2012-03-08 Luis Machado <lgustavo@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2004, 2007-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "mdebugread.h"
34 #include "expression.h"
35 #include "parser-defs.h"
36
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48 #include "source.h"
49 #include "addrmap.h"
50 #include "arch-utils.h"
51 #include "exec.h"
52 #include "observer.h"
53 #include "complaints.h"
54 #include "psymtab.h"
55 #include "solist.h"
56
57 /* Prototypes for local functions */
58
59 static void objfile_alloc_data (struct objfile *objfile);
60 static void objfile_free_data (struct objfile *objfile);
61
62 /* Externally visible variables that are owned by this module.
63 See declarations in objfile.h for more info. */
64
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 struct objfile_pspace_info
68 {
69 int objfiles_changed_p;
70 struct obj_section **sections;
71 int num_sections;
72 };
73
74 /* Per-program-space data key. */
75 static const struct program_space_data *objfiles_pspace_data;
76
77 static void
78 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79 {
80 struct objfile_pspace_info *info;
81
82 info = program_space_data (pspace, objfiles_pspace_data);
83 if (info != NULL)
84 {
85 xfree (info->sections);
86 xfree (info);
87 }
88 }
89
90 /* Get the current svr4 data. If none is found yet, add it now. This
91 function always returns a valid object. */
92
93 static struct objfile_pspace_info *
94 get_objfile_pspace_data (struct program_space *pspace)
95 {
96 struct objfile_pspace_info *info;
97
98 info = program_space_data (pspace, objfiles_pspace_data);
99 if (info == NULL)
100 {
101 info = XZALLOC (struct objfile_pspace_info);
102 set_program_space_data (pspace, objfiles_pspace_data, info);
103 }
104
105 return info;
106 }
107
108 /* Called via bfd_map_over_sections to build up the section table that
109 the objfile references. The objfile contains pointers to the start
110 of the table (objfile->sections) and to the first location after
111 the end of the table (objfile->sections_end). */
112
113 static void
114 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
115 void *objfilep)
116 {
117 struct objfile *objfile = (struct objfile *) objfilep;
118 struct obj_section section;
119 flagword aflag;
120
121 aflag = bfd_get_section_flags (abfd, asect);
122 if (!(aflag & SEC_ALLOC))
123 return;
124 if (bfd_section_size (abfd, asect) == 0)
125 return;
126
127 section.objfile = objfile;
128 section.the_bfd_section = asect;
129 section.ovly_mapped = 0;
130 obstack_grow (&objfile->objfile_obstack,
131 (char *) &section, sizeof (section));
132 objfile->sections_end
133 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
134 }
135
136 /* Builds a section table for OBJFILE.
137
138 Note that while we are building the table, which goes into the
139 objfile obstack, we hijack the sections_end pointer to instead hold
140 a count of the number of sections. When bfd_map_over_sections
141 returns, this count is used to compute the pointer to the end of
142 the sections table, which then overwrites the count.
143
144 Also note that the OFFSET and OVLY_MAPPED in each table entry
145 are initialized to zero.
146
147 Also note that if anything else writes to the objfile obstack while
148 we are building the table, we're pretty much hosed. */
149
150 void
151 build_objfile_section_table (struct objfile *objfile)
152 {
153 objfile->sections_end = 0;
154 bfd_map_over_sections (objfile->obfd,
155 add_to_objfile_sections, (void *) objfile);
156 objfile->sections = obstack_finish (&objfile->objfile_obstack);
157 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
158 }
159
160 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
161 allocate a new objfile struct, fill it in as best we can, link it
162 into the list of all known objfiles, and return a pointer to the
163 new objfile struct.
164
165 The FLAGS word contains various bits (OBJF_*) that can be taken as
166 requests for specific operations. Other bits like OBJF_SHARED are
167 simply copied through to the new objfile flags member. */
168
169 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
170 by jv-lang.c, to create an artificial objfile used to hold
171 information about dynamically-loaded Java classes. Unfortunately,
172 that branch of this function doesn't get tested very frequently, so
173 it's prone to breakage. (E.g. at one time the name was set to NULL
174 in that situation, which broke a loop over all names in the dynamic
175 library loader.) If you change this function, please try to leave
176 things in a consistent state even if abfd is NULL. */
177
178 struct objfile *
179 allocate_objfile (bfd *abfd, int flags)
180 {
181 struct objfile *objfile;
182
183 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
184 objfile->psymbol_cache = psymbol_bcache_init ();
185 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
186 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
187 /* We could use obstack_specify_allocation here instead, but
188 gdb_obstack.h specifies the alloc/dealloc functions. */
189 obstack_init (&objfile->objfile_obstack);
190 terminate_minimal_symbol_table (objfile);
191
192 objfile_alloc_data (objfile);
193
194 /* Update the per-objfile information that comes from the bfd, ensuring
195 that any data that is reference is saved in the per-objfile data
196 region. */
197
198 objfile->obfd = gdb_bfd_ref (abfd);
199 if (abfd != NULL)
200 {
201 /* Look up the gdbarch associated with the BFD. */
202 objfile->gdbarch = gdbarch_from_bfd (abfd);
203
204 objfile->name = xstrdup (bfd_get_filename (abfd));
205 objfile->mtime = bfd_get_mtime (abfd);
206
207 /* Build section table. */
208 build_objfile_section_table (objfile);
209 }
210 else
211 {
212 objfile->name = xstrdup ("<<anonymous objfile>>");
213 }
214
215 objfile->pspace = current_program_space;
216
217 /* Initialize the section indexes for this objfile, so that we can
218 later detect if they are used w/o being properly assigned to. */
219
220 objfile->sect_index_text = -1;
221 objfile->sect_index_data = -1;
222 objfile->sect_index_bss = -1;
223 objfile->sect_index_rodata = -1;
224
225 /* Add this file onto the tail of the linked list of other such files. */
226
227 objfile->next = NULL;
228 if (object_files == NULL)
229 object_files = objfile;
230 else
231 {
232 struct objfile *last_one;
233
234 for (last_one = object_files;
235 last_one->next;
236 last_one = last_one->next);
237 last_one->next = objfile;
238 }
239
240 /* Save passed in flag bits. */
241 objfile->flags |= flags;
242
243 /* Rebuild section map next time we need it. */
244 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
245
246 return objfile;
247 }
248
249 /* Retrieve the gdbarch associated with OBJFILE. */
250 struct gdbarch *
251 get_objfile_arch (struct objfile *objfile)
252 {
253 return objfile->gdbarch;
254 }
255
256 /* Initialize entry point information for this objfile. */
257
258 void
259 init_entry_point_info (struct objfile *objfile)
260 {
261 /* Save startup file's range of PC addresses to help blockframe.c
262 decide where the bottom of the stack is. */
263
264 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
265 {
266 /* Executable file -- record its entry point so we'll recognize
267 the startup file because it contains the entry point. */
268 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
269 objfile->ei.entry_point_p = 1;
270 }
271 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
272 && bfd_get_start_address (objfile->obfd) != 0)
273 {
274 /* Some shared libraries may have entry points set and be
275 runnable. There's no clear way to indicate this, so just check
276 for values other than zero. */
277 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
278 objfile->ei.entry_point_p = 1;
279 }
280 else
281 {
282 /* Examination of non-executable.o files. Short-circuit this stuff. */
283 objfile->ei.entry_point_p = 0;
284 }
285 }
286
287 /* If there is a valid and known entry point, function fills *ENTRY_P with it
288 and returns non-zero; otherwise it returns zero. */
289
290 int
291 entry_point_address_query (CORE_ADDR *entry_p)
292 {
293 struct gdbarch *gdbarch;
294 CORE_ADDR entry_point;
295
296 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
297 return 0;
298
299 gdbarch = get_objfile_arch (symfile_objfile);
300
301 entry_point = symfile_objfile->ei.entry_point;
302
303 /* Make certain that the address points at real code, and not a
304 function descriptor. */
305 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
306 &current_target);
307
308 /* Remove any ISA markers, so that this matches entries in the
309 symbol table. */
310 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
311
312 *entry_p = entry_point;
313 return 1;
314 }
315
316 /* Get current entry point address. Call error if it is not known. */
317
318 CORE_ADDR
319 entry_point_address (void)
320 {
321 CORE_ADDR retval;
322
323 if (!entry_point_address_query (&retval))
324 error (_("Entry point address is not known."));
325
326 return retval;
327 }
328
329 /* Iterator on PARENT and every separate debug objfile of PARENT.
330 The usage pattern is:
331 for (objfile = parent;
332 objfile;
333 objfile = objfile_separate_debug_iterate (parent, objfile))
334 ...
335 */
336
337 struct objfile *
338 objfile_separate_debug_iterate (const struct objfile *parent,
339 const struct objfile *objfile)
340 {
341 struct objfile *res;
342
343 /* If any, return the first child. */
344 res = objfile->separate_debug_objfile;
345 if (res)
346 return res;
347
348 /* Common case where there is no separate debug objfile. */
349 if (objfile == parent)
350 return NULL;
351
352 /* Return the brother if any. Note that we don't iterate on brothers of
353 the parents. */
354 res = objfile->separate_debug_objfile_link;
355 if (res)
356 return res;
357
358 for (res = objfile->separate_debug_objfile_backlink;
359 res != parent;
360 res = res->separate_debug_objfile_backlink)
361 {
362 gdb_assert (res != NULL);
363 if (res->separate_debug_objfile_link)
364 return res->separate_debug_objfile_link;
365 }
366 return NULL;
367 }
368
369 /* Put one object file before a specified on in the global list.
370 This can be used to make sure an object file is destroyed before
371 another when using ALL_OBJFILES_SAFE to free all objfiles. */
372 void
373 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
374 {
375 struct objfile **objp;
376
377 unlink_objfile (objfile);
378
379 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
380 {
381 if (*objp == before_this)
382 {
383 objfile->next = *objp;
384 *objp = objfile;
385 return;
386 }
387 }
388
389 internal_error (__FILE__, __LINE__,
390 _("put_objfile_before: before objfile not in list"));
391 }
392
393 /* Put OBJFILE at the front of the list. */
394
395 void
396 objfile_to_front (struct objfile *objfile)
397 {
398 struct objfile **objp;
399 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
400 {
401 if (*objp == objfile)
402 {
403 /* Unhook it from where it is. */
404 *objp = objfile->next;
405 /* Put it in the front. */
406 objfile->next = object_files;
407 object_files = objfile;
408 break;
409 }
410 }
411 }
412
413 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
414 list.
415
416 It is not a bug, or error, to call this function if OBJFILE is not known
417 to be in the current list. This is done in the case of mapped objfiles,
418 for example, just to ensure that the mapped objfile doesn't appear twice
419 in the list. Since the list is threaded, linking in a mapped objfile
420 twice would create a circular list.
421
422 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
423 unlinking it, just to ensure that we have completely severed any linkages
424 between the OBJFILE and the list. */
425
426 void
427 unlink_objfile (struct objfile *objfile)
428 {
429 struct objfile **objpp;
430
431 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
432 {
433 if (*objpp == objfile)
434 {
435 *objpp = (*objpp)->next;
436 objfile->next = NULL;
437 return;
438 }
439 }
440
441 internal_error (__FILE__, __LINE__,
442 _("unlink_objfile: objfile already unlinked"));
443 }
444
445 /* Add OBJFILE as a separate debug objfile of PARENT. */
446
447 void
448 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
449 {
450 gdb_assert (objfile && parent);
451
452 /* Must not be already in a list. */
453 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
454 gdb_assert (objfile->separate_debug_objfile_link == NULL);
455
456 objfile->separate_debug_objfile_backlink = parent;
457 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
458 parent->separate_debug_objfile = objfile;
459
460 /* Put the separate debug object before the normal one, this is so that
461 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
462 put_objfile_before (objfile, parent);
463 }
464
465 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
466 itself. */
467
468 void
469 free_objfile_separate_debug (struct objfile *objfile)
470 {
471 struct objfile *child;
472
473 for (child = objfile->separate_debug_objfile; child;)
474 {
475 struct objfile *next_child = child->separate_debug_objfile_link;
476 free_objfile (child);
477 child = next_child;
478 }
479 }
480
481 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
482 that as much as possible is allocated on the objfile_obstack
483 so that the memory can be efficiently freed.
484
485 Things which we do NOT free because they are not in malloc'd memory
486 or not in memory specific to the objfile include:
487
488 objfile -> sf
489
490 FIXME: If the objfile is using reusable symbol information (via mmalloc),
491 then we need to take into account the fact that more than one process
492 may be using the symbol information at the same time (when mmalloc is
493 extended to support cooperative locking). When more than one process
494 is using the mapped symbol info, we need to be more careful about when
495 we free objects in the reusable area. */
496
497 void
498 free_objfile (struct objfile *objfile)
499 {
500 /* Free all separate debug objfiles. */
501 free_objfile_separate_debug (objfile);
502
503 if (objfile->separate_debug_objfile_backlink)
504 {
505 /* We freed the separate debug file, make sure the base objfile
506 doesn't reference it. */
507 struct objfile *child;
508
509 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
510
511 if (child == objfile)
512 {
513 /* OBJFILE is the first child. */
514 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
515 objfile->separate_debug_objfile_link;
516 }
517 else
518 {
519 /* Find OBJFILE in the list. */
520 while (1)
521 {
522 if (child->separate_debug_objfile_link == objfile)
523 {
524 child->separate_debug_objfile_link =
525 objfile->separate_debug_objfile_link;
526 break;
527 }
528 child = child->separate_debug_objfile_link;
529 gdb_assert (child);
530 }
531 }
532 }
533
534 /* Remove any references to this objfile in the global value
535 lists. */
536 preserve_values (objfile);
537
538 /* It still may reference data modules have associated with the objfile and
539 the symbol file data. */
540 forget_cached_source_info_for_objfile (objfile);
541
542 /* First do any symbol file specific actions required when we are
543 finished with a particular symbol file. Note that if the objfile
544 is using reusable symbol information (via mmalloc) then each of
545 these routines is responsible for doing the correct thing, either
546 freeing things which are valid only during this particular gdb
547 execution, or leaving them to be reused during the next one. */
548
549 if (objfile->sf != NULL)
550 {
551 (*objfile->sf->sym_finish) (objfile);
552 }
553
554 /* Discard any data modules have associated with the objfile. The function
555 still may reference objfile->obfd. */
556 objfile_free_data (objfile);
557
558 gdb_bfd_unref (objfile->obfd);
559
560 /* Remove it from the chain of all objfiles. */
561
562 unlink_objfile (objfile);
563
564 if (objfile == symfile_objfile)
565 symfile_objfile = NULL;
566
567 if (objfile == rt_common_objfile)
568 rt_common_objfile = NULL;
569
570 /* Before the symbol table code was redone to make it easier to
571 selectively load and remove information particular to a specific
572 linkage unit, gdb used to do these things whenever the monolithic
573 symbol table was blown away. How much still needs to be done
574 is unknown, but we play it safe for now and keep each action until
575 it is shown to be no longer needed. */
576
577 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
578 for example), so we need to call this here. */
579 clear_pc_function_cache ();
580
581 /* Clear globals which might have pointed into a removed objfile.
582 FIXME: It's not clear which of these are supposed to persist
583 between expressions and which ought to be reset each time. */
584 expression_context_block = NULL;
585 innermost_block = NULL;
586
587 /* Check to see if the current_source_symtab belongs to this objfile,
588 and if so, call clear_current_source_symtab_and_line. */
589
590 {
591 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
592
593 if (cursal.symtab && cursal.symtab->objfile == objfile)
594 clear_current_source_symtab_and_line ();
595 }
596
597 /* The last thing we do is free the objfile struct itself. */
598
599 xfree (objfile->name);
600 if (objfile->global_psymbols.list)
601 xfree (objfile->global_psymbols.list);
602 if (objfile->static_psymbols.list)
603 xfree (objfile->static_psymbols.list);
604 /* Free the obstacks for non-reusable objfiles. */
605 psymbol_bcache_free (objfile->psymbol_cache);
606 bcache_xfree (objfile->macro_cache);
607 bcache_xfree (objfile->filename_cache);
608 if (objfile->demangled_names_hash)
609 htab_delete (objfile->demangled_names_hash);
610 obstack_free (&objfile->objfile_obstack, 0);
611
612 /* Rebuild section map next time we need it. */
613 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
614
615 xfree (objfile);
616 }
617
618 static void
619 do_free_objfile_cleanup (void *obj)
620 {
621 free_objfile (obj);
622 }
623
624 struct cleanup *
625 make_cleanup_free_objfile (struct objfile *obj)
626 {
627 return make_cleanup (do_free_objfile_cleanup, obj);
628 }
629
630 /* Free all the object files at once and clean up their users. */
631
632 void
633 free_all_objfiles (void)
634 {
635 struct objfile *objfile, *temp;
636 struct so_list *so;
637
638 /* Any objfile referencewould become stale. */
639 for (so = master_so_list (); so; so = so->next)
640 gdb_assert (so->objfile == NULL);
641
642 ALL_OBJFILES_SAFE (objfile, temp)
643 {
644 free_objfile (objfile);
645 }
646 clear_symtab_users (0);
647 }
648 \f
649 /* A helper function for objfile_relocate1 that relocates a single
650 symbol. */
651
652 static void
653 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
654 struct section_offsets *delta)
655 {
656 fixup_symbol_section (sym, objfile);
657
658 /* The RS6000 code from which this was taken skipped
659 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
660 But I'm leaving out that test, on the theory that
661 they can't possibly pass the tests below. */
662 if ((SYMBOL_CLASS (sym) == LOC_LABEL
663 || SYMBOL_CLASS (sym) == LOC_STATIC)
664 && SYMBOL_SECTION (sym) >= 0)
665 {
666 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
667 }
668 }
669
670 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
671 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
672 Return non-zero iff any change happened. */
673
674 static int
675 objfile_relocate1 (struct objfile *objfile,
676 struct section_offsets *new_offsets)
677 {
678 struct obj_section *s;
679 struct section_offsets *delta =
680 ((struct section_offsets *)
681 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
682
683 int i;
684 int something_changed = 0;
685
686 for (i = 0; i < objfile->num_sections; ++i)
687 {
688 delta->offsets[i] =
689 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
690 if (ANOFFSET (delta, i) != 0)
691 something_changed = 1;
692 }
693 if (!something_changed)
694 return 0;
695
696 /* OK, get all the symtabs. */
697 {
698 struct symtab *s;
699
700 ALL_OBJFILE_SYMTABS (objfile, s)
701 {
702 struct linetable *l;
703 struct blockvector *bv;
704 int i;
705
706 /* First the line table. */
707 l = LINETABLE (s);
708 if (l)
709 {
710 for (i = 0; i < l->nitems; ++i)
711 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
712 }
713
714 /* Don't relocate a shared blockvector more than once. */
715 if (!s->primary)
716 continue;
717
718 bv = BLOCKVECTOR (s);
719 if (BLOCKVECTOR_MAP (bv))
720 addrmap_relocate (BLOCKVECTOR_MAP (bv),
721 ANOFFSET (delta, s->block_line_section));
722
723 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
724 {
725 struct block *b;
726 struct symbol *sym;
727 struct dict_iterator iter;
728
729 b = BLOCKVECTOR_BLOCK (bv, i);
730 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
731 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
732
733 ALL_BLOCK_SYMBOLS (b, iter, sym)
734 {
735 relocate_one_symbol (sym, objfile, delta);
736 }
737 }
738 }
739 }
740
741 /* Relocate isolated symbols. */
742 {
743 struct symbol *iter;
744
745 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
746 relocate_one_symbol (iter, objfile, delta);
747 }
748
749 if (objfile->psymtabs_addrmap)
750 addrmap_relocate (objfile->psymtabs_addrmap,
751 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
752
753 if (objfile->sf)
754 objfile->sf->qf->relocate (objfile, new_offsets, delta);
755
756 {
757 struct minimal_symbol *msym;
758
759 ALL_OBJFILE_MSYMBOLS (objfile, msym)
760 if (SYMBOL_SECTION (msym) >= 0)
761 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
762 }
763 /* Relocating different sections by different amounts may cause the symbols
764 to be out of order. */
765 msymbols_sort (objfile);
766
767 if (objfile->ei.entry_point_p)
768 {
769 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
770 only as a fallback. */
771 struct obj_section *s;
772 s = find_pc_section (objfile->ei.entry_point);
773 if (s)
774 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
775 else
776 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
777 }
778
779 {
780 int i;
781
782 for (i = 0; i < objfile->num_sections; ++i)
783 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
784 }
785
786 /* Rebuild section map next time we need it. */
787 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
788
789 /* Update the table in exec_ops, used to read memory. */
790 ALL_OBJFILE_OSECTIONS (objfile, s)
791 {
792 int idx = s->the_bfd_section->index;
793
794 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
795 obj_section_addr (s));
796 }
797
798 /* Data changed. */
799 return 1;
800 }
801
802 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
803 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
804
805 The number and ordering of sections does differ between the two objfiles.
806 Only their names match. Also the file offsets will differ (objfile being
807 possibly prelinked but separate_debug_objfile is probably not prelinked) but
808 the in-memory absolute address as specified by NEW_OFFSETS must match both
809 files. */
810
811 void
812 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
813 {
814 struct objfile *debug_objfile;
815 int changed = 0;
816
817 changed |= objfile_relocate1 (objfile, new_offsets);
818
819 for (debug_objfile = objfile->separate_debug_objfile;
820 debug_objfile;
821 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
822 {
823 struct section_addr_info *objfile_addrs;
824 struct section_offsets *new_debug_offsets;
825 struct cleanup *my_cleanups;
826
827 objfile_addrs = build_section_addr_info_from_objfile (objfile);
828 my_cleanups = make_cleanup (xfree, objfile_addrs);
829
830 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
831 relative ones must be already created according to debug_objfile. */
832
833 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
834
835 gdb_assert (debug_objfile->num_sections
836 == bfd_count_sections (debug_objfile->obfd));
837 new_debug_offsets =
838 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
839 make_cleanup (xfree, new_debug_offsets);
840 relative_addr_info_to_section_offsets (new_debug_offsets,
841 debug_objfile->num_sections,
842 objfile_addrs);
843
844 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
845
846 do_cleanups (my_cleanups);
847 }
848
849 /* Relocate breakpoints as necessary, after things are relocated. */
850 if (changed)
851 breakpoint_re_set ();
852 }
853 \f
854 /* Return non-zero if OBJFILE has partial symbols. */
855
856 int
857 objfile_has_partial_symbols (struct objfile *objfile)
858 {
859 if (!objfile->sf)
860 return 0;
861
862 /* If we have not read psymbols, but we have a function capable of reading
863 them, then that is an indication that they are in fact available. Without
864 this function the symbols may have been already read in but they also may
865 not be present in this objfile. */
866 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
867 && objfile->sf->sym_read_psymbols != NULL)
868 return 1;
869
870 return objfile->sf->qf->has_symbols (objfile);
871 }
872
873 /* Return non-zero if OBJFILE has full symbols. */
874
875 int
876 objfile_has_full_symbols (struct objfile *objfile)
877 {
878 return objfile->symtabs != NULL;
879 }
880
881 /* Return non-zero if OBJFILE has full or partial symbols, either directly
882 or through a separate debug file. */
883
884 int
885 objfile_has_symbols (struct objfile *objfile)
886 {
887 struct objfile *o;
888
889 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
890 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
891 return 1;
892 return 0;
893 }
894
895
896 /* Many places in gdb want to test just to see if we have any partial
897 symbols available. This function returns zero if none are currently
898 available, nonzero otherwise. */
899
900 int
901 have_partial_symbols (void)
902 {
903 struct objfile *ofp;
904
905 ALL_OBJFILES (ofp)
906 {
907 if (objfile_has_partial_symbols (ofp))
908 return 1;
909 }
910 return 0;
911 }
912
913 /* Many places in gdb want to test just to see if we have any full
914 symbols available. This function returns zero if none are currently
915 available, nonzero otherwise. */
916
917 int
918 have_full_symbols (void)
919 {
920 struct objfile *ofp;
921
922 ALL_OBJFILES (ofp)
923 {
924 if (objfile_has_full_symbols (ofp))
925 return 1;
926 }
927 return 0;
928 }
929
930
931 /* This operations deletes all objfile entries that represent solibs that
932 weren't explicitly loaded by the user, via e.g., the add-symbol-file
933 command. */
934
935 void
936 objfile_purge_solibs (void)
937 {
938 struct objfile *objf;
939 struct objfile *temp;
940
941 ALL_OBJFILES_SAFE (objf, temp)
942 {
943 /* We assume that the solib package has been purged already, or will
944 be soon. */
945
946 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
947 free_objfile (objf);
948 }
949 }
950
951
952 /* Many places in gdb want to test just to see if we have any minimal
953 symbols available. This function returns zero if none are currently
954 available, nonzero otherwise. */
955
956 int
957 have_minimal_symbols (void)
958 {
959 struct objfile *ofp;
960
961 ALL_OBJFILES (ofp)
962 {
963 if (ofp->minimal_symbol_count > 0)
964 {
965 return 1;
966 }
967 }
968 return 0;
969 }
970
971 /* Qsort comparison function. */
972
973 static int
974 qsort_cmp (const void *a, const void *b)
975 {
976 const struct obj_section *sect1 = *(const struct obj_section **) a;
977 const struct obj_section *sect2 = *(const struct obj_section **) b;
978 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
979 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
980
981 if (sect1_addr < sect2_addr)
982 return -1;
983 else if (sect1_addr > sect2_addr)
984 return 1;
985 else
986 {
987 /* Sections are at the same address. This could happen if
988 A) we have an objfile and a separate debuginfo.
989 B) we are confused, and have added sections without proper relocation,
990 or something like that. */
991
992 const struct objfile *const objfile1 = sect1->objfile;
993 const struct objfile *const objfile2 = sect2->objfile;
994
995 if (objfile1->separate_debug_objfile == objfile2
996 || objfile2->separate_debug_objfile == objfile1)
997 {
998 /* Case A. The ordering doesn't matter: separate debuginfo files
999 will be filtered out later. */
1000
1001 return 0;
1002 }
1003
1004 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1005 triage. This section could be slow (since we iterate over all
1006 objfiles in each call to qsort_cmp), but this shouldn't happen
1007 very often (GDB is already in a confused state; one hopes this
1008 doesn't happen at all). If you discover that significant time is
1009 spent in the loops below, do 'set complaints 100' and examine the
1010 resulting complaints. */
1011
1012 if (objfile1 == objfile2)
1013 {
1014 /* Both sections came from the same objfile. We are really confused.
1015 Sort on sequence order of sections within the objfile. */
1016
1017 const struct obj_section *osect;
1018
1019 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1020 if (osect == sect1)
1021 return -1;
1022 else if (osect == sect2)
1023 return 1;
1024
1025 /* We should have found one of the sections before getting here. */
1026 gdb_assert_not_reached ("section not found");
1027 }
1028 else
1029 {
1030 /* Sort on sequence number of the objfile in the chain. */
1031
1032 const struct objfile *objfile;
1033
1034 ALL_OBJFILES (objfile)
1035 if (objfile == objfile1)
1036 return -1;
1037 else if (objfile == objfile2)
1038 return 1;
1039
1040 /* We should have found one of the objfiles before getting here. */
1041 gdb_assert_not_reached ("objfile not found");
1042 }
1043 }
1044
1045 /* Unreachable. */
1046 gdb_assert_not_reached ("unexpected code path");
1047 return 0;
1048 }
1049
1050 /* Select "better" obj_section to keep. We prefer the one that came from
1051 the real object, rather than the one from separate debuginfo.
1052 Most of the time the two sections are exactly identical, but with
1053 prelinking the .rel.dyn section in the real object may have different
1054 size. */
1055
1056 static struct obj_section *
1057 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1058 {
1059 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1060 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1061 || (b->objfile->separate_debug_objfile == a->objfile));
1062 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1063 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1064
1065 if (a->objfile->separate_debug_objfile != NULL)
1066 return a;
1067 return b;
1068 }
1069
1070 /* Return 1 if SECTION should be inserted into the section map.
1071 We want to insert only non-overlay and non-TLS section. */
1072
1073 static int
1074 insert_section_p (const struct bfd *abfd,
1075 const struct bfd_section *section)
1076 {
1077 const bfd_vma lma = bfd_section_lma (abfd, section);
1078
1079 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1080 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1081 /* This is an overlay section. IN_MEMORY check is needed to avoid
1082 discarding sections from the "system supplied DSO" (aka vdso)
1083 on some Linux systems (e.g. Fedora 11). */
1084 return 0;
1085 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1086 /* This is a TLS section. */
1087 return 0;
1088
1089 return 1;
1090 }
1091
1092 /* Filter out overlapping sections where one section came from the real
1093 objfile, and the other from a separate debuginfo file.
1094 Return the size of table after redundant sections have been eliminated. */
1095
1096 static int
1097 filter_debuginfo_sections (struct obj_section **map, int map_size)
1098 {
1099 int i, j;
1100
1101 for (i = 0, j = 0; i < map_size - 1; i++)
1102 {
1103 struct obj_section *const sect1 = map[i];
1104 struct obj_section *const sect2 = map[i + 1];
1105 const struct objfile *const objfile1 = sect1->objfile;
1106 const struct objfile *const objfile2 = sect2->objfile;
1107 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1108 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1109
1110 if (sect1_addr == sect2_addr
1111 && (objfile1->separate_debug_objfile == objfile2
1112 || objfile2->separate_debug_objfile == objfile1))
1113 {
1114 map[j++] = preferred_obj_section (sect1, sect2);
1115 ++i;
1116 }
1117 else
1118 map[j++] = sect1;
1119 }
1120
1121 if (i < map_size)
1122 {
1123 gdb_assert (i == map_size - 1);
1124 map[j++] = map[i];
1125 }
1126
1127 /* The map should not have shrunk to less than half the original size. */
1128 gdb_assert (map_size / 2 <= j);
1129
1130 return j;
1131 }
1132
1133 /* Filter out overlapping sections, issuing a warning if any are found.
1134 Overlapping sections could really be overlay sections which we didn't
1135 classify as such in insert_section_p, or we could be dealing with a
1136 corrupt binary. */
1137
1138 static int
1139 filter_overlapping_sections (struct obj_section **map, int map_size)
1140 {
1141 int i, j;
1142
1143 for (i = 0, j = 0; i < map_size - 1; )
1144 {
1145 int k;
1146
1147 map[j++] = map[i];
1148 for (k = i + 1; k < map_size; k++)
1149 {
1150 struct obj_section *const sect1 = map[i];
1151 struct obj_section *const sect2 = map[k];
1152 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1153 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1154 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1155
1156 gdb_assert (sect1_addr <= sect2_addr);
1157
1158 if (sect1_endaddr <= sect2_addr)
1159 break;
1160 else
1161 {
1162 /* We have an overlap. Report it. */
1163
1164 struct objfile *const objf1 = sect1->objfile;
1165 struct objfile *const objf2 = sect2->objfile;
1166
1167 const struct bfd *const abfd1 = objf1->obfd;
1168 const struct bfd *const abfd2 = objf2->obfd;
1169
1170 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1171 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1172
1173 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1174
1175 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1176
1177 complaint (&symfile_complaints,
1178 _("unexpected overlap between:\n"
1179 " (A) section `%s' from `%s' [%s, %s)\n"
1180 " (B) section `%s' from `%s' [%s, %s).\n"
1181 "Will ignore section B"),
1182 bfd_section_name (abfd1, bfds1), objf1->name,
1183 paddress (gdbarch, sect1_addr),
1184 paddress (gdbarch, sect1_endaddr),
1185 bfd_section_name (abfd2, bfds2), objf2->name,
1186 paddress (gdbarch, sect2_addr),
1187 paddress (gdbarch, sect2_endaddr));
1188 }
1189 }
1190 i = k;
1191 }
1192
1193 if (i < map_size)
1194 {
1195 gdb_assert (i == map_size - 1);
1196 map[j++] = map[i];
1197 }
1198
1199 return j;
1200 }
1201
1202
1203 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1204 TLS, overlay and overlapping sections. */
1205
1206 static void
1207 update_section_map (struct program_space *pspace,
1208 struct obj_section ***pmap, int *pmap_size)
1209 {
1210 int alloc_size, map_size, i;
1211 struct obj_section *s, **map;
1212 struct objfile *objfile;
1213
1214 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1215
1216 map = *pmap;
1217 xfree (map);
1218
1219 alloc_size = 0;
1220 ALL_PSPACE_OBJFILES (pspace, objfile)
1221 ALL_OBJFILE_OSECTIONS (objfile, s)
1222 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1223 alloc_size += 1;
1224
1225 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1226 if (alloc_size == 0)
1227 {
1228 *pmap = NULL;
1229 *pmap_size = 0;
1230 return;
1231 }
1232
1233 map = xmalloc (alloc_size * sizeof (*map));
1234
1235 i = 0;
1236 ALL_PSPACE_OBJFILES (pspace, objfile)
1237 ALL_OBJFILE_OSECTIONS (objfile, s)
1238 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1239 map[i++] = s;
1240
1241 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1242 map_size = filter_debuginfo_sections(map, alloc_size);
1243 map_size = filter_overlapping_sections(map, map_size);
1244
1245 if (map_size < alloc_size)
1246 /* Some sections were eliminated. Trim excess space. */
1247 map = xrealloc (map, map_size * sizeof (*map));
1248 else
1249 gdb_assert (alloc_size == map_size);
1250
1251 *pmap = map;
1252 *pmap_size = map_size;
1253 }
1254
1255 /* Bsearch comparison function. */
1256
1257 static int
1258 bsearch_cmp (const void *key, const void *elt)
1259 {
1260 const CORE_ADDR pc = *(CORE_ADDR *) key;
1261 const struct obj_section *section = *(const struct obj_section **) elt;
1262
1263 if (pc < obj_section_addr (section))
1264 return -1;
1265 if (pc < obj_section_endaddr (section))
1266 return 0;
1267 return 1;
1268 }
1269
1270 /* Returns a section whose range includes PC or NULL if none found. */
1271
1272 struct obj_section *
1273 find_pc_section (CORE_ADDR pc)
1274 {
1275 struct objfile_pspace_info *pspace_info;
1276 struct obj_section *s, **sp;
1277
1278 /* Check for mapped overlay section first. */
1279 s = find_pc_mapped_section (pc);
1280 if (s)
1281 return s;
1282
1283 pspace_info = get_objfile_pspace_data (current_program_space);
1284 if (pspace_info->objfiles_changed_p != 0)
1285 {
1286 update_section_map (current_program_space,
1287 &pspace_info->sections,
1288 &pspace_info->num_sections);
1289
1290 /* Don't need updates to section map until objfiles are added,
1291 removed or relocated. */
1292 pspace_info->objfiles_changed_p = 0;
1293 }
1294
1295 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1296 bsearch be non-NULL. */
1297 if (pspace_info->sections == NULL)
1298 {
1299 gdb_assert (pspace_info->num_sections == 0);
1300 return NULL;
1301 }
1302
1303 sp = (struct obj_section **) bsearch (&pc,
1304 pspace_info->sections,
1305 pspace_info->num_sections,
1306 sizeof (*pspace_info->sections),
1307 bsearch_cmp);
1308 if (sp != NULL)
1309 return *sp;
1310 return NULL;
1311 }
1312
1313
1314 /* In SVR4, we recognize a trampoline by it's section name.
1315 That is, if the pc is in a section named ".plt" then we are in
1316 a trampoline. */
1317
1318 int
1319 in_plt_section (CORE_ADDR pc, char *name)
1320 {
1321 struct obj_section *s;
1322 int retval = 0;
1323
1324 s = find_pc_section (pc);
1325
1326 retval = (s != NULL
1327 && s->the_bfd_section->name != NULL
1328 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1329 return (retval);
1330 }
1331 \f
1332
1333 /* Keep a registry of per-objfile data-pointers required by other GDB
1334 modules. */
1335
1336 struct objfile_data
1337 {
1338 unsigned index;
1339 void (*save) (struct objfile *, void *);
1340 void (*free) (struct objfile *, void *);
1341 };
1342
1343 struct objfile_data_registration
1344 {
1345 struct objfile_data *data;
1346 struct objfile_data_registration *next;
1347 };
1348
1349 struct objfile_data_registry
1350 {
1351 struct objfile_data_registration *registrations;
1352 unsigned num_registrations;
1353 };
1354
1355 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1356
1357 const struct objfile_data *
1358 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1359 void (*free) (struct objfile *, void *))
1360 {
1361 struct objfile_data_registration **curr;
1362
1363 /* Append new registration. */
1364 for (curr = &objfile_data_registry.registrations;
1365 *curr != NULL; curr = &(*curr)->next);
1366
1367 *curr = XMALLOC (struct objfile_data_registration);
1368 (*curr)->next = NULL;
1369 (*curr)->data = XMALLOC (struct objfile_data);
1370 (*curr)->data->index = objfile_data_registry.num_registrations++;
1371 (*curr)->data->save = save;
1372 (*curr)->data->free = free;
1373
1374 return (*curr)->data;
1375 }
1376
1377 const struct objfile_data *
1378 register_objfile_data (void)
1379 {
1380 return register_objfile_data_with_cleanup (NULL, NULL);
1381 }
1382
1383 static void
1384 objfile_alloc_data (struct objfile *objfile)
1385 {
1386 gdb_assert (objfile->data == NULL);
1387 objfile->num_data = objfile_data_registry.num_registrations;
1388 objfile->data = XCALLOC (objfile->num_data, void *);
1389 }
1390
1391 static void
1392 objfile_free_data (struct objfile *objfile)
1393 {
1394 gdb_assert (objfile->data != NULL);
1395 clear_objfile_data (objfile);
1396 xfree (objfile->data);
1397 objfile->data = NULL;
1398 }
1399
1400 void
1401 clear_objfile_data (struct objfile *objfile)
1402 {
1403 struct objfile_data_registration *registration;
1404 int i;
1405
1406 gdb_assert (objfile->data != NULL);
1407
1408 /* Process all the save handlers. */
1409
1410 for (registration = objfile_data_registry.registrations, i = 0;
1411 i < objfile->num_data;
1412 registration = registration->next, i++)
1413 if (objfile->data[i] != NULL && registration->data->save != NULL)
1414 registration->data->save (objfile, objfile->data[i]);
1415
1416 /* Now process all the free handlers. */
1417
1418 for (registration = objfile_data_registry.registrations, i = 0;
1419 i < objfile->num_data;
1420 registration = registration->next, i++)
1421 if (objfile->data[i] != NULL && registration->data->free != NULL)
1422 registration->data->free (objfile, objfile->data[i]);
1423
1424 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1425 }
1426
1427 void
1428 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1429 void *value)
1430 {
1431 gdb_assert (data->index < objfile->num_data);
1432 objfile->data[data->index] = value;
1433 }
1434
1435 void *
1436 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1437 {
1438 gdb_assert (data->index < objfile->num_data);
1439 return objfile->data[data->index];
1440 }
1441
1442 /* Set objfiles_changed_p so section map will be rebuilt next time it
1443 is used. Called by reread_symbols. */
1444
1445 void
1446 objfiles_changed (void)
1447 {
1448 /* Rebuild section map next time we need it. */
1449 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1450 }
1451
1452 /* Close ABFD, and warn if that fails. */
1453
1454 int
1455 gdb_bfd_close_or_warn (struct bfd *abfd)
1456 {
1457 int ret;
1458 char *name = bfd_get_filename (abfd);
1459
1460 ret = bfd_close (abfd);
1461
1462 if (!ret)
1463 warning (_("cannot close \"%s\": %s"),
1464 name, bfd_errmsg (bfd_get_error ()));
1465
1466 return ret;
1467 }
1468
1469 /* Add reference to ABFD. Returns ABFD. */
1470 struct bfd *
1471 gdb_bfd_ref (struct bfd *abfd)
1472 {
1473 int *p_refcount;
1474
1475 if (abfd == NULL)
1476 return NULL;
1477
1478 p_refcount = bfd_usrdata (abfd);
1479
1480 if (p_refcount != NULL)
1481 {
1482 *p_refcount += 1;
1483 return abfd;
1484 }
1485
1486 p_refcount = xmalloc (sizeof (*p_refcount));
1487 *p_refcount = 1;
1488 bfd_usrdata (abfd) = p_refcount;
1489
1490 return abfd;
1491 }
1492
1493 /* Unreference and possibly close ABFD. */
1494 void
1495 gdb_bfd_unref (struct bfd *abfd)
1496 {
1497 int *p_refcount;
1498 char *name;
1499
1500 if (abfd == NULL)
1501 return;
1502
1503 p_refcount = bfd_usrdata (abfd);
1504
1505 /* Valid range for p_refcount: a pointer to int counter, which has a
1506 value of 1 (single owner) or 2 (shared). */
1507 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1508
1509 *p_refcount -= 1;
1510 if (*p_refcount > 0)
1511 return;
1512
1513 xfree (p_refcount);
1514 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1515
1516 name = bfd_get_filename (abfd);
1517 gdb_bfd_close_or_warn (abfd);
1518 xfree (name);
1519 }
1520
1521 /* Provide a prototype to silence -Wmissing-prototypes. */
1522 extern initialize_file_ftype _initialize_objfiles;
1523
1524 void
1525 _initialize_objfiles (void)
1526 {
1527 objfiles_pspace_data
1528 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1529 }
This page took 0.06954 seconds and 4 git commands to generate.