2009-08-04 Hui Zhu <teawater@gmail.com>
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53 #include "observer.h"
54
55 /* Prototypes for local functions */
56
57 static void objfile_alloc_data (struct objfile *objfile);
58 static void objfile_free_data (struct objfile *objfile);
59
60 /* Externally visible variables that are owned by this module.
61 See declarations in objfile.h for more info. */
62
63 struct objfile *object_files; /* Linked list of all objfiles */
64 struct objfile *current_objfile; /* For symbol file being read in */
65 struct objfile *symfile_objfile; /* Main symbol table loaded from */
66 struct objfile *rt_common_objfile; /* For runtime common symbols */
67
68 /* Records whether any objfiles appeared or disappeared since we last updated
69 address to obj section map. */
70
71 static int objfiles_changed_p;
72
73 /* Locate all mappable sections of a BFD file.
74 objfile_p_char is a char * to get it through
75 bfd_map_over_sections; we cast it back to its proper type. */
76
77 /* Called via bfd_map_over_sections to build up the section table that
78 the objfile references. The objfile contains pointers to the start
79 of the table (objfile->sections) and to the first location after
80 the end of the table (objfile->sections_end). */
81
82 static void
83 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
84 void *objfile_p_char)
85 {
86 struct objfile *objfile = (struct objfile *) objfile_p_char;
87 struct obj_section section;
88 flagword aflag;
89
90 aflag = bfd_get_section_flags (abfd, asect);
91
92 if (!(aflag & SEC_ALLOC))
93 return;
94
95 if (0 == bfd_section_size (abfd, asect))
96 return;
97 section.objfile = objfile;
98 section.the_bfd_section = asect;
99 section.ovly_mapped = 0;
100 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
101 objfile->sections_end
102 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
103 }
104
105 /* Builds a section table for OBJFILE.
106 Returns 0 if OK, 1 on error (in which case bfd_error contains the
107 error).
108
109 Note that while we are building the table, which goes into the
110 psymbol obstack, we hijack the sections_end pointer to instead hold
111 a count of the number of sections. When bfd_map_over_sections
112 returns, this count is used to compute the pointer to the end of
113 the sections table, which then overwrites the count.
114
115 Also note that the OFFSET and OVLY_MAPPED in each table entry
116 are initialized to zero.
117
118 Also note that if anything else writes to the psymbol obstack while
119 we are building the table, we're pretty much hosed. */
120
121 int
122 build_objfile_section_table (struct objfile *objfile)
123 {
124 /* objfile->sections can be already set when reading a mapped symbol
125 file. I believe that we do need to rebuild the section table in
126 this case (we rebuild other things derived from the bfd), but we
127 can't free the old one (it's in the objfile_obstack). So we just
128 waste some memory. */
129
130 objfile->sections_end = 0;
131 bfd_map_over_sections (objfile->obfd,
132 add_to_objfile_sections, (void *) objfile);
133 objfile->sections = obstack_finish (&objfile->objfile_obstack);
134 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
135 return (0);
136 }
137
138 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
139 allocate a new objfile struct, fill it in as best we can, link it
140 into the list of all known objfiles, and return a pointer to the
141 new objfile struct.
142
143 The FLAGS word contains various bits (OBJF_*) that can be taken as
144 requests for specific operations. Other bits like OBJF_SHARED are
145 simply copied through to the new objfile flags member. */
146
147 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
148 by jv-lang.c, to create an artificial objfile used to hold
149 information about dynamically-loaded Java classes. Unfortunately,
150 that branch of this function doesn't get tested very frequently, so
151 it's prone to breakage. (E.g. at one time the name was set to NULL
152 in that situation, which broke a loop over all names in the dynamic
153 library loader.) If you change this function, please try to leave
154 things in a consistent state even if abfd is NULL. */
155
156 struct objfile *
157 allocate_objfile (bfd *abfd, int flags)
158 {
159 struct objfile *objfile = NULL;
160 struct objfile *last_one = NULL;
161
162 /* If we don't support mapped symbol files, didn't ask for the file to be
163 mapped, or failed to open the mapped file for some reason, then revert
164 back to an unmapped objfile. */
165
166 if (objfile == NULL)
167 {
168 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
169 memset (objfile, 0, sizeof (struct objfile));
170 objfile->psymbol_cache = bcache_xmalloc ();
171 objfile->macro_cache = bcache_xmalloc ();
172 /* We could use obstack_specify_allocation here instead, but
173 gdb_obstack.h specifies the alloc/dealloc functions. */
174 obstack_init (&objfile->objfile_obstack);
175 terminate_minimal_symbol_table (objfile);
176 }
177
178 objfile_alloc_data (objfile);
179
180 /* Update the per-objfile information that comes from the bfd, ensuring
181 that any data that is reference is saved in the per-objfile data
182 region. */
183
184 objfile->obfd = abfd;
185 if (objfile->name != NULL)
186 {
187 xfree (objfile->name);
188 }
189 if (abfd != NULL)
190 {
191 /* Look up the gdbarch associated with the BFD. */
192 objfile->gdbarch = gdbarch_from_bfd (abfd);
193
194 objfile->name = xstrdup (bfd_get_filename (abfd));
195 objfile->mtime = bfd_get_mtime (abfd);
196
197 /* Build section table. */
198
199 if (build_objfile_section_table (objfile))
200 {
201 error (_("Can't find the file sections in `%s': %s"),
202 objfile->name, bfd_errmsg (bfd_get_error ()));
203 }
204 }
205 else
206 {
207 objfile->name = xstrdup ("<<anonymous objfile>>");
208 }
209
210 /* Initialize the section indexes for this objfile, so that we can
211 later detect if they are used w/o being properly assigned to. */
212
213 objfile->sect_index_text = -1;
214 objfile->sect_index_data = -1;
215 objfile->sect_index_bss = -1;
216 objfile->sect_index_rodata = -1;
217
218 /* We don't yet have a C++-specific namespace symtab. */
219
220 objfile->cp_namespace_symtab = NULL;
221
222 /* Add this file onto the tail of the linked list of other such files. */
223
224 objfile->next = NULL;
225 if (object_files == NULL)
226 object_files = objfile;
227 else
228 {
229 for (last_one = object_files;
230 last_one->next;
231 last_one = last_one->next);
232 last_one->next = objfile;
233 }
234
235 /* Save passed in flag bits. */
236 objfile->flags |= flags;
237
238 objfiles_changed_p = 1; /* Rebuild section map next time we need it. */
239
240 return (objfile);
241 }
242
243 /* Retrieve the gdbarch associated with OBJFILE. */
244 struct gdbarch *
245 get_objfile_arch (struct objfile *objfile)
246 {
247 return objfile->gdbarch;
248 }
249
250 /* Initialize entry point information for this objfile. */
251
252 void
253 init_entry_point_info (struct objfile *objfile)
254 {
255 /* Save startup file's range of PC addresses to help blockframe.c
256 decide where the bottom of the stack is. */
257
258 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
259 {
260 /* Executable file -- record its entry point so we'll recognize
261 the startup file because it contains the entry point. */
262 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
263 }
264 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
265 && bfd_get_start_address (objfile->obfd) != 0)
266 /* Some shared libraries may have entry points set and be
267 runnable. There's no clear way to indicate this, so just check
268 for values other than zero. */
269 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
270 else
271 {
272 /* Examination of non-executable.o files. Short-circuit this stuff. */
273 objfile->ei.entry_point = INVALID_ENTRY_POINT;
274 }
275 }
276
277 /* Get current entry point address. */
278
279 CORE_ADDR
280 entry_point_address (void)
281 {
282 struct gdbarch *gdbarch;
283 CORE_ADDR entry_point;
284
285 if (symfile_objfile == NULL)
286 return 0;
287
288 gdbarch = get_objfile_arch (symfile_objfile);
289
290 entry_point = symfile_objfile->ei.entry_point;
291
292 /* Make certain that the address points at real code, and not a
293 function descriptor. */
294 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
295 &current_target);
296
297 /* Remove any ISA markers, so that this matches entries in the
298 symbol table. */
299 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
300
301 return entry_point;
302 }
303
304 /* Create the terminating entry of OBJFILE's minimal symbol table.
305 If OBJFILE->msymbols is zero, allocate a single entry from
306 OBJFILE->objfile_obstack; otherwise, just initialize
307 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
308 void
309 terminate_minimal_symbol_table (struct objfile *objfile)
310 {
311 if (! objfile->msymbols)
312 objfile->msymbols = ((struct minimal_symbol *)
313 obstack_alloc (&objfile->objfile_obstack,
314 sizeof (objfile->msymbols[0])));
315
316 {
317 struct minimal_symbol *m
318 = &objfile->msymbols[objfile->minimal_symbol_count];
319
320 memset (m, 0, sizeof (*m));
321 /* Don't rely on these enumeration values being 0's. */
322 MSYMBOL_TYPE (m) = mst_unknown;
323 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
324 }
325 }
326
327
328 /* Put one object file before a specified on in the global list.
329 This can be used to make sure an object file is destroyed before
330 another when using ALL_OBJFILES_SAFE to free all objfiles. */
331 void
332 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
333 {
334 struct objfile **objp;
335
336 unlink_objfile (objfile);
337
338 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
339 {
340 if (*objp == before_this)
341 {
342 objfile->next = *objp;
343 *objp = objfile;
344 return;
345 }
346 }
347
348 internal_error (__FILE__, __LINE__,
349 _("put_objfile_before: before objfile not in list"));
350 }
351
352 /* Put OBJFILE at the front of the list. */
353
354 void
355 objfile_to_front (struct objfile *objfile)
356 {
357 struct objfile **objp;
358 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
359 {
360 if (*objp == objfile)
361 {
362 /* Unhook it from where it is. */
363 *objp = objfile->next;
364 /* Put it in the front. */
365 objfile->next = object_files;
366 object_files = objfile;
367 break;
368 }
369 }
370 }
371
372 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
373 list.
374
375 It is not a bug, or error, to call this function if OBJFILE is not known
376 to be in the current list. This is done in the case of mapped objfiles,
377 for example, just to ensure that the mapped objfile doesn't appear twice
378 in the list. Since the list is threaded, linking in a mapped objfile
379 twice would create a circular list.
380
381 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
382 unlinking it, just to ensure that we have completely severed any linkages
383 between the OBJFILE and the list. */
384
385 void
386 unlink_objfile (struct objfile *objfile)
387 {
388 struct objfile **objpp;
389
390 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
391 {
392 if (*objpp == objfile)
393 {
394 *objpp = (*objpp)->next;
395 objfile->next = NULL;
396 return;
397 }
398 }
399
400 internal_error (__FILE__, __LINE__,
401 _("unlink_objfile: objfile already unlinked"));
402 }
403
404
405 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
406 that as much as possible is allocated on the objfile_obstack
407 so that the memory can be efficiently freed.
408
409 Things which we do NOT free because they are not in malloc'd memory
410 or not in memory specific to the objfile include:
411
412 objfile -> sf
413
414 FIXME: If the objfile is using reusable symbol information (via mmalloc),
415 then we need to take into account the fact that more than one process
416 may be using the symbol information at the same time (when mmalloc is
417 extended to support cooperative locking). When more than one process
418 is using the mapped symbol info, we need to be more careful about when
419 we free objects in the reusable area. */
420
421 void
422 free_objfile (struct objfile *objfile)
423 {
424 if (objfile->separate_debug_objfile)
425 {
426 free_objfile (objfile->separate_debug_objfile);
427 }
428
429 if (objfile->separate_debug_objfile_backlink)
430 {
431 /* We freed the separate debug file, make sure the base objfile
432 doesn't reference it. */
433 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
434 }
435
436 /* Remove any references to this objfile in the global value
437 lists. */
438 preserve_values (objfile);
439
440 /* First do any symbol file specific actions required when we are
441 finished with a particular symbol file. Note that if the objfile
442 is using reusable symbol information (via mmalloc) then each of
443 these routines is responsible for doing the correct thing, either
444 freeing things which are valid only during this particular gdb
445 execution, or leaving them to be reused during the next one. */
446
447 if (objfile->sf != NULL)
448 {
449 (*objfile->sf->sym_finish) (objfile);
450 }
451
452 /* Discard any data modules have associated with the objfile. */
453 objfile_free_data (objfile);
454
455 /* We always close the bfd, unless the OBJF_KEEPBFD flag is set. */
456
457 if (objfile->obfd != NULL && !(objfile->flags & OBJF_KEEPBFD))
458 {
459 char *name = bfd_get_filename (objfile->obfd);
460 if (!bfd_close (objfile->obfd))
461 warning (_("cannot close \"%s\": %s"),
462 name, bfd_errmsg (bfd_get_error ()));
463 xfree (name);
464 }
465
466 /* Remove it from the chain of all objfiles. */
467
468 unlink_objfile (objfile);
469
470 /* If we are going to free the runtime common objfile, mark it
471 as unallocated. */
472
473 if (objfile == rt_common_objfile)
474 rt_common_objfile = NULL;
475
476 /* Before the symbol table code was redone to make it easier to
477 selectively load and remove information particular to a specific
478 linkage unit, gdb used to do these things whenever the monolithic
479 symbol table was blown away. How much still needs to be done
480 is unknown, but we play it safe for now and keep each action until
481 it is shown to be no longer needed. */
482
483 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
484 for example), so we need to call this here. */
485 clear_pc_function_cache ();
486
487 /* Clear globals which might have pointed into a removed objfile.
488 FIXME: It's not clear which of these are supposed to persist
489 between expressions and which ought to be reset each time. */
490 expression_context_block = NULL;
491 innermost_block = NULL;
492
493 /* Check to see if the current_source_symtab belongs to this objfile,
494 and if so, call clear_current_source_symtab_and_line. */
495
496 {
497 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
498 struct symtab *s;
499
500 ALL_OBJFILE_SYMTABS (objfile, s)
501 {
502 if (s == cursal.symtab)
503 clear_current_source_symtab_and_line ();
504 }
505 }
506
507 /* The last thing we do is free the objfile struct itself. */
508
509 if (objfile->name != NULL)
510 {
511 xfree (objfile->name);
512 }
513 if (objfile->global_psymbols.list)
514 xfree (objfile->global_psymbols.list);
515 if (objfile->static_psymbols.list)
516 xfree (objfile->static_psymbols.list);
517 /* Free the obstacks for non-reusable objfiles */
518 bcache_xfree (objfile->psymbol_cache);
519 bcache_xfree (objfile->macro_cache);
520 if (objfile->demangled_names_hash)
521 htab_delete (objfile->demangled_names_hash);
522 obstack_free (&objfile->objfile_obstack, 0);
523 xfree (objfile);
524 objfile = NULL;
525 objfiles_changed_p = 1; /* Rebuild section map next time we need it. */
526 }
527
528 static void
529 do_free_objfile_cleanup (void *obj)
530 {
531 free_objfile (obj);
532 }
533
534 struct cleanup *
535 make_cleanup_free_objfile (struct objfile *obj)
536 {
537 return make_cleanup (do_free_objfile_cleanup, obj);
538 }
539
540 /* Free all the object files at once and clean up their users. */
541
542 void
543 free_all_objfiles (void)
544 {
545 struct objfile *objfile, *temp;
546
547 ALL_OBJFILES_SAFE (objfile, temp)
548 {
549 free_objfile (objfile);
550 }
551 clear_symtab_users ();
552 }
553 \f
554 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
555 entries in new_offsets. */
556 void
557 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
558 {
559 struct obj_section *s;
560 struct section_offsets *delta =
561 ((struct section_offsets *)
562 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
563
564 {
565 int i;
566 int something_changed = 0;
567 for (i = 0; i < objfile->num_sections; ++i)
568 {
569 delta->offsets[i] =
570 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
571 if (ANOFFSET (delta, i) != 0)
572 something_changed = 1;
573 }
574 if (!something_changed)
575 return;
576 }
577
578 /* OK, get all the symtabs. */
579 {
580 struct symtab *s;
581
582 ALL_OBJFILE_SYMTABS (objfile, s)
583 {
584 struct linetable *l;
585 struct blockvector *bv;
586 int i;
587
588 /* First the line table. */
589 l = LINETABLE (s);
590 if (l)
591 {
592 for (i = 0; i < l->nitems; ++i)
593 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
594 }
595
596 /* Don't relocate a shared blockvector more than once. */
597 if (!s->primary)
598 continue;
599
600 bv = BLOCKVECTOR (s);
601 if (BLOCKVECTOR_MAP (bv))
602 addrmap_relocate (BLOCKVECTOR_MAP (bv),
603 ANOFFSET (delta, s->block_line_section));
604
605 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
606 {
607 struct block *b;
608 struct symbol *sym;
609 struct dict_iterator iter;
610
611 b = BLOCKVECTOR_BLOCK (bv, i);
612 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
613 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
614
615 ALL_BLOCK_SYMBOLS (b, iter, sym)
616 {
617 fixup_symbol_section (sym, objfile);
618
619 /* The RS6000 code from which this was taken skipped
620 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
621 But I'm leaving out that test, on the theory that
622 they can't possibly pass the tests below. */
623 if ((SYMBOL_CLASS (sym) == LOC_LABEL
624 || SYMBOL_CLASS (sym) == LOC_STATIC)
625 && SYMBOL_SECTION (sym) >= 0)
626 {
627 SYMBOL_VALUE_ADDRESS (sym) +=
628 ANOFFSET (delta, SYMBOL_SECTION (sym));
629 }
630 }
631 }
632 }
633 }
634
635 {
636 struct partial_symtab *p;
637
638 ALL_OBJFILE_PSYMTABS (objfile, p)
639 {
640 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
641 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
642 }
643 }
644
645 {
646 struct partial_symbol **psym;
647
648 for (psym = objfile->global_psymbols.list;
649 psym < objfile->global_psymbols.next;
650 psym++)
651 {
652 fixup_psymbol_section (*psym, objfile);
653 if (SYMBOL_SECTION (*psym) >= 0)
654 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
655 SYMBOL_SECTION (*psym));
656 }
657 for (psym = objfile->static_psymbols.list;
658 psym < objfile->static_psymbols.next;
659 psym++)
660 {
661 fixup_psymbol_section (*psym, objfile);
662 if (SYMBOL_SECTION (*psym) >= 0)
663 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
664 SYMBOL_SECTION (*psym));
665 }
666 }
667
668 {
669 struct minimal_symbol *msym;
670 ALL_OBJFILE_MSYMBOLS (objfile, msym)
671 if (SYMBOL_SECTION (msym) >= 0)
672 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
673 }
674 /* Relocating different sections by different amounts may cause the symbols
675 to be out of order. */
676 msymbols_sort (objfile);
677
678 {
679 int i;
680 for (i = 0; i < objfile->num_sections; ++i)
681 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
682 }
683
684 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
685 {
686 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
687 only as a fallback. */
688 struct obj_section *s;
689 s = find_pc_section (objfile->ei.entry_point);
690 if (s)
691 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
692 else
693 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
694 }
695
696 /* Update the table in exec_ops, used to read memory. */
697 ALL_OBJFILE_OSECTIONS (objfile, s)
698 {
699 int idx = s->the_bfd_section->index;
700
701 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
702 obj_section_addr (s));
703 }
704
705 /* Relocate breakpoints as necessary, after things are relocated. */
706 breakpoint_re_set ();
707 objfiles_changed_p = 1; /* Rebuild section map next time we need it. */
708 }
709 \f
710 /* Many places in gdb want to test just to see if we have any partial
711 symbols available. This function returns zero if none are currently
712 available, nonzero otherwise. */
713
714 int
715 have_partial_symbols (void)
716 {
717 struct objfile *ofp;
718
719 ALL_OBJFILES (ofp)
720 {
721 if (ofp->psymtabs != NULL)
722 {
723 return 1;
724 }
725 }
726 return 0;
727 }
728
729 /* Many places in gdb want to test just to see if we have any full
730 symbols available. This function returns zero if none are currently
731 available, nonzero otherwise. */
732
733 int
734 have_full_symbols (void)
735 {
736 struct objfile *ofp;
737
738 ALL_OBJFILES (ofp)
739 {
740 if (ofp->symtabs != NULL)
741 {
742 return 1;
743 }
744 }
745 return 0;
746 }
747
748
749 /* This operations deletes all objfile entries that represent solibs that
750 weren't explicitly loaded by the user, via e.g., the add-symbol-file
751 command.
752 */
753 void
754 objfile_purge_solibs (void)
755 {
756 struct objfile *objf;
757 struct objfile *temp;
758
759 ALL_OBJFILES_SAFE (objf, temp)
760 {
761 /* We assume that the solib package has been purged already, or will
762 be soon.
763 */
764 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
765 free_objfile (objf);
766 }
767 }
768
769
770 /* Many places in gdb want to test just to see if we have any minimal
771 symbols available. This function returns zero if none are currently
772 available, nonzero otherwise. */
773
774 int
775 have_minimal_symbols (void)
776 {
777 struct objfile *ofp;
778
779 ALL_OBJFILES (ofp)
780 {
781 if (ofp->minimal_symbol_count > 0)
782 {
783 return 1;
784 }
785 }
786 return 0;
787 }
788
789 /* Qsort comparison function. */
790
791 static int
792 qsort_cmp (const void *a, const void *b)
793 {
794 const struct obj_section *sect1 = *(const struct obj_section **) a;
795 const struct obj_section *sect2 = *(const struct obj_section **) b;
796 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
797 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
798
799 if (sect1_addr < sect2_addr)
800 {
801 gdb_assert (obj_section_endaddr (sect1) <= sect2_addr);
802 return -1;
803 }
804 else if (sect1_addr > sect2_addr)
805 {
806 gdb_assert (sect1_addr >= obj_section_endaddr (sect2));
807 return 1;
808 }
809 /* This can happen for separate debug-info files. */
810 gdb_assert (obj_section_endaddr (sect1) == obj_section_endaddr (sect2));
811
812 return 0;
813 }
814
815 /* Update PMAP, PMAP_SIZE with non-TLS sections from all objfiles. */
816
817 static void
818 update_section_map (struct obj_section ***pmap, int *pmap_size)
819 {
820 int map_size, idx;
821 struct obj_section *s, **map;
822 struct objfile *objfile;
823
824 gdb_assert (objfiles_changed_p != 0);
825
826 map = *pmap;
827 xfree (map);
828
829 #define insert_p(objf, sec) \
830 ((bfd_get_section_flags ((objf)->obfd, (sec)->the_bfd_section) \
831 & SEC_THREAD_LOCAL) == 0)
832
833 map_size = 0;
834 ALL_OBJSECTIONS (objfile, s)
835 if (insert_p (objfile, s))
836 map_size += 1;
837
838 map = xmalloc (map_size * sizeof (*map));
839
840 idx = 0;
841 ALL_OBJSECTIONS (objfile, s)
842 if (insert_p (objfile, s))
843 map[idx++] = s;
844
845 #undef insert_p
846
847 qsort (map, map_size, sizeof (*map), qsort_cmp);
848
849 *pmap = map;
850 *pmap_size = map_size;
851 }
852
853 /* Bsearch comparison function. */
854
855 static int
856 bsearch_cmp (const void *key, const void *elt)
857 {
858 const CORE_ADDR pc = *(CORE_ADDR *) key;
859 const struct obj_section *section = *(const struct obj_section **) elt;
860
861 if (pc < obj_section_addr (section))
862 return -1;
863 if (pc < obj_section_endaddr (section))
864 return 0;
865 return 1;
866 }
867
868 /* Returns a section whose range includes PC or NULL if none found. */
869
870 struct obj_section *
871 find_pc_section (CORE_ADDR pc)
872 {
873 static struct obj_section **sections;
874 static int num_sections;
875
876 struct obj_section *s, **sp;
877
878 /* Check for mapped overlay section first. */
879 s = find_pc_mapped_section (pc);
880 if (s)
881 return s;
882
883 if (objfiles_changed_p != 0)
884 {
885 update_section_map (&sections, &num_sections);
886
887 /* Don't need updates to section map until objfiles are added
888 or removed. */
889 objfiles_changed_p = 0;
890 }
891
892 sp = (struct obj_section **) bsearch (&pc, sections, num_sections,
893 sizeof (*sections), bsearch_cmp);
894 if (sp != NULL)
895 return *sp;
896 return NULL;
897 }
898
899
900 /* In SVR4, we recognize a trampoline by it's section name.
901 That is, if the pc is in a section named ".plt" then we are in
902 a trampoline. */
903
904 int
905 in_plt_section (CORE_ADDR pc, char *name)
906 {
907 struct obj_section *s;
908 int retval = 0;
909
910 s = find_pc_section (pc);
911
912 retval = (s != NULL
913 && s->the_bfd_section->name != NULL
914 && strcmp (s->the_bfd_section->name, ".plt") == 0);
915 return (retval);
916 }
917 \f
918
919 /* Keep a registry of per-objfile data-pointers required by other GDB
920 modules. */
921
922 struct objfile_data
923 {
924 unsigned index;
925 void (*cleanup) (struct objfile *, void *);
926 };
927
928 struct objfile_data_registration
929 {
930 struct objfile_data *data;
931 struct objfile_data_registration *next;
932 };
933
934 struct objfile_data_registry
935 {
936 struct objfile_data_registration *registrations;
937 unsigned num_registrations;
938 };
939
940 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
941
942 const struct objfile_data *
943 register_objfile_data_with_cleanup (void (*cleanup) (struct objfile *, void *))
944 {
945 struct objfile_data_registration **curr;
946
947 /* Append new registration. */
948 for (curr = &objfile_data_registry.registrations;
949 *curr != NULL; curr = &(*curr)->next);
950
951 *curr = XMALLOC (struct objfile_data_registration);
952 (*curr)->next = NULL;
953 (*curr)->data = XMALLOC (struct objfile_data);
954 (*curr)->data->index = objfile_data_registry.num_registrations++;
955 (*curr)->data->cleanup = cleanup;
956
957 return (*curr)->data;
958 }
959
960 const struct objfile_data *
961 register_objfile_data (void)
962 {
963 return register_objfile_data_with_cleanup (NULL);
964 }
965
966 static void
967 objfile_alloc_data (struct objfile *objfile)
968 {
969 gdb_assert (objfile->data == NULL);
970 objfile->num_data = objfile_data_registry.num_registrations;
971 objfile->data = XCALLOC (objfile->num_data, void *);
972 }
973
974 static void
975 objfile_free_data (struct objfile *objfile)
976 {
977 gdb_assert (objfile->data != NULL);
978 clear_objfile_data (objfile);
979 xfree (objfile->data);
980 objfile->data = NULL;
981 }
982
983 void
984 clear_objfile_data (struct objfile *objfile)
985 {
986 struct objfile_data_registration *registration;
987 int i;
988
989 gdb_assert (objfile->data != NULL);
990
991 for (registration = objfile_data_registry.registrations, i = 0;
992 i < objfile->num_data;
993 registration = registration->next, i++)
994 if (objfile->data[i] != NULL && registration->data->cleanup)
995 registration->data->cleanup (objfile, objfile->data[i]);
996
997 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
998 }
999
1000 void
1001 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1002 void *value)
1003 {
1004 gdb_assert (data->index < objfile->num_data);
1005 objfile->data[data->index] = value;
1006 }
1007
1008 void *
1009 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1010 {
1011 gdb_assert (data->index < objfile->num_data);
1012 return objfile->data[data->index];
1013 }
1014
1015 /* Set objfiles_changed_p so section map will be rebuilt next time it
1016 is used. Called by reread_symbols. */
1017
1018 void
1019 objfiles_changed (void)
1020 {
1021 objfiles_changed_p = 1; /* Rebuild section map next time we need it. */
1022 }
This page took 0.051154 seconds and 4 git commands to generate.