Complete the previous commit (block_found refactoring)
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observer.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55
56 /* Keep a registry of per-objfile data-pointers required by other GDB
57 modules. */
58
59 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
60
61 /* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
64 struct objfile_pspace_info
65 {
66 struct obj_section **sections;
67 int num_sections;
68
69 /* Nonzero if object files have been added since the section map
70 was last updated. */
71 int new_objfiles_available;
72
73 /* Nonzero if the section map MUST be updated before use. */
74 int section_map_dirty;
75
76 /* Nonzero if section map updates should be inhibited if possible. */
77 int inhibit_updates;
78 };
79
80 /* Per-program-space data key. */
81 static const struct program_space_data *objfiles_pspace_data;
82
83 static void
84 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
85 {
86 struct objfile_pspace_info *info = arg;
87
88 xfree (info->sections);
89 xfree (info);
90 }
91
92 /* Get the current svr4 data. If none is found yet, add it now. This
93 function always returns a valid object. */
94
95 static struct objfile_pspace_info *
96 get_objfile_pspace_data (struct program_space *pspace)
97 {
98 struct objfile_pspace_info *info;
99
100 info = program_space_data (pspace, objfiles_pspace_data);
101 if (info == NULL)
102 {
103 info = XCNEW (struct objfile_pspace_info);
104 set_program_space_data (pspace, objfiles_pspace_data, info);
105 }
106
107 return info;
108 }
109
110 \f
111
112 /* Per-BFD data key. */
113
114 static const struct bfd_data *objfiles_bfd_data;
115
116 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
117 NULL, and it already has a per-BFD storage object, use that.
118 Otherwise, allocate a new per-BFD storage object. If ABFD is not
119 NULL, the object is allocated on the BFD; otherwise it is allocated
120 on OBJFILE's obstack. Note that it is not safe to call this
121 multiple times for a given OBJFILE -- it can only be called when
122 allocating or re-initializing OBJFILE. */
123
124 static struct objfile_per_bfd_storage *
125 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
126 {
127 struct objfile_per_bfd_storage *storage = NULL;
128
129 if (abfd != NULL)
130 storage = bfd_data (abfd, objfiles_bfd_data);
131
132 if (storage == NULL)
133 {
134 /* If the object requires gdb to do relocations, we simply fall
135 back to not sharing data across users. These cases are rare
136 enough that this seems reasonable. */
137 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
138 {
139 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
140 set_bfd_data (abfd, objfiles_bfd_data, storage);
141 }
142 else
143 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
144 struct objfile_per_bfd_storage);
145
146 /* Look up the gdbarch associated with the BFD. */
147 if (abfd != NULL)
148 storage->gdbarch = gdbarch_from_bfd (abfd);
149
150 obstack_init (&storage->storage_obstack);
151 storage->filename_cache = bcache_xmalloc (NULL, NULL);
152 storage->macro_cache = bcache_xmalloc (NULL, NULL);
153 storage->language_of_main = language_unknown;
154 }
155
156 return storage;
157 }
158
159 /* Free STORAGE. */
160
161 static void
162 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
163 {
164 bcache_xfree (storage->filename_cache);
165 bcache_xfree (storage->macro_cache);
166 if (storage->demangled_names_hash)
167 htab_delete (storage->demangled_names_hash);
168 obstack_free (&storage->storage_obstack, 0);
169 }
170
171 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
172 cleanup function to the BFD registry. */
173
174 static void
175 objfile_bfd_data_free (struct bfd *unused, void *d)
176 {
177 free_objfile_per_bfd_storage (d);
178 }
179
180 /* See objfiles.h. */
181
182 void
183 set_objfile_per_bfd (struct objfile *objfile)
184 {
185 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
186 }
187
188 /* Set the objfile's per-BFD notion of the "main" name and
189 language. */
190
191 void
192 set_objfile_main_name (struct objfile *objfile,
193 const char *name, enum language lang)
194 {
195 if (objfile->per_bfd->name_of_main == NULL
196 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
197 objfile->per_bfd->name_of_main
198 = obstack_copy0 (&objfile->per_bfd->storage_obstack, name, strlen (name));
199 objfile->per_bfd->language_of_main = lang;
200 }
201
202 \f
203
204 /* Called via bfd_map_over_sections to build up the section table that
205 the objfile references. The objfile contains pointers to the start
206 of the table (objfile->sections) and to the first location after
207 the end of the table (objfile->sections_end). */
208
209 static void
210 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
211 struct objfile *objfile, int force)
212 {
213 struct obj_section *section;
214
215 if (!force)
216 {
217 flagword aflag;
218
219 aflag = bfd_get_section_flags (abfd, asect);
220 if (!(aflag & SEC_ALLOC))
221 return;
222 }
223
224 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
225 section->objfile = objfile;
226 section->the_bfd_section = asect;
227 section->ovly_mapped = 0;
228 }
229
230 static void
231 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
232 void *objfilep)
233 {
234 add_to_objfile_sections_full (abfd, asect, objfilep, 0);
235 }
236
237 /* Builds a section table for OBJFILE.
238
239 Note that the OFFSET and OVLY_MAPPED in each table entry are
240 initialized to zero. */
241
242 void
243 build_objfile_section_table (struct objfile *objfile)
244 {
245 int count = gdb_bfd_count_sections (objfile->obfd);
246
247 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
248 count,
249 struct obj_section);
250 objfile->sections_end = (objfile->sections + count);
251 bfd_map_over_sections (objfile->obfd,
252 add_to_objfile_sections, (void *) objfile);
253
254 /* See gdb_bfd_section_index. */
255 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
256 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
257 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
258 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
259 }
260
261 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
262 allocate a new objfile struct, fill it in as best we can, link it
263 into the list of all known objfiles, and return a pointer to the
264 new objfile struct.
265
266 NAME should contain original non-canonicalized filename or other
267 identifier as entered by user. If there is no better source use
268 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
269 NAME content is copied into returned objfile.
270
271 The FLAGS word contains various bits (OBJF_*) that can be taken as
272 requests for specific operations. Other bits like OBJF_SHARED are
273 simply copied through to the new objfile flags member. */
274
275 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
276 by jv-lang.c, to create an artificial objfile used to hold
277 information about dynamically-loaded Java classes. Unfortunately,
278 that branch of this function doesn't get tested very frequently, so
279 it's prone to breakage. (E.g. at one time the name was set to NULL
280 in that situation, which broke a loop over all names in the dynamic
281 library loader.) If you change this function, please try to leave
282 things in a consistent state even if abfd is NULL. */
283
284 struct objfile *
285 allocate_objfile (bfd *abfd, const char *name, int flags)
286 {
287 struct objfile *objfile;
288 char *expanded_name;
289
290 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
291 objfile->psymbol_cache = psymbol_bcache_init ();
292 /* We could use obstack_specify_allocation here instead, but
293 gdb_obstack.h specifies the alloc/dealloc functions. */
294 obstack_init (&objfile->objfile_obstack);
295
296 objfile_alloc_data (objfile);
297
298 if (name == NULL)
299 {
300 gdb_assert (abfd == NULL);
301 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
302 expanded_name = xstrdup ("<<anonymous objfile>>");
303 }
304 else if ((flags & OBJF_NOT_FILENAME) != 0
305 || is_target_filename (name))
306 expanded_name = xstrdup (name);
307 else
308 expanded_name = gdb_abspath (name);
309 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
310 expanded_name,
311 strlen (expanded_name));
312 xfree (expanded_name);
313
314 /* Update the per-objfile information that comes from the bfd, ensuring
315 that any data that is reference is saved in the per-objfile data
316 region. */
317
318 objfile->obfd = abfd;
319 gdb_bfd_ref (abfd);
320 if (abfd != NULL)
321 {
322 objfile->mtime = bfd_get_mtime (abfd);
323
324 /* Build section table. */
325 build_objfile_section_table (objfile);
326 }
327
328 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
329 objfile->pspace = current_program_space;
330
331 terminate_minimal_symbol_table (objfile);
332
333 /* Initialize the section indexes for this objfile, so that we can
334 later detect if they are used w/o being properly assigned to. */
335
336 objfile->sect_index_text = -1;
337 objfile->sect_index_data = -1;
338 objfile->sect_index_bss = -1;
339 objfile->sect_index_rodata = -1;
340
341 /* Add this file onto the tail of the linked list of other such files. */
342
343 objfile->next = NULL;
344 if (object_files == NULL)
345 object_files = objfile;
346 else
347 {
348 struct objfile *last_one;
349
350 for (last_one = object_files;
351 last_one->next;
352 last_one = last_one->next);
353 last_one->next = objfile;
354 }
355
356 /* Save passed in flag bits. */
357 objfile->flags |= flags;
358
359 /* Rebuild section map next time we need it. */
360 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
361
362 return objfile;
363 }
364
365 /* Retrieve the gdbarch associated with OBJFILE. */
366
367 struct gdbarch *
368 get_objfile_arch (const struct objfile *objfile)
369 {
370 return objfile->per_bfd->gdbarch;
371 }
372
373 /* If there is a valid and known entry point, function fills *ENTRY_P with it
374 and returns non-zero; otherwise it returns zero. */
375
376 int
377 entry_point_address_query (CORE_ADDR *entry_p)
378 {
379 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
380 return 0;
381
382 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
383 + ANOFFSET (symfile_objfile->section_offsets,
384 symfile_objfile->per_bfd->ei.the_bfd_section_index));
385
386 return 1;
387 }
388
389 /* Get current entry point address. Call error if it is not known. */
390
391 CORE_ADDR
392 entry_point_address (void)
393 {
394 CORE_ADDR retval;
395
396 if (!entry_point_address_query (&retval))
397 error (_("Entry point address is not known."));
398
399 return retval;
400 }
401
402 /* Iterator on PARENT and every separate debug objfile of PARENT.
403 The usage pattern is:
404 for (objfile = parent;
405 objfile;
406 objfile = objfile_separate_debug_iterate (parent, objfile))
407 ...
408 */
409
410 struct objfile *
411 objfile_separate_debug_iterate (const struct objfile *parent,
412 const struct objfile *objfile)
413 {
414 struct objfile *res;
415
416 /* If any, return the first child. */
417 res = objfile->separate_debug_objfile;
418 if (res)
419 return res;
420
421 /* Common case where there is no separate debug objfile. */
422 if (objfile == parent)
423 return NULL;
424
425 /* Return the brother if any. Note that we don't iterate on brothers of
426 the parents. */
427 res = objfile->separate_debug_objfile_link;
428 if (res)
429 return res;
430
431 for (res = objfile->separate_debug_objfile_backlink;
432 res != parent;
433 res = res->separate_debug_objfile_backlink)
434 {
435 gdb_assert (res != NULL);
436 if (res->separate_debug_objfile_link)
437 return res->separate_debug_objfile_link;
438 }
439 return NULL;
440 }
441
442 /* Put one object file before a specified on in the global list.
443 This can be used to make sure an object file is destroyed before
444 another when using ALL_OBJFILES_SAFE to free all objfiles. */
445 void
446 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
447 {
448 struct objfile **objp;
449
450 unlink_objfile (objfile);
451
452 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
453 {
454 if (*objp == before_this)
455 {
456 objfile->next = *objp;
457 *objp = objfile;
458 return;
459 }
460 }
461
462 internal_error (__FILE__, __LINE__,
463 _("put_objfile_before: before objfile not in list"));
464 }
465
466 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
467 list.
468
469 It is not a bug, or error, to call this function if OBJFILE is not known
470 to be in the current list. This is done in the case of mapped objfiles,
471 for example, just to ensure that the mapped objfile doesn't appear twice
472 in the list. Since the list is threaded, linking in a mapped objfile
473 twice would create a circular list.
474
475 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
476 unlinking it, just to ensure that we have completely severed any linkages
477 between the OBJFILE and the list. */
478
479 void
480 unlink_objfile (struct objfile *objfile)
481 {
482 struct objfile **objpp;
483
484 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
485 {
486 if (*objpp == objfile)
487 {
488 *objpp = (*objpp)->next;
489 objfile->next = NULL;
490 return;
491 }
492 }
493
494 internal_error (__FILE__, __LINE__,
495 _("unlink_objfile: objfile already unlinked"));
496 }
497
498 /* Add OBJFILE as a separate debug objfile of PARENT. */
499
500 void
501 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
502 {
503 gdb_assert (objfile && parent);
504
505 /* Must not be already in a list. */
506 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
507 gdb_assert (objfile->separate_debug_objfile_link == NULL);
508 gdb_assert (objfile->separate_debug_objfile == NULL);
509 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
510 gdb_assert (parent->separate_debug_objfile_link == NULL);
511
512 objfile->separate_debug_objfile_backlink = parent;
513 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
514 parent->separate_debug_objfile = objfile;
515
516 /* Put the separate debug object before the normal one, this is so that
517 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
518 put_objfile_before (objfile, parent);
519 }
520
521 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
522 itself. */
523
524 void
525 free_objfile_separate_debug (struct objfile *objfile)
526 {
527 struct objfile *child;
528
529 for (child = objfile->separate_debug_objfile; child;)
530 {
531 struct objfile *next_child = child->separate_debug_objfile_link;
532 free_objfile (child);
533 child = next_child;
534 }
535 }
536
537 /* Destroy an objfile and all the symtabs and psymtabs under it. */
538
539 void
540 free_objfile (struct objfile *objfile)
541 {
542 /* First notify observers that this objfile is about to be freed. */
543 observer_notify_free_objfile (objfile);
544
545 /* Free all separate debug objfiles. */
546 free_objfile_separate_debug (objfile);
547
548 if (objfile->separate_debug_objfile_backlink)
549 {
550 /* We freed the separate debug file, make sure the base objfile
551 doesn't reference it. */
552 struct objfile *child;
553
554 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
555
556 if (child == objfile)
557 {
558 /* OBJFILE is the first child. */
559 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
560 objfile->separate_debug_objfile_link;
561 }
562 else
563 {
564 /* Find OBJFILE in the list. */
565 while (1)
566 {
567 if (child->separate_debug_objfile_link == objfile)
568 {
569 child->separate_debug_objfile_link =
570 objfile->separate_debug_objfile_link;
571 break;
572 }
573 child = child->separate_debug_objfile_link;
574 gdb_assert (child);
575 }
576 }
577 }
578
579 /* Remove any references to this objfile in the global value
580 lists. */
581 preserve_values (objfile);
582
583 /* It still may reference data modules have associated with the objfile and
584 the symbol file data. */
585 forget_cached_source_info_for_objfile (objfile);
586
587 breakpoint_free_objfile (objfile);
588 btrace_free_objfile (objfile);
589
590 /* First do any symbol file specific actions required when we are
591 finished with a particular symbol file. Note that if the objfile
592 is using reusable symbol information (via mmalloc) then each of
593 these routines is responsible for doing the correct thing, either
594 freeing things which are valid only during this particular gdb
595 execution, or leaving them to be reused during the next one. */
596
597 if (objfile->sf != NULL)
598 {
599 (*objfile->sf->sym_finish) (objfile);
600 }
601
602 /* Discard any data modules have associated with the objfile. The function
603 still may reference objfile->obfd. */
604 objfile_free_data (objfile);
605
606 if (objfile->obfd)
607 gdb_bfd_unref (objfile->obfd);
608 else
609 free_objfile_per_bfd_storage (objfile->per_bfd);
610
611 /* Remove it from the chain of all objfiles. */
612
613 unlink_objfile (objfile);
614
615 if (objfile == symfile_objfile)
616 symfile_objfile = NULL;
617
618 /* Before the symbol table code was redone to make it easier to
619 selectively load and remove information particular to a specific
620 linkage unit, gdb used to do these things whenever the monolithic
621 symbol table was blown away. How much still needs to be done
622 is unknown, but we play it safe for now and keep each action until
623 it is shown to be no longer needed. */
624
625 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
626 for example), so we need to call this here. */
627 clear_pc_function_cache ();
628
629 /* Clear globals which might have pointed into a removed objfile.
630 FIXME: It's not clear which of these are supposed to persist
631 between expressions and which ought to be reset each time. */
632 expression_context_block = NULL;
633 innermost_block = NULL;
634
635 /* Check to see if the current_source_symtab belongs to this objfile,
636 and if so, call clear_current_source_symtab_and_line. */
637
638 {
639 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
640
641 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == objfile)
642 clear_current_source_symtab_and_line ();
643 }
644
645 if (objfile->global_psymbols.list)
646 xfree (objfile->global_psymbols.list);
647 if (objfile->static_psymbols.list)
648 xfree (objfile->static_psymbols.list);
649 /* Free the obstacks for non-reusable objfiles. */
650 psymbol_bcache_free (objfile->psymbol_cache);
651 obstack_free (&objfile->objfile_obstack, 0);
652
653 /* Rebuild section map next time we need it. */
654 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
655
656 /* The last thing we do is free the objfile struct itself. */
657 xfree (objfile);
658 }
659
660 static void
661 do_free_objfile_cleanup (void *obj)
662 {
663 free_objfile (obj);
664 }
665
666 struct cleanup *
667 make_cleanup_free_objfile (struct objfile *obj)
668 {
669 return make_cleanup (do_free_objfile_cleanup, obj);
670 }
671
672 /* Free all the object files at once and clean up their users. */
673
674 void
675 free_all_objfiles (void)
676 {
677 struct objfile *objfile, *temp;
678 struct so_list *so;
679
680 /* Any objfile referencewould become stale. */
681 for (so = master_so_list (); so; so = so->next)
682 gdb_assert (so->objfile == NULL);
683
684 ALL_OBJFILES_SAFE (objfile, temp)
685 {
686 free_objfile (objfile);
687 }
688 clear_symtab_users (0);
689 }
690 \f
691 /* A helper function for objfile_relocate1 that relocates a single
692 symbol. */
693
694 static void
695 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
696 struct section_offsets *delta)
697 {
698 fixup_symbol_section (sym, objfile);
699
700 /* The RS6000 code from which this was taken skipped
701 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
702 But I'm leaving out that test, on the theory that
703 they can't possibly pass the tests below. */
704 if ((SYMBOL_CLASS (sym) == LOC_LABEL
705 || SYMBOL_CLASS (sym) == LOC_STATIC)
706 && SYMBOL_SECTION (sym) >= 0)
707 {
708 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
709 }
710 }
711
712 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
713 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
714 Return non-zero iff any change happened. */
715
716 static int
717 objfile_relocate1 (struct objfile *objfile,
718 const struct section_offsets *new_offsets)
719 {
720 struct obj_section *s;
721 struct section_offsets *delta =
722 ((struct section_offsets *)
723 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
724
725 int i;
726 int something_changed = 0;
727
728 for (i = 0; i < objfile->num_sections; ++i)
729 {
730 delta->offsets[i] =
731 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
732 if (ANOFFSET (delta, i) != 0)
733 something_changed = 1;
734 }
735 if (!something_changed)
736 return 0;
737
738 /* OK, get all the symtabs. */
739 {
740 struct compunit_symtab *cust;
741 struct symtab *s;
742
743 ALL_OBJFILE_FILETABS (objfile, cust, s)
744 {
745 struct linetable *l;
746 int i;
747
748 /* First the line table. */
749 l = SYMTAB_LINETABLE (s);
750 if (l)
751 {
752 for (i = 0; i < l->nitems; ++i)
753 l->item[i].pc += ANOFFSET (delta,
754 COMPUNIT_BLOCK_LINE_SECTION
755 (cust));
756 }
757 }
758
759 ALL_OBJFILE_COMPUNITS (objfile, cust)
760 {
761 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
762 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
763
764 if (BLOCKVECTOR_MAP (bv))
765 addrmap_relocate (BLOCKVECTOR_MAP (bv),
766 ANOFFSET (delta, block_line_section));
767
768 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
769 {
770 struct block *b;
771 struct symbol *sym;
772 struct dict_iterator iter;
773
774 b = BLOCKVECTOR_BLOCK (bv, i);
775 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
776 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
777
778 /* We only want to iterate over the local symbols, not any
779 symbols in included symtabs. */
780 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
781 {
782 relocate_one_symbol (sym, objfile, delta);
783 }
784 }
785 }
786 }
787
788 /* Relocate isolated symbols. */
789 {
790 struct symbol *iter;
791
792 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
793 relocate_one_symbol (iter, objfile, delta);
794 }
795
796 if (objfile->psymtabs_addrmap)
797 addrmap_relocate (objfile->psymtabs_addrmap,
798 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
799
800 if (objfile->sf)
801 objfile->sf->qf->relocate (objfile, new_offsets, delta);
802
803 {
804 int i;
805
806 for (i = 0; i < objfile->num_sections; ++i)
807 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
808 }
809
810 /* Rebuild section map next time we need it. */
811 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
812
813 /* Update the table in exec_ops, used to read memory. */
814 ALL_OBJFILE_OSECTIONS (objfile, s)
815 {
816 int idx = s - objfile->sections;
817
818 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
819 obj_section_addr (s));
820 }
821
822 /* Data changed. */
823 return 1;
824 }
825
826 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
827 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
828
829 The number and ordering of sections does differ between the two objfiles.
830 Only their names match. Also the file offsets will differ (objfile being
831 possibly prelinked but separate_debug_objfile is probably not prelinked) but
832 the in-memory absolute address as specified by NEW_OFFSETS must match both
833 files. */
834
835 void
836 objfile_relocate (struct objfile *objfile,
837 const struct section_offsets *new_offsets)
838 {
839 struct objfile *debug_objfile;
840 int changed = 0;
841
842 changed |= objfile_relocate1 (objfile, new_offsets);
843
844 for (debug_objfile = objfile->separate_debug_objfile;
845 debug_objfile;
846 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
847 {
848 struct section_addr_info *objfile_addrs;
849 struct section_offsets *new_debug_offsets;
850 struct cleanup *my_cleanups;
851
852 objfile_addrs = build_section_addr_info_from_objfile (objfile);
853 my_cleanups = make_cleanup (xfree, objfile_addrs);
854
855 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
856 relative ones must be already created according to debug_objfile. */
857
858 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
859
860 gdb_assert (debug_objfile->num_sections
861 == gdb_bfd_count_sections (debug_objfile->obfd));
862 new_debug_offsets =
863 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
864 make_cleanup (xfree, new_debug_offsets);
865 relative_addr_info_to_section_offsets (new_debug_offsets,
866 debug_objfile->num_sections,
867 objfile_addrs);
868
869 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
870
871 do_cleanups (my_cleanups);
872 }
873
874 /* Relocate breakpoints as necessary, after things are relocated. */
875 if (changed)
876 breakpoint_re_set ();
877 }
878
879 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
880 not touched here.
881 Return non-zero iff any change happened. */
882
883 static int
884 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
885 {
886 struct section_offsets *new_offsets =
887 ((struct section_offsets *)
888 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
889 int i;
890
891 for (i = 0; i < objfile->num_sections; ++i)
892 new_offsets->offsets[i] = slide;
893
894 return objfile_relocate1 (objfile, new_offsets);
895 }
896
897 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
898 SEPARATE_DEBUG_OBJFILEs. */
899
900 void
901 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
902 {
903 struct objfile *debug_objfile;
904 int changed = 0;
905
906 changed |= objfile_rebase1 (objfile, slide);
907
908 for (debug_objfile = objfile->separate_debug_objfile;
909 debug_objfile;
910 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
911 changed |= objfile_rebase1 (debug_objfile, slide);
912
913 /* Relocate breakpoints as necessary, after things are relocated. */
914 if (changed)
915 breakpoint_re_set ();
916 }
917 \f
918 /* Return non-zero if OBJFILE has partial symbols. */
919
920 int
921 objfile_has_partial_symbols (struct objfile *objfile)
922 {
923 if (!objfile->sf)
924 return 0;
925
926 /* If we have not read psymbols, but we have a function capable of reading
927 them, then that is an indication that they are in fact available. Without
928 this function the symbols may have been already read in but they also may
929 not be present in this objfile. */
930 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
931 && objfile->sf->sym_read_psymbols != NULL)
932 return 1;
933
934 return objfile->sf->qf->has_symbols (objfile);
935 }
936
937 /* Return non-zero if OBJFILE has full symbols. */
938
939 int
940 objfile_has_full_symbols (struct objfile *objfile)
941 {
942 return objfile->compunit_symtabs != NULL;
943 }
944
945 /* Return non-zero if OBJFILE has full or partial symbols, either directly
946 or through a separate debug file. */
947
948 int
949 objfile_has_symbols (struct objfile *objfile)
950 {
951 struct objfile *o;
952
953 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
954 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
955 return 1;
956 return 0;
957 }
958
959
960 /* Many places in gdb want to test just to see if we have any partial
961 symbols available. This function returns zero if none are currently
962 available, nonzero otherwise. */
963
964 int
965 have_partial_symbols (void)
966 {
967 struct objfile *ofp;
968
969 ALL_OBJFILES (ofp)
970 {
971 if (objfile_has_partial_symbols (ofp))
972 return 1;
973 }
974 return 0;
975 }
976
977 /* Many places in gdb want to test just to see if we have any full
978 symbols available. This function returns zero if none are currently
979 available, nonzero otherwise. */
980
981 int
982 have_full_symbols (void)
983 {
984 struct objfile *ofp;
985
986 ALL_OBJFILES (ofp)
987 {
988 if (objfile_has_full_symbols (ofp))
989 return 1;
990 }
991 return 0;
992 }
993
994
995 /* This operations deletes all objfile entries that represent solibs that
996 weren't explicitly loaded by the user, via e.g., the add-symbol-file
997 command. */
998
999 void
1000 objfile_purge_solibs (void)
1001 {
1002 struct objfile *objf;
1003 struct objfile *temp;
1004
1005 ALL_OBJFILES_SAFE (objf, temp)
1006 {
1007 /* We assume that the solib package has been purged already, or will
1008 be soon. */
1009
1010 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1011 free_objfile (objf);
1012 }
1013 }
1014
1015
1016 /* Many places in gdb want to test just to see if we have any minimal
1017 symbols available. This function returns zero if none are currently
1018 available, nonzero otherwise. */
1019
1020 int
1021 have_minimal_symbols (void)
1022 {
1023 struct objfile *ofp;
1024
1025 ALL_OBJFILES (ofp)
1026 {
1027 if (ofp->per_bfd->minimal_symbol_count > 0)
1028 {
1029 return 1;
1030 }
1031 }
1032 return 0;
1033 }
1034
1035 /* Qsort comparison function. */
1036
1037 static int
1038 qsort_cmp (const void *a, const void *b)
1039 {
1040 const struct obj_section *sect1 = *(const struct obj_section **) a;
1041 const struct obj_section *sect2 = *(const struct obj_section **) b;
1042 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1043 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1044
1045 if (sect1_addr < sect2_addr)
1046 return -1;
1047 else if (sect1_addr > sect2_addr)
1048 return 1;
1049 else
1050 {
1051 /* Sections are at the same address. This could happen if
1052 A) we have an objfile and a separate debuginfo.
1053 B) we are confused, and have added sections without proper relocation,
1054 or something like that. */
1055
1056 const struct objfile *const objfile1 = sect1->objfile;
1057 const struct objfile *const objfile2 = sect2->objfile;
1058
1059 if (objfile1->separate_debug_objfile == objfile2
1060 || objfile2->separate_debug_objfile == objfile1)
1061 {
1062 /* Case A. The ordering doesn't matter: separate debuginfo files
1063 will be filtered out later. */
1064
1065 return 0;
1066 }
1067
1068 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1069 triage. This section could be slow (since we iterate over all
1070 objfiles in each call to qsort_cmp), but this shouldn't happen
1071 very often (GDB is already in a confused state; one hopes this
1072 doesn't happen at all). If you discover that significant time is
1073 spent in the loops below, do 'set complaints 100' and examine the
1074 resulting complaints. */
1075
1076 if (objfile1 == objfile2)
1077 {
1078 /* Both sections came from the same objfile. We are really confused.
1079 Sort on sequence order of sections within the objfile. */
1080
1081 const struct obj_section *osect;
1082
1083 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1084 if (osect == sect1)
1085 return -1;
1086 else if (osect == sect2)
1087 return 1;
1088
1089 /* We should have found one of the sections before getting here. */
1090 gdb_assert_not_reached ("section not found");
1091 }
1092 else
1093 {
1094 /* Sort on sequence number of the objfile in the chain. */
1095
1096 const struct objfile *objfile;
1097
1098 ALL_OBJFILES (objfile)
1099 if (objfile == objfile1)
1100 return -1;
1101 else if (objfile == objfile2)
1102 return 1;
1103
1104 /* We should have found one of the objfiles before getting here. */
1105 gdb_assert_not_reached ("objfile not found");
1106 }
1107 }
1108
1109 /* Unreachable. */
1110 gdb_assert_not_reached ("unexpected code path");
1111 return 0;
1112 }
1113
1114 /* Select "better" obj_section to keep. We prefer the one that came from
1115 the real object, rather than the one from separate debuginfo.
1116 Most of the time the two sections are exactly identical, but with
1117 prelinking the .rel.dyn section in the real object may have different
1118 size. */
1119
1120 static struct obj_section *
1121 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1122 {
1123 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1124 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1125 || (b->objfile->separate_debug_objfile == a->objfile));
1126 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1127 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1128
1129 if (a->objfile->separate_debug_objfile != NULL)
1130 return a;
1131 return b;
1132 }
1133
1134 /* Return 1 if SECTION should be inserted into the section map.
1135 We want to insert only non-overlay and non-TLS section. */
1136
1137 static int
1138 insert_section_p (const struct bfd *abfd,
1139 const struct bfd_section *section)
1140 {
1141 const bfd_vma lma = bfd_section_lma (abfd, section);
1142
1143 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1144 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1145 /* This is an overlay section. IN_MEMORY check is needed to avoid
1146 discarding sections from the "system supplied DSO" (aka vdso)
1147 on some Linux systems (e.g. Fedora 11). */
1148 return 0;
1149 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1150 /* This is a TLS section. */
1151 return 0;
1152
1153 return 1;
1154 }
1155
1156 /* Filter out overlapping sections where one section came from the real
1157 objfile, and the other from a separate debuginfo file.
1158 Return the size of table after redundant sections have been eliminated. */
1159
1160 static int
1161 filter_debuginfo_sections (struct obj_section **map, int map_size)
1162 {
1163 int i, j;
1164
1165 for (i = 0, j = 0; i < map_size - 1; i++)
1166 {
1167 struct obj_section *const sect1 = map[i];
1168 struct obj_section *const sect2 = map[i + 1];
1169 const struct objfile *const objfile1 = sect1->objfile;
1170 const struct objfile *const objfile2 = sect2->objfile;
1171 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1172 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1173
1174 if (sect1_addr == sect2_addr
1175 && (objfile1->separate_debug_objfile == objfile2
1176 || objfile2->separate_debug_objfile == objfile1))
1177 {
1178 map[j++] = preferred_obj_section (sect1, sect2);
1179 ++i;
1180 }
1181 else
1182 map[j++] = sect1;
1183 }
1184
1185 if (i < map_size)
1186 {
1187 gdb_assert (i == map_size - 1);
1188 map[j++] = map[i];
1189 }
1190
1191 /* The map should not have shrunk to less than half the original size. */
1192 gdb_assert (map_size / 2 <= j);
1193
1194 return j;
1195 }
1196
1197 /* Filter out overlapping sections, issuing a warning if any are found.
1198 Overlapping sections could really be overlay sections which we didn't
1199 classify as such in insert_section_p, or we could be dealing with a
1200 corrupt binary. */
1201
1202 static int
1203 filter_overlapping_sections (struct obj_section **map, int map_size)
1204 {
1205 int i, j;
1206
1207 for (i = 0, j = 0; i < map_size - 1; )
1208 {
1209 int k;
1210
1211 map[j++] = map[i];
1212 for (k = i + 1; k < map_size; k++)
1213 {
1214 struct obj_section *const sect1 = map[i];
1215 struct obj_section *const sect2 = map[k];
1216 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1217 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1218 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1219
1220 gdb_assert (sect1_addr <= sect2_addr);
1221
1222 if (sect1_endaddr <= sect2_addr)
1223 break;
1224 else
1225 {
1226 /* We have an overlap. Report it. */
1227
1228 struct objfile *const objf1 = sect1->objfile;
1229 struct objfile *const objf2 = sect2->objfile;
1230
1231 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1232 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1233
1234 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1235
1236 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1237
1238 complaint (&symfile_complaints,
1239 _("unexpected overlap between:\n"
1240 " (A) section `%s' from `%s' [%s, %s)\n"
1241 " (B) section `%s' from `%s' [%s, %s).\n"
1242 "Will ignore section B"),
1243 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1244 paddress (gdbarch, sect1_addr),
1245 paddress (gdbarch, sect1_endaddr),
1246 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1247 paddress (gdbarch, sect2_addr),
1248 paddress (gdbarch, sect2_endaddr));
1249 }
1250 }
1251 i = k;
1252 }
1253
1254 if (i < map_size)
1255 {
1256 gdb_assert (i == map_size - 1);
1257 map[j++] = map[i];
1258 }
1259
1260 return j;
1261 }
1262
1263
1264 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1265 TLS, overlay and overlapping sections. */
1266
1267 static void
1268 update_section_map (struct program_space *pspace,
1269 struct obj_section ***pmap, int *pmap_size)
1270 {
1271 struct objfile_pspace_info *pspace_info;
1272 int alloc_size, map_size, i;
1273 struct obj_section *s, **map;
1274 struct objfile *objfile;
1275
1276 pspace_info = get_objfile_pspace_data (pspace);
1277 gdb_assert (pspace_info->section_map_dirty != 0
1278 || pspace_info->new_objfiles_available != 0);
1279
1280 map = *pmap;
1281 xfree (map);
1282
1283 alloc_size = 0;
1284 ALL_PSPACE_OBJFILES (pspace, objfile)
1285 ALL_OBJFILE_OSECTIONS (objfile, s)
1286 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1287 alloc_size += 1;
1288
1289 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1290 if (alloc_size == 0)
1291 {
1292 *pmap = NULL;
1293 *pmap_size = 0;
1294 return;
1295 }
1296
1297 map = xmalloc (alloc_size * sizeof (*map));
1298
1299 i = 0;
1300 ALL_PSPACE_OBJFILES (pspace, objfile)
1301 ALL_OBJFILE_OSECTIONS (objfile, s)
1302 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1303 map[i++] = s;
1304
1305 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1306 map_size = filter_debuginfo_sections(map, alloc_size);
1307 map_size = filter_overlapping_sections(map, map_size);
1308
1309 if (map_size < alloc_size)
1310 /* Some sections were eliminated. Trim excess space. */
1311 map = xrealloc (map, map_size * sizeof (*map));
1312 else
1313 gdb_assert (alloc_size == map_size);
1314
1315 *pmap = map;
1316 *pmap_size = map_size;
1317 }
1318
1319 /* Bsearch comparison function. */
1320
1321 static int
1322 bsearch_cmp (const void *key, const void *elt)
1323 {
1324 const CORE_ADDR pc = *(CORE_ADDR *) key;
1325 const struct obj_section *section = *(const struct obj_section **) elt;
1326
1327 if (pc < obj_section_addr (section))
1328 return -1;
1329 if (pc < obj_section_endaddr (section))
1330 return 0;
1331 return 1;
1332 }
1333
1334 /* Returns a section whose range includes PC or NULL if none found. */
1335
1336 struct obj_section *
1337 find_pc_section (CORE_ADDR pc)
1338 {
1339 struct objfile_pspace_info *pspace_info;
1340 struct obj_section *s, **sp;
1341
1342 /* Check for mapped overlay section first. */
1343 s = find_pc_mapped_section (pc);
1344 if (s)
1345 return s;
1346
1347 pspace_info = get_objfile_pspace_data (current_program_space);
1348 if (pspace_info->section_map_dirty
1349 || (pspace_info->new_objfiles_available
1350 && !pspace_info->inhibit_updates))
1351 {
1352 update_section_map (current_program_space,
1353 &pspace_info->sections,
1354 &pspace_info->num_sections);
1355
1356 /* Don't need updates to section map until objfiles are added,
1357 removed or relocated. */
1358 pspace_info->new_objfiles_available = 0;
1359 pspace_info->section_map_dirty = 0;
1360 }
1361
1362 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1363 bsearch be non-NULL. */
1364 if (pspace_info->sections == NULL)
1365 {
1366 gdb_assert (pspace_info->num_sections == 0);
1367 return NULL;
1368 }
1369
1370 sp = (struct obj_section **) bsearch (&pc,
1371 pspace_info->sections,
1372 pspace_info->num_sections,
1373 sizeof (*pspace_info->sections),
1374 bsearch_cmp);
1375 if (sp != NULL)
1376 return *sp;
1377 return NULL;
1378 }
1379
1380
1381 /* Return non-zero if PC is in a section called NAME. */
1382
1383 int
1384 pc_in_section (CORE_ADDR pc, char *name)
1385 {
1386 struct obj_section *s;
1387 int retval = 0;
1388
1389 s = find_pc_section (pc);
1390
1391 retval = (s != NULL
1392 && s->the_bfd_section->name != NULL
1393 && strcmp (s->the_bfd_section->name, name) == 0);
1394 return (retval);
1395 }
1396 \f
1397
1398 /* Set section_map_dirty so section map will be rebuilt next time it
1399 is used. Called by reread_symbols. */
1400
1401 void
1402 objfiles_changed (void)
1403 {
1404 /* Rebuild section map next time we need it. */
1405 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1406 }
1407
1408 /* See comments in objfiles.h. */
1409
1410 void
1411 inhibit_section_map_updates (struct program_space *pspace)
1412 {
1413 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1414 }
1415
1416 /* See comments in objfiles.h. */
1417
1418 void
1419 resume_section_map_updates (struct program_space *pspace)
1420 {
1421 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1422 }
1423
1424 /* See comments in objfiles.h. */
1425
1426 void
1427 resume_section_map_updates_cleanup (void *arg)
1428 {
1429 resume_section_map_updates (arg);
1430 }
1431
1432 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1433 otherwise. */
1434
1435 int
1436 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1437 {
1438 struct obj_section *osect;
1439
1440 if (objfile == NULL)
1441 return 0;
1442
1443 ALL_OBJFILE_OSECTIONS (objfile, osect)
1444 {
1445 if (section_is_overlay (osect) && !section_is_mapped (osect))
1446 continue;
1447
1448 if (obj_section_addr (osect) <= addr
1449 && addr < obj_section_endaddr (osect))
1450 return 1;
1451 }
1452 return 0;
1453 }
1454
1455 int
1456 shared_objfile_contains_address_p (struct program_space *pspace,
1457 CORE_ADDR address)
1458 {
1459 struct objfile *objfile;
1460
1461 ALL_PSPACE_OBJFILES (pspace, objfile)
1462 {
1463 if ((objfile->flags & OBJF_SHARED) != 0
1464 && is_addr_in_objfile (address, objfile))
1465 return 1;
1466 }
1467
1468 return 0;
1469 }
1470
1471 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1472 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1473 searching the objfiles in the order they are stored internally,
1474 ignoring CURRENT_OBJFILE.
1475
1476 On most platorms, it should be close enough to doing the best
1477 we can without some knowledge specific to the architecture. */
1478
1479 void
1480 default_iterate_over_objfiles_in_search_order
1481 (struct gdbarch *gdbarch,
1482 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1483 void *cb_data, struct objfile *current_objfile)
1484 {
1485 int stop = 0;
1486 struct objfile *objfile;
1487
1488 ALL_OBJFILES (objfile)
1489 {
1490 stop = cb (objfile, cb_data);
1491 if (stop)
1492 return;
1493 }
1494 }
1495
1496 /* See objfiles.h. */
1497
1498 const char *
1499 objfile_name (const struct objfile *objfile)
1500 {
1501 if (objfile->obfd != NULL)
1502 return bfd_get_filename (objfile->obfd);
1503
1504 return objfile->original_name;
1505 }
1506
1507 /* See objfiles.h. */
1508
1509 const char *
1510 objfile_filename (const struct objfile *objfile)
1511 {
1512 if (objfile->obfd != NULL)
1513 return bfd_get_filename (objfile->obfd);
1514
1515 return NULL;
1516 }
1517
1518 /* See objfiles.h. */
1519
1520 const char *
1521 objfile_debug_name (const struct objfile *objfile)
1522 {
1523 return lbasename (objfile->original_name);
1524 }
1525
1526 /* Provide a prototype to silence -Wmissing-prototypes. */
1527 extern initialize_file_ftype _initialize_objfiles;
1528
1529 void
1530 _initialize_objfiles (void)
1531 {
1532 objfiles_pspace_data
1533 = register_program_space_data_with_cleanup (NULL,
1534 objfiles_pspace_data_cleanup);
1535
1536 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1537 objfile_bfd_data_free);
1538 }
This page took 0.094523 seconds and 4 git commands to generate.