* symfile.c (reread_symbols): When re-reading symbols, do all the
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30 #include "target.h"
31
32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <fcntl.h>
35 #include <obstack.h>
36
37 /* Prototypes for local functions */
38
39 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
40
41 static int
42 open_existing_mapped_file PARAMS ((char *, long, int));
43
44 static int
45 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
46
47 static CORE_ADDR
48 map_to_address PARAMS ((void));
49
50 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
51
52 /* Message to be printed before the error message, when an error occurs. */
53
54 extern char *error_pre_print;
55
56 /* Externally visible variables that are owned by this module.
57 See declarations in objfile.h for more info. */
58
59 struct objfile *object_files; /* Linked list of all objfiles */
60 struct objfile *current_objfile; /* For symbol file being read in */
61 struct objfile *symfile_objfile; /* Main symbol table loaded from */
62
63 int mapped_symbol_files; /* Try to use mapped symbol files */
64
65 /* Locate all mappable sections of a BFD file.
66 objfile_p_char is a char * to get it through
67 bfd_map_over_sections; we cast it back to its proper type. */
68
69 static void
70 add_to_objfile_sections (abfd, asect, objfile_p_char)
71 bfd *abfd;
72 sec_ptr asect;
73 PTR objfile_p_char;
74 {
75 struct objfile *objfile = (struct objfile *) objfile_p_char;
76 struct obj_section section;
77 flagword aflag;
78
79 aflag = bfd_get_section_flags (abfd, asect);
80 /* FIXME, we need to handle BSS segment here...it alloc's but doesn't load */
81 if (!(aflag & SEC_LOAD))
82 return;
83 if (0 == bfd_section_size (abfd, asect))
84 return;
85 section.offset = 0;
86 section.objfile = objfile;
87 section.sec_ptr = asect;
88 section.addr = bfd_section_vma (abfd, asect);
89 section.endaddr = section.addr + bfd_section_size (abfd, asect);
90 obstack_grow (&objfile->psymbol_obstack, &section, sizeof(section));
91 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
92 }
93
94 /* Builds a section table for OBJFILE.
95 Returns 0 if OK, 1 on error (in which case bfd_error contains the
96 error). */
97
98 int
99 build_objfile_section_table (objfile)
100 struct objfile *objfile;
101 {
102 if (objfile->sections)
103 abort();
104
105 objfile->sections_end = 0;
106 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
107 objfile->sections = (struct obj_section *)
108 obstack_finish (&objfile->psymbol_obstack);
109 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
110 return(0);
111 }
112
113 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
114 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
115 struct, fill it in as best we can, link it into the list of all known
116 objfiles, and return a pointer to the new objfile struct. */
117
118 struct objfile *
119 allocate_objfile (abfd, mapped)
120 bfd *abfd;
121 int mapped;
122 {
123 struct objfile *objfile = NULL;
124
125 mapped |= mapped_symbol_files;
126
127 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
128 {
129
130 /* If we can support mapped symbol files, try to open/reopen the
131 mapped file that corresponds to the file from which we wish to
132 read symbols. If the objfile is to be mapped, we must malloc
133 the structure itself using the mmap version, and arrange that
134 all memory allocation for the objfile uses the mmap routines.
135 If we are reusing an existing mapped file, from which we get
136 our objfile pointer, we have to make sure that we update the
137 pointers to the alloc/free functions in the obstack, in case
138 these functions have moved within the current gdb. */
139
140 int fd;
141
142 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
143 mapped);
144 if (fd >= 0)
145 {
146 CORE_ADDR mapto;
147 PTR md;
148
149 if (((mapto = map_to_address ()) == 0) ||
150 ((md = mmalloc_attach (fd, (PTR) mapto)) == NULL))
151 {
152 close (fd);
153 }
154 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
155 {
156 /* Update memory corruption handler function addresses. */
157 init_malloc (md);
158 objfile -> md = md;
159 objfile -> mmfd = fd;
160 /* Update pointers to functions to *our* copies */
161 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
162 obstack_freefun (&objfile -> psymbol_obstack, mfree);
163 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
164 obstack_freefun (&objfile -> symbol_obstack, mfree);
165 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
166 obstack_freefun (&objfile -> type_obstack, mfree);
167 /* If already in objfile list, unlink it. */
168 unlink_objfile (objfile);
169 /* Forget things specific to a particular gdb, may have changed. */
170 objfile -> sf = NULL;
171 }
172 else
173 {
174
175 /* Set up to detect internal memory corruption. MUST be
176 done before the first malloc. See comments in
177 init_malloc() and mmcheck(). */
178
179 init_malloc (md);
180
181 objfile = (struct objfile *)
182 xmmalloc (md, sizeof (struct objfile));
183 memset (objfile, 0, sizeof (struct objfile));
184 objfile -> md = md;
185 objfile -> mmfd = fd;
186 objfile -> flags |= OBJF_MAPPED;
187 mmalloc_setkey (objfile -> md, 0, objfile);
188 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
189 0, 0, xmmalloc, mfree,
190 objfile -> md);
191 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
192 0, 0, xmmalloc, mfree,
193 objfile -> md);
194 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
195 0, 0, xmmalloc, mfree,
196 objfile -> md);
197 }
198 }
199
200 if (mapped && (objfile == NULL))
201 {
202 warning ("symbol table for '%s' will not be mapped",
203 bfd_get_filename (abfd));
204 }
205 }
206 #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */
207
208 if (mapped)
209 {
210 warning ("this version of gdb does not support mapped symbol tables.");
211
212 /* Turn off the global flag so we don't try to do mapped symbol tables
213 any more, which shuts up gdb unless the user specifically gives the
214 "mapped" keyword again. */
215
216 mapped_symbol_files = 0;
217 }
218
219 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
220
221 /* If we don't support mapped symbol files, didn't ask for the file to be
222 mapped, or failed to open the mapped file for some reason, then revert
223 back to an unmapped objfile. */
224
225 if (objfile == NULL)
226 {
227 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
228 memset (objfile, 0, sizeof (struct objfile));
229 objfile -> md = NULL;
230 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
231 free);
232 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
233 free);
234 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
235 free);
236 }
237
238 /* Update the per-objfile information that comes from the bfd, ensuring
239 that any data that is reference is saved in the per-objfile data
240 region. */
241
242 objfile -> obfd = abfd;
243 if (objfile -> name != NULL)
244 {
245 mfree (objfile -> md, objfile -> name);
246 }
247 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
248 objfile -> mtime = bfd_get_mtime (abfd);
249
250 /* Build section table. */
251
252 if (build_objfile_section_table (objfile))
253 {
254 error ("Can't find the file sections in `%s': %s",
255 objfile -> name, bfd_errmsg (bfd_error));
256 }
257
258 /* Push this file onto the head of the linked list of other such files. */
259
260 objfile -> next = object_files;
261 object_files = objfile;
262
263 return (objfile);
264 }
265
266 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
267 list.
268
269 It is not a bug, or error, to call this function if OBJFILE is not known
270 to be in the current list. This is done in the case of mapped objfiles,
271 for example, just to ensure that the mapped objfile doesn't appear twice
272 in the list. Since the list is threaded, linking in a mapped objfile
273 twice would create a circular list.
274
275 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
276 unlinking it, just to ensure that we have completely severed any linkages
277 between the OBJFILE and the list. */
278
279 void
280 unlink_objfile (objfile)
281 struct objfile *objfile;
282 {
283 struct objfile** objpp;
284
285 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
286 {
287 if (*objpp == objfile)
288 {
289 *objpp = (*objpp) -> next;
290 objfile -> next = NULL;
291 break;
292 }
293 }
294 }
295
296
297 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
298 that as much as possible is allocated on the symbol_obstack and
299 psymbol_obstack, so that the memory can be efficiently freed.
300
301 Things which we do NOT free because they are not in malloc'd memory
302 or not in memory specific to the objfile include:
303
304 objfile -> sf
305
306 FIXME: If the objfile is using reusable symbol information (via mmalloc),
307 then we need to take into account the fact that more than one process
308 may be using the symbol information at the same time (when mmalloc is
309 extended to support cooperative locking). When more than one process
310 is using the mapped symbol info, we need to be more careful about when
311 we free objects in the reusable area. */
312
313 void
314 free_objfile (objfile)
315 struct objfile *objfile;
316 {
317 /* First do any symbol file specific actions required when we are
318 finished with a particular symbol file. Note that if the objfile
319 is using reusable symbol information (via mmalloc) then each of
320 these routines is responsible for doing the correct thing, either
321 freeing things which are valid only during this particular gdb
322 execution, or leaving them to be reused during the next one. */
323
324 if (objfile -> sf != NULL)
325 {
326 (*objfile -> sf -> sym_finish) (objfile);
327 }
328
329 /* We always close the bfd. */
330
331 if (objfile -> obfd != NULL)
332 {
333 char *name = bfd_get_filename (objfile->obfd);
334 bfd_close (objfile -> obfd);
335 free (name);
336 }
337
338 /* Remove it from the chain of all objfiles. */
339
340 unlink_objfile (objfile);
341
342 /* Before the symbol table code was redone to make it easier to
343 selectively load and remove information particular to a specific
344 linkage unit, gdb used to do these things whenever the monolithic
345 symbol table was blown away. How much still needs to be done
346 is unknown, but we play it safe for now and keep each action until
347 it is shown to be no longer needed. */
348
349 #if defined (CLEAR_SOLIB)
350 CLEAR_SOLIB ();
351 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
352 the to_sections for a core file might refer to those bfd's. So
353 detach any core file. */
354 {
355 struct target_ops *t = find_core_target ();
356 if (t != NULL)
357 (t->to_detach) (NULL, 0);
358 }
359 #endif
360 /* I *think* all our callers call clear_symtab_users. If so, no need
361 to call this here. */
362 clear_pc_function_cache ();
363
364 /* The last thing we do is free the objfile struct itself for the
365 non-reusable case, or detach from the mapped file for the reusable
366 case. Note that the mmalloc_detach or the mfree is the last thing
367 we can do with this objfile. */
368
369 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
370
371 if (objfile -> flags & OBJF_MAPPED)
372 {
373 /* Remember the fd so we can close it. We can't close it before
374 doing the detach, and after the detach the objfile is gone. */
375 int mmfd;
376
377 mmfd = objfile -> mmfd;
378 mmalloc_detach (objfile -> md);
379 objfile = NULL;
380 close (mmfd);
381 }
382
383 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
384
385 /* If we still have an objfile, then either we don't support reusable
386 objfiles or this one was not reusable. So free it normally. */
387
388 if (objfile != NULL)
389 {
390 if (objfile -> name != NULL)
391 {
392 mfree (objfile -> md, objfile -> name);
393 }
394 if (objfile->global_psymbols.list)
395 mfree (objfile->md, objfile->global_psymbols.list);
396 if (objfile->static_psymbols.list)
397 mfree (objfile->md, objfile->static_psymbols.list);
398 /* Free the obstacks for non-reusable objfiles */
399 obstack_free (&objfile -> psymbol_obstack, 0);
400 obstack_free (&objfile -> symbol_obstack, 0);
401 obstack_free (&objfile -> type_obstack, 0);
402 mfree (objfile -> md, objfile);
403 objfile = NULL;
404 }
405 }
406
407
408 /* Free all the object files at once and clean up their users. */
409
410 void
411 free_all_objfiles ()
412 {
413 struct objfile *objfile, *temp;
414
415 ALL_OBJFILES_SAFE (objfile, temp)
416 {
417 free_objfile (objfile);
418 }
419 clear_symtab_users ();
420 }
421 \f
422 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
423 entries in new_offsets. */
424 void
425 objfile_relocate (objfile, new_offsets)
426 struct objfile *objfile;
427 struct section_offsets *new_offsets;
428 {
429 struct section_offsets *delta = (struct section_offsets *) alloca
430 (sizeof (struct section_offsets)
431 + objfile->num_sections * sizeof (delta->offsets));
432
433 {
434 int i;
435 int something_changed = 0;
436 for (i = 0; i < objfile->num_sections; ++i)
437 {
438 ANOFFSET (delta, i) =
439 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
440 if (ANOFFSET (delta, i) != 0)
441 something_changed = 1;
442 }
443 if (!something_changed)
444 return;
445 }
446
447 /* OK, get all the symtabs. */
448 {
449 struct symtab *s;
450
451 for (s = objfile->symtabs; s; s = s->next)
452 {
453 struct linetable *l;
454 struct blockvector *bv;
455 int i;
456
457 /* First the line table. */
458 l = LINETABLE (s);
459 if (l)
460 {
461 for (i = 0; i < l->nitems; ++i)
462 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
463 }
464
465 /* Don't relocate a shared blockvector more than once. */
466 if (!s->primary)
467 continue;
468
469 bv = BLOCKVECTOR (s);
470 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
471 {
472 struct block *b;
473 int j;
474
475 b = BLOCKVECTOR_BLOCK (bv, i);
476 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
477 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
478
479 for (j = 0; j < BLOCK_NSYMS (b); ++j)
480 {
481 struct symbol *sym = BLOCK_SYM (b, j);
482 /* The RS6000 code from which this was taken skipped
483 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
484 But I'm leaving out that test, on the theory that
485 they can't possibly pass the tests below. */
486 if ((SYMBOL_CLASS (sym) == LOC_LABEL
487 || SYMBOL_CLASS (sym) == LOC_STATIC)
488 && SYMBOL_SECTION (sym) >= 0)
489 {
490 SYMBOL_VALUE_ADDRESS (sym) +=
491 ANOFFSET (delta, SYMBOL_SECTION (sym));
492 }
493 }
494 }
495 }
496 }
497
498 {
499 struct partial_symtab *p;
500
501 ALL_OBJFILE_PSYMTABS (objfile, p)
502 {
503 /* FIXME: specific to symbol readers which use gdb-stabs.h.
504 We can only get away with it since objfile_relocate is only
505 used on XCOFF, which lacks psymtabs, and for gdb-stabs.h
506 targets. */
507 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
508 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
509 }
510 }
511
512 {
513 struct partial_symbol *psym;
514
515 for (psym = objfile->global_psymbols.list;
516 psym < objfile->global_psymbols.next;
517 psym++)
518 if (SYMBOL_SECTION (psym) >= 0)
519 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
520 for (psym = objfile->static_psymbols.list;
521 psym < objfile->static_psymbols.next;
522 psym++)
523 if (SYMBOL_SECTION (psym) >= 0)
524 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
525 }
526
527 {
528 struct minimal_symbol *msym;
529 ALL_OBJFILE_MSYMBOLS (objfile, msym)
530 if (SYMBOL_SECTION (msym) >= 0)
531 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
532 }
533
534 {
535 int i;
536 for (i = 0; i < objfile->num_sections; ++i)
537 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
538 }
539 }
540 \f
541 /* Many places in gdb want to test just to see if we have any partial
542 symbols available. This function returns zero if none are currently
543 available, nonzero otherwise. */
544
545 int
546 have_partial_symbols ()
547 {
548 struct objfile *ofp;
549
550 ALL_OBJFILES (ofp)
551 {
552 if (ofp -> psymtabs != NULL)
553 {
554 return 1;
555 }
556 }
557 return 0;
558 }
559
560 /* Many places in gdb want to test just to see if we have any full
561 symbols available. This function returns zero if none are currently
562 available, nonzero otherwise. */
563
564 int
565 have_full_symbols ()
566 {
567 struct objfile *ofp;
568
569 ALL_OBJFILES (ofp)
570 {
571 if (ofp -> symtabs != NULL)
572 {
573 return 1;
574 }
575 }
576 return 0;
577 }
578
579 /* Many places in gdb want to test just to see if we have any minimal
580 symbols available. This function returns zero if none are currently
581 available, nonzero otherwise. */
582
583 int
584 have_minimal_symbols ()
585 {
586 struct objfile *ofp;
587
588 ALL_OBJFILES (ofp)
589 {
590 if (ofp -> msymbols != NULL)
591 {
592 return 1;
593 }
594 }
595 return 0;
596 }
597
598 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
599
600 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
601 of the corresponding symbol file in MTIME, try to open an existing file
602 with the name SYMSFILENAME and verify it is more recent than the base
603 file by checking it's timestamp against MTIME.
604
605 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
606
607 If SYMSFILENAME does exist, but is out of date, we check to see if the
608 user has specified creation of a mapped file. If so, we don't issue
609 any warning message because we will be creating a new mapped file anyway,
610 overwriting the old one. If not, then we issue a warning message so that
611 the user will know why we aren't using this existing mapped symbol file.
612 In either case, we return -1.
613
614 If SYMSFILENAME does exist and is not out of date, but can't be opened for
615 some reason, then prints an appropriate system error message and returns -1.
616
617 Otherwise, returns the open file descriptor. */
618
619 static int
620 open_existing_mapped_file (symsfilename, mtime, mapped)
621 char *symsfilename;
622 long mtime;
623 int mapped;
624 {
625 int fd = -1;
626 struct stat sbuf;
627
628 if (stat (symsfilename, &sbuf) == 0)
629 {
630 if (sbuf.st_mtime < mtime)
631 {
632 if (!mapped)
633 {
634 warning ("mapped symbol file `%s' is out of date, ignored it",
635 symsfilename);
636 }
637 }
638 else if ((fd = open (symsfilename, O_RDWR)) < 0)
639 {
640 if (error_pre_print)
641 {
642 printf (error_pre_print);
643 }
644 print_sys_errmsg (symsfilename, errno);
645 }
646 }
647 return (fd);
648 }
649
650 /* Look for a mapped symbol file that corresponds to FILENAME and is more
651 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
652 use a mapped symbol file for this file, so create a new one if one does
653 not currently exist.
654
655 If found, then return an open file descriptor for the file, otherwise
656 return -1.
657
658 This routine is responsible for implementing the policy that generates
659 the name of the mapped symbol file from the name of a file containing
660 symbols that gdb would like to read. Currently this policy is to append
661 ".syms" to the name of the file.
662
663 This routine is also responsible for implementing the policy that
664 determines where the mapped symbol file is found (the search path).
665 This policy is that when reading an existing mapped file, a file of
666 the correct name in the current directory takes precedence over a
667 file of the correct name in the same directory as the symbol file.
668 When creating a new mapped file, it is always created in the current
669 directory. This helps to minimize the chances of a user unknowingly
670 creating big mapped files in places like /bin and /usr/local/bin, and
671 allows a local copy to override a manually installed global copy (in
672 /bin for example). */
673
674 static int
675 open_mapped_file (filename, mtime, mapped)
676 char *filename;
677 long mtime;
678 int mapped;
679 {
680 int fd;
681 char *symsfilename;
682
683 /* First try to open an existing file in the current directory, and
684 then try the directory where the symbol file is located. */
685
686 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
687 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
688 {
689 free (symsfilename);
690 symsfilename = concat (filename, ".syms", (char *) NULL);
691 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
692 }
693
694 /* If we don't have an open file by now, then either the file does not
695 already exist, or the base file has changed since it was created. In
696 either case, if the user has specified use of a mapped file, then
697 create a new mapped file, truncating any existing one. If we can't
698 create one, print a system error message saying why we can't.
699
700 By default the file is rw for everyone, with the user's umask taking
701 care of turning off the permissions the user wants off. */
702
703 if ((fd < 0) && mapped)
704 {
705 free (symsfilename);
706 symsfilename = concat ("./", basename (filename), ".syms",
707 (char *) NULL);
708 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
709 {
710 if (error_pre_print)
711 {
712 printf (error_pre_print);
713 }
714 print_sys_errmsg (symsfilename, errno);
715 }
716 }
717
718 free (symsfilename);
719 return (fd);
720 }
721
722 /* Return the base address at which we would like the next objfile's
723 mapped data to start.
724
725 For now, we use the kludge that the configuration specifies a base
726 address to which it is safe to map the first mmalloc heap, and an
727 increment to add to this address for each successive heap. There are
728 a lot of issues to deal with here to make this work reasonably, including:
729
730 Avoid memory collisions with existing mapped address spaces
731
732 Reclaim address spaces when their mmalloc heaps are unmapped
733
734 When mmalloc heaps are shared between processes they have to be
735 mapped at the same addresses in each
736
737 Once created, a mmalloc heap that is to be mapped back in must be
738 mapped at the original address. I.E. each objfile will expect to
739 be remapped at it's original address. This becomes a problem if
740 the desired address is already in use.
741
742 etc, etc, etc.
743
744 */
745
746
747 static CORE_ADDR
748 map_to_address ()
749 {
750
751 #if defined(MMAP_BASE_ADDRESS) && defined (MMAP_INCREMENT)
752
753 static CORE_ADDR next = MMAP_BASE_ADDRESS;
754 CORE_ADDR mapto = next;
755
756 next += MMAP_INCREMENT;
757 return (mapto);
758
759 #else
760
761 return (0);
762
763 #endif
764
765 }
766
767 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
768
769 /* Returns a section whose range includes PC or NULL if none found. */
770
771 struct obj_section *
772 find_pc_section(pc)
773 CORE_ADDR pc;
774 {
775 struct obj_section *s;
776 struct objfile *objfile;
777
778 ALL_OBJFILES (objfile)
779 for (s = objfile->sections; s < objfile->sections_end; ++s)
780 if (s->addr <= pc
781 && pc < s->endaddr)
782 return(s);
783
784 return(NULL);
785 }
This page took 0.046284 seconds and 4 git commands to generate.