfds1), objf1->name,
1228 paddress (gdbarch, sect1_addr),
1229 paddress (gdbarch, sect1_endaddr),
1230 bfd_section_name (abfd2, bfds2), objf2->name,
1231 paddress (gdbarch, sect2_addr),
1232 paddress (gdbarch, sect2_endaddr));
1233 }
1234 }
1235 i = k;
1236 }
1237
1238 if (i < map_size)
1239 {
1240 gdb_assert (i == map_size - 1);
1241 map[j++] = map[i];
1242 }
1243
1244 return j;
1245 }
1246
1247
1248 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1249 TLS, overlay and overlapping sections. */
1250
1251 static void
1252 update_section_map (struct program_space *pspace,
1253 struct obj_section ***pmap, int *pmap_size)
1254 {
1255 int alloc_size, map_size, i;
1256 struct obj_section *s, **map;
1257 struct objfile *objfile;
1258
1259 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1260
1261 map = *pmap;
1262 xfree (map);
1263
1264 alloc_size = 0;
1265 ALL_PSPACE_OBJFILES (pspace, objfile)
1266 ALL_OBJFILE_OSECTIONS (objfile, s)
1267 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1268 alloc_size += 1;
1269
1270 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1271 if (alloc_size == 0)
1272 {
1273 *pmap = NULL;
1274 *pmap_size = 0;
1275 return;
1276 }
1277
1278 map = xmalloc (alloc_size * sizeof (*map));
1279
1280 i = 0;
1281 ALL_PSPACE_OBJFILES (pspace, objfile)
1282 ALL_OBJFILE_OSECTIONS (objfile, s)
1283 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1284 map[i++] = s;
1285
1286 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1287 map_size = filter_debuginfo_sections(map, alloc_size);
1288 map_size = filter_overlapping_sections(map, map_size);
1289
1290 if (map_size < alloc_size)
1291 /* Some sections were eliminated. Trim excess space. */
1292 map = xrealloc (map, map_size * sizeof (*map));
1293 else
1294 gdb_assert (alloc_size == map_size);
1295
1296 *pmap = map;
1297 *pmap_size = map_size;
1298 }
1299
1300 /* Bsearch comparison function. */
1301
1302 static int
1303 bsearch_cmp (const void *key, const void *elt)
1304 {
1305 const CORE_ADDR pc = *(CORE_ADDR *) key;
1306 const struct obj_section *section = *(const struct obj_section **) elt;
1307
1308 if (pc < obj_section_addr (section))
1309 return -1;
1310 if (pc < obj_section_endaddr (section))
1311 return 0;
1312 return 1;
1313 }
1314
1315 /* Returns a section whose range includes PC or NULL if none found. */
1316
1317 struct obj_section *
1318 find_pc_section (CORE_ADDR pc)
1319 {
1320 struct objfile_pspace_info *pspace_info;
1321 struct obj_section *s, **sp;
1322
1323 /* Check for mapped overlay section first. */
1324 s = find_pc_mapped_section (pc);
1325 if (s)
1326 return s;
1327
1328 pspace_info = get_objfile_pspace_data (current_program_space);
1329 if (pspace_info->objfiles_changed_p != 0)
1330 {
1331 update_section_map (current_program_space,
1332 &pspace_info->sections,
1333 &pspace_info->num_sections);
1334
1335 /* Don't need updates to section map until objfiles are added,
1336 removed or relocated. */
1337 pspace_info->objfiles_changed_p = 0;
1338 }
1339
1340 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1341 bsearch be non-NULL. */
1342 if (pspace_info->sections == NULL)
1343 {
1344 gdb_assert (pspace_info->num_sections == 0);
1345 return NULL;
1346 }
1347
1348 sp = (struct obj_section **) bsearch (&pc,
1349 pspace_info->sections,
1350 pspace_info->num_sections,
1351 sizeof (*pspace_info->sections),
1352 bsearch_cmp);
1353 if (sp != NULL)
1354 return *sp;
1355 return NULL;
1356 }
1357
1358
1359 /* In SVR4, we recognize a trampoline by it's section name.
1360 That is, if the pc is in a section named ".plt" then we are in
1361 a trampoline. */
1362
1363 int
1364 in_plt_section (CORE_ADDR pc, char *name)
1365 {
1366 struct obj_section *s;
1367 int retval = 0;
1368
1369 s = find_pc_section (pc);
1370
1371 retval = (s != NULL
1372 && s->the_bfd_section->name != NULL
1373 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1374 return (retval);
1375 }
1376 \f
1377
1378 /* Keep a registry of per-objfile data-pointers required by other GDB
1379 modules. */
1380
1381 struct objfile_data
1382 {
1383 unsigned index;
1384 void (*save) (struct objfile *, void *);
1385 void (*free) (struct objfile *, void *);
1386 };
1387
1388 struct objfile_data_registration
1389 {
1390 struct objfile_data *data;
1391 struct objfile_data_registration *next;
1392 };
1393
1394 struct objfile_data_registry
1395 {
1396 struct objfile_data_registration *registrations;
1397 unsigned num_registrations;
1398 };
1399
1400 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1401
1402 const struct objfile_data *
1403 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1404 void (*free) (struct objfile *, void *))
1405 {
1406 struct objfile_data_registration **curr;
1407
1408 /* Append new registration. */
1409 for (curr = &objfile_data_registry.registrations;
1410 *curr != NULL; curr = &(*curr)->next);
1411
1412 *curr = XMALLOC (struct objfile_data_registration);
1413 (*curr)->next = NULL;
1414 (*curr)->data = XMALLOC (struct objfile_data);
1415 (*curr)->data->index = objfile_data_registry.num_registrations++;
1416 (*curr)->data->save = save;
1417 (*curr)->data->free = free;
1418
1419 return (*curr)->data;
1420 }
1421
1422 const struct objfile_data *
1423 register_objfile_data (void)
1424 {
1425 return register_objfile_data_with_cleanup (NULL, NULL);
1426 }
1427
1428 static void
1429 objfile_alloc_data (struct objfile *objfile)
1430 {
1431 gdb_assert (objfile->data == NULL);
1432 objfile->num_data = objfile_data_registry.num_registrations;
1433 objfile->data = XCALLOC (objfile->num_data, void *);
1434 }
1435
1436 static void
1437 objfile_free_data (struct objfile *objfile)
1438 {
1439 gdb_assert (objfile->data != NULL);
1440 clear_objfile_data (objfile);
1441 xfree (objfile->data);
1442 objfile->data = NULL;
1443 }
1444
1445 void
1446 clear_objfile_data (struct objfile *objfile)
1447 {
1448 struct objfile_data_registration *registration;
1449 int i;
1450
1451 gdb_assert (objfile->data != NULL);
1452
1453 /* Process all the save handlers. */
1454
1455 for (registration = objfile_data_registry.registrations, i = 0;
1456 i < objfile->num_data;
1457 registration = registration->next, i++)
1458 if (objfile->data[i] != NULL && registration->data->save != NULL)
1459 registration->data->save (objfile, objfile->data[i]);
1460
1461 /* Now process all the free handlers. */
1462
1463 for (registration = objfile_data_registry.registrations, i = 0;
1464 i < objfile->num_data;
1465 registration = registration->next, i++)
1466 if (objfile->data[i] != NULL && registration->data->free != NULL)
1467 registration->data->free (objfile, objfile->data[i]);
1468
1469 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1470 }
1471
1472 void
1473 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1474 void *value)
1475 {
1476 gdb_assert (data->index < objfile->num_data);
1477 objfile->data[data->index] = value;
1478 }
1479
1480 void *
1481 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1482 {
1483 gdb_assert (data->index < objfile->num_data);
1484 return objfile->data[data->index];
1485 }
1486
1487 /* Set objfiles_changed_p so section map will be rebuilt next time it
1488 is used. Called by reread_symbols. */
1489
1490 void
1491 objfiles_changed (void)
1492 {
1493 /* Rebuild section map next time we need it. */
1494 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1495 }
1496
1497 /* Close ABFD, and warn if that fails. */
1498
1499 int
1500 gdb_bfd_close_or_warn (struct bfd *abfd)
1501 {
1502 int ret;
1503 char *name = bfd_get_filename (abfd);
1504
1505 ret = bfd_close (abfd);
1506
1507 if (!ret)
1508 warning (_("cannot close \"%s\": %s"),
1509 name, bfd_errmsg (bfd_get_error ()));
1510
1511 return ret;
1512 }
1513
1514 /* Add reference to ABFD. Returns ABFD. */
1515 struct bfd *
1516 gdb_bfd_ref (struct bfd *abfd)
1517 {
1518 int *p_refcount;
1519
1520 if (abfd == NULL)
1521 return NULL;
1522
1523 p_refcount = bfd_usrdata (abfd);
1524
1525 if (p_refcount != NULL)
1526 {
1527 *p_refcount += 1;
1528 return abfd;
1529 }
1530
1531 p_refcount = xmalloc (sizeof (*p_refcount));
1532 *p_refcount = 1;
1533 bfd_usrdata (abfd) = p_refcount;
1534
1535 return abfd;
1536 }
1537
1538 /* Unreference and possibly close ABFD. */
1539 void
1540 gdb_bfd_unref (struct bfd *abfd)
1541 {
1542 int *p_refcount;
1543 char *name;
1544
1545 if (abfd == NULL)
1546 return;
1547
1548 p_refcount = bfd_usrdata (abfd);
1549
1550 /* Valid range for p_refcount: a pointer to int counter, which has a
1551 value of 1 (single owner) or 2 (shared). */
1552 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1553
1554 *p_refcount -= 1;
1555 if (*p_refcount > 0)
1556 return;
1557
1558 xfree (p_refcount);
1559 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1560
1561 name = bfd_get_filename (abfd);
1562 gdb_bfd_close_or_warn (abfd);
1563 xfree (name);
1564 }
1565
1566 /* Provide a prototype to silence -Wmissing-prototypes. */
1567 extern initialize_file_ftype _initialize_objfiles;
1568
1569 void
1570 _initialize_objfiles (void)
1571 {
1572 objfiles_pspace_data
1573 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1574 }
This page took 0.082535 seconds and 4 git commands to generate.