gdb/
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53 #include "observer.h"
54 #include "complaints.h"
55
56 /* Prototypes for local functions */
57
58 static void objfile_alloc_data (struct objfile *objfile);
59 static void objfile_free_data (struct objfile *objfile);
60
61 /* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
64 struct objfile *current_objfile; /* For symbol file being read in */
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 struct objfile_pspace_info
68 {
69 int objfiles_changed_p;
70 struct obj_section **sections;
71 int num_sections;
72 };
73
74 /* Per-program-space data key. */
75 static const struct program_space_data *objfiles_pspace_data;
76
77 static void
78 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79 {
80 struct objfile_pspace_info *info;
81
82 info = program_space_data (pspace, objfiles_pspace_data);
83 if (info != NULL)
84 {
85 xfree (info->sections);
86 xfree (info);
87 }
88 }
89
90 /* Get the current svr4 data. If none is found yet, add it now. This
91 function always returns a valid object. */
92
93 static struct objfile_pspace_info *
94 get_objfile_pspace_data (struct program_space *pspace)
95 {
96 struct objfile_pspace_info *info;
97
98 info = program_space_data (pspace, objfiles_pspace_data);
99 if (info == NULL)
100 {
101 info = XZALLOC (struct objfile_pspace_info);
102 set_program_space_data (pspace, objfiles_pspace_data, info);
103 }
104
105 return info;
106 }
107
108 /* Records whether any objfiles appeared or disappeared since we last updated
109 address to obj section map. */
110
111 /* Locate all mappable sections of a BFD file.
112 objfile_p_char is a char * to get it through
113 bfd_map_over_sections; we cast it back to its proper type. */
114
115 /* Called via bfd_map_over_sections to build up the section table that
116 the objfile references. The objfile contains pointers to the start
117 of the table (objfile->sections) and to the first location after
118 the end of the table (objfile->sections_end). */
119
120 static void
121 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
122 void *objfile_p_char)
123 {
124 struct objfile *objfile = (struct objfile *) objfile_p_char;
125 struct obj_section section;
126 flagword aflag;
127
128 aflag = bfd_get_section_flags (abfd, asect);
129
130 if (!(aflag & SEC_ALLOC))
131 return;
132
133 if (0 == bfd_section_size (abfd, asect))
134 return;
135 section.objfile = objfile;
136 section.the_bfd_section = asect;
137 section.ovly_mapped = 0;
138 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
139 objfile->sections_end
140 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
141 }
142
143 /* Builds a section table for OBJFILE.
144 Returns 0 if OK, 1 on error (in which case bfd_error contains the
145 error).
146
147 Note that while we are building the table, which goes into the
148 psymbol obstack, we hijack the sections_end pointer to instead hold
149 a count of the number of sections. When bfd_map_over_sections
150 returns, this count is used to compute the pointer to the end of
151 the sections table, which then overwrites the count.
152
153 Also note that the OFFSET and OVLY_MAPPED in each table entry
154 are initialized to zero.
155
156 Also note that if anything else writes to the psymbol obstack while
157 we are building the table, we're pretty much hosed. */
158
159 int
160 build_objfile_section_table (struct objfile *objfile)
161 {
162 /* objfile->sections can be already set when reading a mapped symbol
163 file. I believe that we do need to rebuild the section table in
164 this case (we rebuild other things derived from the bfd), but we
165 can't free the old one (it's in the objfile_obstack). So we just
166 waste some memory. */
167
168 objfile->sections_end = 0;
169 bfd_map_over_sections (objfile->obfd,
170 add_to_objfile_sections, (void *) objfile);
171 objfile->sections = obstack_finish (&objfile->objfile_obstack);
172 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
173 return (0);
174 }
175
176 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
177 allocate a new objfile struct, fill it in as best we can, link it
178 into the list of all known objfiles, and return a pointer to the
179 new objfile struct.
180
181 The FLAGS word contains various bits (OBJF_*) that can be taken as
182 requests for specific operations. Other bits like OBJF_SHARED are
183 simply copied through to the new objfile flags member. */
184
185 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
186 by jv-lang.c, to create an artificial objfile used to hold
187 information about dynamically-loaded Java classes. Unfortunately,
188 that branch of this function doesn't get tested very frequently, so
189 it's prone to breakage. (E.g. at one time the name was set to NULL
190 in that situation, which broke a loop over all names in the dynamic
191 library loader.) If you change this function, please try to leave
192 things in a consistent state even if abfd is NULL. */
193
194 struct objfile *
195 allocate_objfile (bfd *abfd, int flags)
196 {
197 struct objfile *objfile;
198
199 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
200 objfile->psymbol_cache = bcache_xmalloc ();
201 objfile->macro_cache = bcache_xmalloc ();
202 objfile->filename_cache = bcache_xmalloc ();
203 /* We could use obstack_specify_allocation here instead, but
204 gdb_obstack.h specifies the alloc/dealloc functions. */
205 obstack_init (&objfile->objfile_obstack);
206 terminate_minimal_symbol_table (objfile);
207
208 objfile_alloc_data (objfile);
209
210 /* Update the per-objfile information that comes from the bfd, ensuring
211 that any data that is reference is saved in the per-objfile data
212 region. */
213
214 objfile->obfd = gdb_bfd_ref (abfd);
215 if (objfile->name != NULL)
216 {
217 xfree (objfile->name);
218 }
219 if (abfd != NULL)
220 {
221 /* Look up the gdbarch associated with the BFD. */
222 objfile->gdbarch = gdbarch_from_bfd (abfd);
223
224 objfile->name = xstrdup (bfd_get_filename (abfd));
225 objfile->mtime = bfd_get_mtime (abfd);
226
227 /* Build section table. */
228
229 if (build_objfile_section_table (objfile))
230 {
231 error (_("Can't find the file sections in `%s': %s"),
232 objfile->name, bfd_errmsg (bfd_get_error ()));
233 }
234 }
235 else
236 {
237 objfile->name = xstrdup ("<<anonymous objfile>>");
238 }
239
240 objfile->pspace = current_program_space;
241
242 /* Initialize the section indexes for this objfile, so that we can
243 later detect if they are used w/o being properly assigned to. */
244
245 objfile->sect_index_text = -1;
246 objfile->sect_index_data = -1;
247 objfile->sect_index_bss = -1;
248 objfile->sect_index_rodata = -1;
249
250 /* We don't yet have a C++-specific namespace symtab. */
251
252 objfile->cp_namespace_symtab = NULL;
253
254 /* Add this file onto the tail of the linked list of other such files. */
255
256 objfile->next = NULL;
257 if (object_files == NULL)
258 object_files = objfile;
259 else
260 {
261 struct objfile *last_one;
262
263 for (last_one = object_files;
264 last_one->next;
265 last_one = last_one->next);
266 last_one->next = objfile;
267 }
268
269 /* Save passed in flag bits. */
270 objfile->flags |= flags;
271
272 /* Rebuild section map next time we need it. */
273 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
274
275 return objfile;
276 }
277
278 /* Retrieve the gdbarch associated with OBJFILE. */
279 struct gdbarch *
280 get_objfile_arch (struct objfile *objfile)
281 {
282 return objfile->gdbarch;
283 }
284
285 /* Initialize entry point information for this objfile. */
286
287 void
288 init_entry_point_info (struct objfile *objfile)
289 {
290 /* Save startup file's range of PC addresses to help blockframe.c
291 decide where the bottom of the stack is. */
292
293 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
294 {
295 /* Executable file -- record its entry point so we'll recognize
296 the startup file because it contains the entry point. */
297 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
298 objfile->ei.entry_point_p = 1;
299 }
300 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
301 && bfd_get_start_address (objfile->obfd) != 0)
302 {
303 /* Some shared libraries may have entry points set and be
304 runnable. There's no clear way to indicate this, so just check
305 for values other than zero. */
306 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
307 objfile->ei.entry_point_p = 1;
308 }
309 else
310 {
311 /* Examination of non-executable.o files. Short-circuit this stuff. */
312 objfile->ei.entry_point_p = 0;
313 }
314 }
315
316 /* If there is a valid and known entry point, function fills *ENTRY_P with it
317 and returns non-zero; otherwise it returns zero. */
318
319 int
320 entry_point_address_query (CORE_ADDR *entry_p)
321 {
322 struct gdbarch *gdbarch;
323 CORE_ADDR entry_point;
324
325 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
326 return 0;
327
328 gdbarch = get_objfile_arch (symfile_objfile);
329
330 entry_point = symfile_objfile->ei.entry_point;
331
332 /* Make certain that the address points at real code, and not a
333 function descriptor. */
334 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
335 &current_target);
336
337 /* Remove any ISA markers, so that this matches entries in the
338 symbol table. */
339 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
340
341 *entry_p = entry_point;
342 return 1;
343 }
344
345 /* Get current entry point address. Call error if it is not known. */
346
347 CORE_ADDR
348 entry_point_address (void)
349 {
350 CORE_ADDR retval;
351
352 if (!entry_point_address_query (&retval))
353 error (_("Entry point address is not known."));
354
355 return retval;
356 }
357
358 /* Create the terminating entry of OBJFILE's minimal symbol table.
359 If OBJFILE->msymbols is zero, allocate a single entry from
360 OBJFILE->objfile_obstack; otherwise, just initialize
361 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
362 void
363 terminate_minimal_symbol_table (struct objfile *objfile)
364 {
365 if (! objfile->msymbols)
366 objfile->msymbols = ((struct minimal_symbol *)
367 obstack_alloc (&objfile->objfile_obstack,
368 sizeof (objfile->msymbols[0])));
369
370 {
371 struct minimal_symbol *m
372 = &objfile->msymbols[objfile->minimal_symbol_count];
373
374 memset (m, 0, sizeof (*m));
375 /* Don't rely on these enumeration values being 0's. */
376 MSYMBOL_TYPE (m) = mst_unknown;
377 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
378 }
379 }
380
381 /* Iterator on PARENT and every separate debug objfile of PARENT.
382 The usage pattern is:
383 for (objfile = parent;
384 objfile;
385 objfile = objfile_separate_debug_iterate (parent, objfile))
386 ...
387 */
388
389 struct objfile *
390 objfile_separate_debug_iterate (const struct objfile *parent,
391 const struct objfile *objfile)
392 {
393 struct objfile *res;
394
395 res = objfile->separate_debug_objfile;
396 if (res)
397 return res;
398
399 res = objfile->separate_debug_objfile_link;
400 if (res)
401 return res;
402
403 /* Common case where there is no separate debug objfile. */
404 if (objfile == parent)
405 return NULL;
406
407 for (res = objfile->separate_debug_objfile_backlink;
408 res != parent;
409 res = res->separate_debug_objfile_backlink)
410 {
411 gdb_assert (res != NULL);
412 if (res->separate_debug_objfile_link)
413 return res->separate_debug_objfile_link;
414 }
415 return NULL;
416 }
417
418 /* Put one object file before a specified on in the global list.
419 This can be used to make sure an object file is destroyed before
420 another when using ALL_OBJFILES_SAFE to free all objfiles. */
421 void
422 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
423 {
424 struct objfile **objp;
425
426 unlink_objfile (objfile);
427
428 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
429 {
430 if (*objp == before_this)
431 {
432 objfile->next = *objp;
433 *objp = objfile;
434 return;
435 }
436 }
437
438 internal_error (__FILE__, __LINE__,
439 _("put_objfile_before: before objfile not in list"));
440 }
441
442 /* Put OBJFILE at the front of the list. */
443
444 void
445 objfile_to_front (struct objfile *objfile)
446 {
447 struct objfile **objp;
448 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
449 {
450 if (*objp == objfile)
451 {
452 /* Unhook it from where it is. */
453 *objp = objfile->next;
454 /* Put it in the front. */
455 objfile->next = object_files;
456 object_files = objfile;
457 break;
458 }
459 }
460 }
461
462 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
463 list.
464
465 It is not a bug, or error, to call this function if OBJFILE is not known
466 to be in the current list. This is done in the case of mapped objfiles,
467 for example, just to ensure that the mapped objfile doesn't appear twice
468 in the list. Since the list is threaded, linking in a mapped objfile
469 twice would create a circular list.
470
471 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
472 unlinking it, just to ensure that we have completely severed any linkages
473 between the OBJFILE and the list. */
474
475 void
476 unlink_objfile (struct objfile *objfile)
477 {
478 struct objfile **objpp;
479
480 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
481 {
482 if (*objpp == objfile)
483 {
484 *objpp = (*objpp)->next;
485 objfile->next = NULL;
486 return;
487 }
488 }
489
490 internal_error (__FILE__, __LINE__,
491 _("unlink_objfile: objfile already unlinked"));
492 }
493
494 /* Add OBJFILE as a separate debug objfile of PARENT. */
495
496 void
497 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
498 {
499 gdb_assert (objfile && parent);
500
501 /* Must not be already in a list. */
502 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
503 gdb_assert (objfile->separate_debug_objfile_link == NULL);
504
505 objfile->separate_debug_objfile_backlink = parent;
506 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
507 parent->separate_debug_objfile = objfile;
508
509 /* Put the separate debug object before the normal one, this is so that
510 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
511 put_objfile_before (objfile, parent);
512 }
513
514 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
515 itself. */
516
517 void
518 free_objfile_separate_debug (struct objfile *objfile)
519 {
520 struct objfile *child;
521
522 for (child = objfile->separate_debug_objfile; child;)
523 {
524 struct objfile *next_child = child->separate_debug_objfile_link;
525 free_objfile (child);
526 child = next_child;
527 }
528 }
529
530 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
531 that as much as possible is allocated on the objfile_obstack
532 so that the memory can be efficiently freed.
533
534 Things which we do NOT free because they are not in malloc'd memory
535 or not in memory specific to the objfile include:
536
537 objfile -> sf
538
539 FIXME: If the objfile is using reusable symbol information (via mmalloc),
540 then we need to take into account the fact that more than one process
541 may be using the symbol information at the same time (when mmalloc is
542 extended to support cooperative locking). When more than one process
543 is using the mapped symbol info, we need to be more careful about when
544 we free objects in the reusable area. */
545
546 void
547 free_objfile (struct objfile *objfile)
548 {
549 /* Free all separate debug objfiles. */
550 free_objfile_separate_debug (objfile);
551
552 if (objfile->separate_debug_objfile_backlink)
553 {
554 /* We freed the separate debug file, make sure the base objfile
555 doesn't reference it. */
556 struct objfile *child;
557
558 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
559
560 if (child == objfile)
561 {
562 /* OBJFILE is the first child. */
563 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
564 objfile->separate_debug_objfile_link;
565 }
566 else
567 {
568 /* Find OBJFILE in the list. */
569 while (1)
570 {
571 if (child->separate_debug_objfile_link == objfile)
572 {
573 child->separate_debug_objfile_link =
574 objfile->separate_debug_objfile_link;
575 break;
576 }
577 child = child->separate_debug_objfile_link;
578 gdb_assert (child);
579 }
580 }
581 }
582
583 /* Remove any references to this objfile in the global value
584 lists. */
585 preserve_values (objfile);
586
587 /* First do any symbol file specific actions required when we are
588 finished with a particular symbol file. Note that if the objfile
589 is using reusable symbol information (via mmalloc) then each of
590 these routines is responsible for doing the correct thing, either
591 freeing things which are valid only during this particular gdb
592 execution, or leaving them to be reused during the next one. */
593
594 if (objfile->sf != NULL)
595 {
596 (*objfile->sf->sym_finish) (objfile);
597 }
598
599 /* Discard any data modules have associated with the objfile. */
600 objfile_free_data (objfile);
601
602 gdb_bfd_unref (objfile->obfd);
603
604 /* Remove it from the chain of all objfiles. */
605
606 unlink_objfile (objfile);
607
608 if (objfile == symfile_objfile)
609 symfile_objfile = NULL;
610
611 if (objfile == rt_common_objfile)
612 rt_common_objfile = NULL;
613
614 /* Before the symbol table code was redone to make it easier to
615 selectively load and remove information particular to a specific
616 linkage unit, gdb used to do these things whenever the monolithic
617 symbol table was blown away. How much still needs to be done
618 is unknown, but we play it safe for now and keep each action until
619 it is shown to be no longer needed. */
620
621 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
622 for example), so we need to call this here. */
623 clear_pc_function_cache ();
624
625 /* Clear globals which might have pointed into a removed objfile.
626 FIXME: It's not clear which of these are supposed to persist
627 between expressions and which ought to be reset each time. */
628 expression_context_block = NULL;
629 innermost_block = NULL;
630
631 /* Check to see if the current_source_symtab belongs to this objfile,
632 and if so, call clear_current_source_symtab_and_line. */
633
634 {
635 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
636 struct symtab *s;
637
638 ALL_OBJFILE_SYMTABS (objfile, s)
639 {
640 if (s == cursal.symtab)
641 clear_current_source_symtab_and_line ();
642 }
643 }
644
645 /* The last thing we do is free the objfile struct itself. */
646
647 if (objfile->name != NULL)
648 {
649 xfree (objfile->name);
650 }
651 if (objfile->global_psymbols.list)
652 xfree (objfile->global_psymbols.list);
653 if (objfile->static_psymbols.list)
654 xfree (objfile->static_psymbols.list);
655 /* Free the obstacks for non-reusable objfiles */
656 bcache_xfree (objfile->psymbol_cache);
657 bcache_xfree (objfile->macro_cache);
658 bcache_xfree (objfile->filename_cache);
659 if (objfile->demangled_names_hash)
660 htab_delete (objfile->demangled_names_hash);
661 obstack_free (&objfile->objfile_obstack, 0);
662
663 /* Rebuild section map next time we need it. */
664 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
665
666 xfree (objfile);
667 }
668
669 static void
670 do_free_objfile_cleanup (void *obj)
671 {
672 free_objfile (obj);
673 }
674
675 struct cleanup *
676 make_cleanup_free_objfile (struct objfile *obj)
677 {
678 return make_cleanup (do_free_objfile_cleanup, obj);
679 }
680
681 /* Free all the object files at once and clean up their users. */
682
683 void
684 free_all_objfiles (void)
685 {
686 struct objfile *objfile, *temp;
687
688 ALL_OBJFILES_SAFE (objfile, temp)
689 {
690 free_objfile (objfile);
691 }
692 clear_symtab_users ();
693 }
694 \f
695 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
696 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here. */
697
698 static void
699 objfile_relocate1 (struct objfile *objfile, struct section_offsets *new_offsets)
700 {
701 struct obj_section *s;
702 struct section_offsets *delta =
703 ((struct section_offsets *)
704 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
705
706 {
707 int i;
708 int something_changed = 0;
709 for (i = 0; i < objfile->num_sections; ++i)
710 {
711 delta->offsets[i] =
712 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
713 if (ANOFFSET (delta, i) != 0)
714 something_changed = 1;
715 }
716 if (!something_changed)
717 return;
718 }
719
720 /* OK, get all the symtabs. */
721 {
722 struct symtab *s;
723
724 ALL_OBJFILE_SYMTABS (objfile, s)
725 {
726 struct linetable *l;
727 struct blockvector *bv;
728 int i;
729
730 /* First the line table. */
731 l = LINETABLE (s);
732 if (l)
733 {
734 for (i = 0; i < l->nitems; ++i)
735 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
736 }
737
738 /* Don't relocate a shared blockvector more than once. */
739 if (!s->primary)
740 continue;
741
742 bv = BLOCKVECTOR (s);
743 if (BLOCKVECTOR_MAP (bv))
744 addrmap_relocate (BLOCKVECTOR_MAP (bv),
745 ANOFFSET (delta, s->block_line_section));
746
747 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
748 {
749 struct block *b;
750 struct symbol *sym;
751 struct dict_iterator iter;
752
753 b = BLOCKVECTOR_BLOCK (bv, i);
754 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
755 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
756
757 ALL_BLOCK_SYMBOLS (b, iter, sym)
758 {
759 fixup_symbol_section (sym, objfile);
760
761 /* The RS6000 code from which this was taken skipped
762 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
763 But I'm leaving out that test, on the theory that
764 they can't possibly pass the tests below. */
765 if ((SYMBOL_CLASS (sym) == LOC_LABEL
766 || SYMBOL_CLASS (sym) == LOC_STATIC)
767 && SYMBOL_SECTION (sym) >= 0)
768 {
769 SYMBOL_VALUE_ADDRESS (sym) +=
770 ANOFFSET (delta, SYMBOL_SECTION (sym));
771 }
772 }
773 }
774 }
775 }
776
777 if (objfile->psymtabs_addrmap)
778 addrmap_relocate (objfile->psymtabs_addrmap,
779 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
780
781 {
782 struct partial_symtab *p;
783
784 ALL_OBJFILE_PSYMTABS (objfile, p)
785 {
786 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
787 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
788 }
789 }
790
791 {
792 struct partial_symbol **psym;
793
794 for (psym = objfile->global_psymbols.list;
795 psym < objfile->global_psymbols.next;
796 psym++)
797 {
798 fixup_psymbol_section (*psym, objfile);
799 if (SYMBOL_SECTION (*psym) >= 0)
800 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
801 SYMBOL_SECTION (*psym));
802 }
803 for (psym = objfile->static_psymbols.list;
804 psym < objfile->static_psymbols.next;
805 psym++)
806 {
807 fixup_psymbol_section (*psym, objfile);
808 if (SYMBOL_SECTION (*psym) >= 0)
809 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
810 SYMBOL_SECTION (*psym));
811 }
812 }
813
814 {
815 struct minimal_symbol *msym;
816 ALL_OBJFILE_MSYMBOLS (objfile, msym)
817 if (SYMBOL_SECTION (msym) >= 0)
818 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
819 }
820 /* Relocating different sections by different amounts may cause the symbols
821 to be out of order. */
822 msymbols_sort (objfile);
823
824 if (objfile->ei.entry_point_p)
825 {
826 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
827 only as a fallback. */
828 struct obj_section *s;
829 s = find_pc_section (objfile->ei.entry_point);
830 if (s)
831 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
832 else
833 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
834 }
835
836 {
837 int i;
838 for (i = 0; i < objfile->num_sections; ++i)
839 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
840 }
841
842 /* Rebuild section map next time we need it. */
843 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
844
845 /* Update the table in exec_ops, used to read memory. */
846 ALL_OBJFILE_OSECTIONS (objfile, s)
847 {
848 int idx = s->the_bfd_section->index;
849
850 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
851 obj_section_addr (s));
852 }
853 }
854
855 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
856 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
857
858 The number and ordering of sections does differ between the two objfiles.
859 Only their names match. Also the file offsets will differ (objfile being
860 possibly prelinked but separate_debug_objfile is probably not prelinked) but
861 the in-memory absolute address as specified by NEW_OFFSETS must match both
862 files. */
863
864 void
865 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
866 {
867 struct objfile *debug_objfile;
868
869 objfile_relocate1 (objfile, new_offsets);
870
871 for (debug_objfile = objfile->separate_debug_objfile;
872 debug_objfile;
873 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
874 {
875 struct section_addr_info *objfile_addrs;
876 struct section_offsets *new_debug_offsets;
877 int new_debug_num_sections;
878 struct cleanup *my_cleanups;
879
880 objfile_addrs = build_section_addr_info_from_objfile (objfile);
881 my_cleanups = make_cleanup (xfree, objfile_addrs);
882
883 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
884 relative ones must be already created according to debug_objfile. */
885
886 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
887
888 gdb_assert (debug_objfile->num_sections
889 == bfd_count_sections (debug_objfile->obfd));
890 new_debug_offsets = xmalloc (SIZEOF_N_SECTION_OFFSETS
891 (debug_objfile->num_sections));
892 make_cleanup (xfree, new_debug_offsets);
893 relative_addr_info_to_section_offsets (new_debug_offsets,
894 debug_objfile->num_sections,
895 objfile_addrs);
896
897 objfile_relocate1 (debug_objfile, new_debug_offsets);
898
899 do_cleanups (my_cleanups);
900 }
901
902 /* Relocate breakpoints as necessary, after things are relocated. */
903 breakpoint_re_set ();
904 }
905 \f
906 /* Return non-zero if OBJFILE has partial symbols. */
907
908 int
909 objfile_has_partial_symbols (struct objfile *objfile)
910 {
911 return objfile->psymtabs != NULL;
912 }
913
914 /* Return non-zero if OBJFILE has full symbols. */
915
916 int
917 objfile_has_full_symbols (struct objfile *objfile)
918 {
919 return objfile->symtabs != NULL;
920 }
921
922 /* Return non-zero if OBJFILE has full or partial symbols, either directly
923 or through a separate debug file. */
924
925 int
926 objfile_has_symbols (struct objfile *objfile)
927 {
928 struct objfile *o;
929
930 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
931 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
932 return 1;
933 return 0;
934 }
935
936
937 /* Many places in gdb want to test just to see if we have any partial
938 symbols available. This function returns zero if none are currently
939 available, nonzero otherwise. */
940
941 int
942 have_partial_symbols (void)
943 {
944 struct objfile *ofp;
945
946 ALL_OBJFILES (ofp)
947 {
948 if (objfile_has_partial_symbols (ofp))
949 return 1;
950 }
951 return 0;
952 }
953
954 /* Many places in gdb want to test just to see if we have any full
955 symbols available. This function returns zero if none are currently
956 available, nonzero otherwise. */
957
958 int
959 have_full_symbols (void)
960 {
961 struct objfile *ofp;
962
963 ALL_OBJFILES (ofp)
964 {
965 if (objfile_has_full_symbols (ofp))
966 return 1;
967 }
968 return 0;
969 }
970
971
972 /* This operations deletes all objfile entries that represent solibs that
973 weren't explicitly loaded by the user, via e.g., the add-symbol-file
974 command.
975 */
976 void
977 objfile_purge_solibs (void)
978 {
979 struct objfile *objf;
980 struct objfile *temp;
981
982 ALL_OBJFILES_SAFE (objf, temp)
983 {
984 /* We assume that the solib package has been purged already, or will
985 be soon.
986 */
987 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
988 free_objfile (objf);
989 }
990 }
991
992
993 /* Many places in gdb want to test just to see if we have any minimal
994 symbols available. This function returns zero if none are currently
995 available, nonzero otherwise. */
996
997 int
998 have_minimal_symbols (void)
999 {
1000 struct objfile *ofp;
1001
1002 ALL_OBJFILES (ofp)
1003 {
1004 if (ofp->minimal_symbol_count > 0)
1005 {
1006 return 1;
1007 }
1008 }
1009 return 0;
1010 }
1011
1012 /* Qsort comparison function. */
1013
1014 static int
1015 qsort_cmp (const void *a, const void *b)
1016 {
1017 const struct obj_section *sect1 = *(const struct obj_section **) a;
1018 const struct obj_section *sect2 = *(const struct obj_section **) b;
1019 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1020 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1021
1022 if (sect1_addr < sect2_addr)
1023 return -1;
1024 else if (sect1_addr > sect2_addr)
1025 return 1;
1026 else
1027 {
1028 /* Sections are at the same address. This could happen if
1029 A) we have an objfile and a separate debuginfo.
1030 B) we are confused, and have added sections without proper relocation,
1031 or something like that. */
1032
1033 const struct objfile *const objfile1 = sect1->objfile;
1034 const struct objfile *const objfile2 = sect2->objfile;
1035
1036 if (objfile1->separate_debug_objfile == objfile2
1037 || objfile2->separate_debug_objfile == objfile1)
1038 {
1039 /* Case A. The ordering doesn't matter: separate debuginfo files
1040 will be filtered out later. */
1041
1042 return 0;
1043 }
1044
1045 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1046 triage. This section could be slow (since we iterate over all
1047 objfiles in each call to qsort_cmp), but this shouldn't happen
1048 very often (GDB is already in a confused state; one hopes this
1049 doesn't happen at all). If you discover that significant time is
1050 spent in the loops below, do 'set complaints 100' and examine the
1051 resulting complaints. */
1052
1053 if (objfile1 == objfile2)
1054 {
1055 /* Both sections came from the same objfile. We are really confused.
1056 Sort on sequence order of sections within the objfile. */
1057
1058 const struct obj_section *osect;
1059
1060 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1061 if (osect == sect1)
1062 return -1;
1063 else if (osect == sect2)
1064 return 1;
1065
1066 /* We should have found one of the sections before getting here. */
1067 gdb_assert (0);
1068 }
1069 else
1070 {
1071 /* Sort on sequence number of the objfile in the chain. */
1072
1073 const struct objfile *objfile;
1074
1075 ALL_OBJFILES (objfile)
1076 if (objfile == objfile1)
1077 return -1;
1078 else if (objfile == objfile2)
1079 return 1;
1080
1081 /* We should have found one of the objfiles before getting here. */
1082 gdb_assert (0);
1083 }
1084
1085 }
1086
1087 /* Unreachable. */
1088 gdb_assert (0);
1089 return 0;
1090 }
1091
1092 /* Select "better" obj_section to keep. We prefer the one that came from
1093 the real object, rather than the one from separate debuginfo.
1094 Most of the time the two sections are exactly identical, but with
1095 prelinking the .rel.dyn section in the real object may have different
1096 size. */
1097
1098 static struct obj_section *
1099 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1100 {
1101 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1102 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1103 || (b->objfile->separate_debug_objfile == a->objfile));
1104 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1105 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1106
1107 if (a->objfile->separate_debug_objfile != NULL)
1108 return a;
1109 return b;
1110 }
1111
1112 /* Return 1 if SECTION should be inserted into the section map.
1113 We want to insert only non-overlay and non-TLS section. */
1114
1115 static int
1116 insert_section_p (const struct bfd *abfd,
1117 const struct bfd_section *section)
1118 {
1119 const bfd_vma lma = bfd_section_lma (abfd, section);
1120
1121 if (lma != 0 && lma != bfd_section_vma (abfd, section)
1122 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1123 /* This is an overlay section. IN_MEMORY check is needed to avoid
1124 discarding sections from the "system supplied DSO" (aka vdso)
1125 on some Linux systems (e.g. Fedora 11). */
1126 return 0;
1127 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1128 /* This is a TLS section. */
1129 return 0;
1130
1131 return 1;
1132 }
1133
1134 /* Filter out overlapping sections where one section came from the real
1135 objfile, and the other from a separate debuginfo file.
1136 Return the size of table after redundant sections have been eliminated. */
1137
1138 static int
1139 filter_debuginfo_sections (struct obj_section **map, int map_size)
1140 {
1141 int i, j;
1142
1143 for (i = 0, j = 0; i < map_size - 1; i++)
1144 {
1145 struct obj_section *const sect1 = map[i];
1146 struct obj_section *const sect2 = map[i + 1];
1147 const struct objfile *const objfile1 = sect1->objfile;
1148 const struct objfile *const objfile2 = sect2->objfile;
1149 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1150 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1151
1152 if (sect1_addr == sect2_addr
1153 && (objfile1->separate_debug_objfile == objfile2
1154 || objfile2->separate_debug_objfile == objfile1))
1155 {
1156 map[j++] = preferred_obj_section (sect1, sect2);
1157 ++i;
1158 }
1159 else
1160 map[j++] = sect1;
1161 }
1162
1163 if (i < map_size)
1164 {
1165 gdb_assert (i == map_size - 1);
1166 map[j++] = map[i];
1167 }
1168
1169 /* The map should not have shrunk to less than half the original size. */
1170 gdb_assert (map_size / 2 <= j);
1171
1172 return j;
1173 }
1174
1175 /* Filter out overlapping sections, issuing a warning if any are found.
1176 Overlapping sections could really be overlay sections which we didn't
1177 classify as such in insert_section_p, or we could be dealing with a
1178 corrupt binary. */
1179
1180 static int
1181 filter_overlapping_sections (struct obj_section **map, int map_size)
1182 {
1183 int i, j;
1184
1185 for (i = 0, j = 0; i < map_size - 1; )
1186 {
1187 int k;
1188
1189 map[j++] = map[i];
1190 for (k = i + 1; k < map_size; k++)
1191 {
1192 struct obj_section *const sect1 = map[i];
1193 struct obj_section *const sect2 = map[k];
1194 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1195 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1196 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1197
1198 gdb_assert (sect1_addr <= sect2_addr);
1199
1200 if (sect1_endaddr <= sect2_addr)
1201 break;
1202 else
1203 {
1204 /* We have an overlap. Report it. */
1205
1206 struct objfile *const objf1 = sect1->objfile;
1207 struct objfile *const objf2 = sect2->objfile;
1208
1209 const struct bfd *const abfd1 = objf1->obfd;
1210 const struct bfd *const abfd2 = objf2->obfd;
1211
1212 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1213 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1214
1215 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1216
1217 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1218
1219 complaint (&symfile_complaints,
1220 _("unexpected overlap between:\n"
1221 " (A) section `%s' from `%s' [%s, %s)\n"
1222 " (B) section `%s' from `%s' [%s, %s).\n"
1223 "Will ignore section B"),
1224 bfd_section_name (abfd1, bfds1), objf1->name,
1225 paddress (gdbarch, sect1_addr),
1226 paddress (gdbarch, sect1_endaddr),
1227 bfd_section_name (abfd2, bfds2), objf2->name,
1228 paddress (gdbarch, sect2_addr),
1229 paddress (gdbarch, sect2_endaddr));
1230 }
1231 }
1232 i = k;
1233 }
1234
1235 if (i < map_size)
1236 {
1237 gdb_assert (i == map_size - 1);
1238 map[j++] = map[i];
1239 }
1240
1241 return j;
1242 }
1243
1244
1245 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1246 TLS, overlay and overlapping sections. */
1247
1248 static void
1249 update_section_map (struct program_space *pspace,
1250 struct obj_section ***pmap, int *pmap_size)
1251 {
1252 int alloc_size, map_size, i;
1253 struct obj_section *s, **map;
1254 struct objfile *objfile;
1255
1256 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1257
1258 map = *pmap;
1259 xfree (map);
1260
1261 alloc_size = 0;
1262 ALL_PSPACE_OBJFILES (pspace, objfile)
1263 ALL_OBJFILE_OSECTIONS (objfile, s)
1264 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1265 alloc_size += 1;
1266
1267 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1268 if (alloc_size == 0)
1269 {
1270 *pmap = NULL;
1271 *pmap_size = 0;
1272 return;
1273 }
1274
1275 map = xmalloc (alloc_size * sizeof (*map));
1276
1277 i = 0;
1278 ALL_PSPACE_OBJFILES (pspace, objfile)
1279 ALL_OBJFILE_OSECTIONS (objfile, s)
1280 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1281 map[i++] = s;
1282
1283 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1284 map_size = filter_debuginfo_sections(map, alloc_size);
1285 map_size = filter_overlapping_sections(map, map_size);
1286
1287 if (map_size < alloc_size)
1288 /* Some sections were eliminated. Trim excess space. */
1289 map = xrealloc (map, map_size * sizeof (*map));
1290 else
1291 gdb_assert (alloc_size == map_size);
1292
1293 *pmap = map;
1294 *pmap_size = map_size;
1295 }
1296
1297 /* Bsearch comparison function. */
1298
1299 static int
1300 bsearch_cmp (const void *key, const void *elt)
1301 {
1302 const CORE_ADDR pc = *(CORE_ADDR *) key;
1303 const struct obj_section *section = *(const struct obj_section **) elt;
1304
1305 if (pc < obj_section_addr (section))
1306 return -1;
1307 if (pc < obj_section_endaddr (section))
1308 return 0;
1309 return 1;
1310 }
1311
1312 /* Returns a section whose range includes PC or NULL if none found. */
1313
1314 struct obj_section *
1315 find_pc_section (CORE_ADDR pc)
1316 {
1317 struct objfile_pspace_info *pspace_info;
1318 struct obj_section *s, **sp;
1319
1320 /* Check for mapped overlay section first. */
1321 s = find_pc_mapped_section (pc);
1322 if (s)
1323 return s;
1324
1325 pspace_info = get_objfile_pspace_data (current_program_space);
1326 if (pspace_info->objfiles_changed_p != 0)
1327 {
1328 update_section_map (current_program_space,
1329 &pspace_info->sections,
1330 &pspace_info->num_sections);
1331
1332 /* Don't need updates to section map until objfiles are added,
1333 removed or relocated. */
1334 pspace_info->objfiles_changed_p = 0;
1335 }
1336
1337 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1338 bsearch be non-NULL. */
1339 if (pspace_info->sections == NULL)
1340 {
1341 gdb_assert (pspace_info->num_sections == 0);
1342 return NULL;
1343 }
1344
1345 sp = (struct obj_section **) bsearch (&pc,
1346 pspace_info->sections,
1347 pspace_info->num_sections,
1348 sizeof (*pspace_info->sections),
1349 bsearch_cmp);
1350 if (sp != NULL)
1351 return *sp;
1352 return NULL;
1353 }
1354
1355
1356 /* In SVR4, we recognize a trampoline by it's section name.
1357 That is, if the pc is in a section named ".plt" then we are in
1358 a trampoline. */
1359
1360 int
1361 in_plt_section (CORE_ADDR pc, char *name)
1362 {
1363 struct obj_section *s;
1364 int retval = 0;
1365
1366 s = find_pc_section (pc);
1367
1368 retval = (s != NULL
1369 && s->the_bfd_section->name != NULL
1370 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1371 return (retval);
1372 }
1373 \f
1374
1375 /* Keep a registry of per-objfile data-pointers required by other GDB
1376 modules. */
1377
1378 struct objfile_data
1379 {
1380 unsigned index;
1381 void (*save) (struct objfile *, void *);
1382 void (*free) (struct objfile *, void *);
1383 };
1384
1385 struct objfile_data_registration
1386 {
1387 struct objfile_data *data;
1388 struct objfile_data_registration *next;
1389 };
1390
1391 struct objfile_data_registry
1392 {
1393 struct objfile_data_registration *registrations;
1394 unsigned num_registrations;
1395 };
1396
1397 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1398
1399 const struct objfile_data *
1400 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1401 void (*free) (struct objfile *, void *))
1402 {
1403 struct objfile_data_registration **curr;
1404
1405 /* Append new registration. */
1406 for (curr = &objfile_data_registry.registrations;
1407 *curr != NULL; curr = &(*curr)->next);
1408
1409 *curr = XMALLOC (struct objfile_data_registration);
1410 (*curr)->next = NULL;
1411 (*curr)->data = XMALLOC (struct objfile_data);
1412 (*curr)->data->index = objfile_data_registry.num_registrations++;
1413 (*curr)->data->save = save;
1414 (*curr)->data->free = free;
1415
1416 return (*curr)->data;
1417 }
1418
1419 const struct objfile_data *
1420 register_objfile_data (void)
1421 {
1422 return register_objfile_data_with_cleanup (NULL, NULL);
1423 }
1424
1425 static void
1426 objfile_alloc_data (struct objfile *objfile)
1427 {
1428 gdb_assert (objfile->data == NULL);
1429 objfile->num_data = objfile_data_registry.num_registrations;
1430 objfile->data = XCALLOC (objfile->num_data, void *);
1431 }
1432
1433 static void
1434 objfile_free_data (struct objfile *objfile)
1435 {
1436 gdb_assert (objfile->data != NULL);
1437 clear_objfile_data (objfile);
1438 xfree (objfile->data);
1439 objfile->data = NULL;
1440 }
1441
1442 void
1443 clear_objfile_data (struct objfile *objfile)
1444 {
1445 struct objfile_data_registration *registration;
1446 int i;
1447
1448 gdb_assert (objfile->data != NULL);
1449
1450 /* Process all the save handlers. */
1451
1452 for (registration = objfile_data_registry.registrations, i = 0;
1453 i < objfile->num_data;
1454 registration = registration->next, i++)
1455 if (objfile->data[i] != NULL && registration->data->save != NULL)
1456 registration->data->save (objfile, objfile->data[i]);
1457
1458 /* Now process all the free handlers. */
1459
1460 for (registration = objfile_data_registry.registrations, i = 0;
1461 i < objfile->num_data;
1462 registration = registration->next, i++)
1463 if (objfile->data[i] != NULL && registration->data->free != NULL)
1464 registration->data->free (objfile, objfile->data[i]);
1465
1466 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1467 }
1468
1469 void
1470 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1471 void *value)
1472 {
1473 gdb_assert (data->index < objfile->num_data);
1474 objfile->data[data->index] = value;
1475 }
1476
1477 void *
1478 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1479 {
1480 gdb_assert (data->index < objfile->num_data);
1481 return objfile->data[data->index];
1482 }
1483
1484 /* Set objfiles_changed_p so section map will be rebuilt next time it
1485 is used. Called by reread_symbols. */
1486
1487 void
1488 objfiles_changed (void)
1489 {
1490 /* Rebuild section map next time we need it. */
1491 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1492 }
1493
1494 /* Add reference to ABFD. Returns ABFD. */
1495 struct bfd *
1496 gdb_bfd_ref (struct bfd *abfd)
1497 {
1498 int *p_refcount = bfd_usrdata (abfd);
1499
1500 if (p_refcount != NULL)
1501 {
1502 *p_refcount += 1;
1503 return abfd;
1504 }
1505
1506 p_refcount = xmalloc (sizeof (*p_refcount));
1507 *p_refcount = 1;
1508 bfd_usrdata (abfd) = p_refcount;
1509
1510 return abfd;
1511 }
1512
1513 /* Unreference and possibly close ABFD. */
1514 void
1515 gdb_bfd_unref (struct bfd *abfd)
1516 {
1517 int *p_refcount;
1518 char *name;
1519
1520 if (abfd == NULL)
1521 return;
1522
1523 p_refcount = bfd_usrdata (abfd);
1524
1525 /* Valid range for p_refcount: a pointer to int counter, which has a
1526 value of 1 (single owner) or 2 (shared). */
1527 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1528
1529 *p_refcount -= 1;
1530 if (*p_refcount > 0)
1531 return;
1532
1533 xfree (p_refcount);
1534 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1535
1536 name = bfd_get_filename (abfd);
1537 if (!bfd_close (abfd))
1538 warning (_("cannot close \"%s\": %s"),
1539 name, bfd_errmsg (bfd_get_error ()));
1540 xfree (name);
1541 }
1542
1543 /* Provide a prototype to silence -Wmissing-prototypes. */
1544 extern initialize_file_ftype _initialize_objfiles;
1545
1546 void
1547 _initialize_objfiles (void)
1548 {
1549 objfiles_pspace_data
1550 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1551 }
This page took 0.071359 seconds and 4 git commands to generate.