* breakpoint.h (enum enable): New enum shlib_disabled for
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30 #include "target.h"
31
32 #include <sys/types.h>
33 #include "gdb_stat.h"
34 #include <fcntl.h>
35 #include "obstack.h"
36 #include "gdb_string.h"
37
38 /* Prototypes for local functions */
39
40 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
41
42 static int
43 open_existing_mapped_file PARAMS ((char *, long, int));
44
45 static int
46 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
47
48 static CORE_ADDR
49 map_to_address PARAMS ((void));
50
51 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
52
53 /* Externally visible variables that are owned by this module.
54 See declarations in objfile.h for more info. */
55
56 struct objfile *object_files; /* Linked list of all objfiles */
57 struct objfile *current_objfile; /* For symbol file being read in */
58 struct objfile *symfile_objfile; /* Main symbol table loaded from */
59 struct objfile *rt_common_objfile; /* For runtime common symbols */
60
61 int mapped_symbol_files; /* Try to use mapped symbol files */
62
63 /* Locate all mappable sections of a BFD file.
64 objfile_p_char is a char * to get it through
65 bfd_map_over_sections; we cast it back to its proper type. */
66
67 static void
68 add_to_objfile_sections (abfd, asect, objfile_p_char)
69 bfd *abfd;
70 sec_ptr asect;
71 PTR objfile_p_char;
72 {
73 struct objfile *objfile = (struct objfile *) objfile_p_char;
74 struct obj_section section;
75 flagword aflag;
76
77 aflag = bfd_get_section_flags (abfd, asect);
78 if (!(aflag & SEC_ALLOC))
79 return;
80 if (0 == bfd_section_size (abfd, asect))
81 return;
82 section.offset = 0;
83 section.objfile = objfile;
84 section.the_bfd_section = asect;
85 section.addr = bfd_section_vma (abfd, asect);
86 section.endaddr = section.addr + bfd_section_size (abfd, asect);
87 obstack_grow (&objfile->psymbol_obstack, &section, sizeof(section));
88 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
89 }
90
91 /* Builds a section table for OBJFILE.
92 Returns 0 if OK, 1 on error (in which case bfd_error contains the
93 error). */
94
95 int
96 build_objfile_section_table (objfile)
97 struct objfile *objfile;
98 {
99 /* objfile->sections can be already set when reading a mapped symbol
100 file. I believe that we do need to rebuild the section table in
101 this case (we rebuild other things derived from the bfd), but we
102 can't free the old one (it's in the psymbol_obstack). So we just
103 waste some memory. */
104
105 objfile->sections_end = 0;
106 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
107 objfile->sections = (struct obj_section *)
108 obstack_finish (&objfile->psymbol_obstack);
109 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
110 return(0);
111 }
112
113 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
114 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
115 struct, fill it in as best we can, link it into the list of all known
116 objfiles, and return a pointer to the new objfile struct. */
117
118 struct objfile *
119 allocate_objfile (abfd, mapped)
120 bfd *abfd;
121 int mapped;
122 {
123 struct objfile *objfile = NULL;
124 struct objfile *last_one = NULL;
125
126 mapped |= mapped_symbol_files;
127
128 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
129 {
130
131 /* If we can support mapped symbol files, try to open/reopen the
132 mapped file that corresponds to the file from which we wish to
133 read symbols. If the objfile is to be mapped, we must malloc
134 the structure itself using the mmap version, and arrange that
135 all memory allocation for the objfile uses the mmap routines.
136 If we are reusing an existing mapped file, from which we get
137 our objfile pointer, we have to make sure that we update the
138 pointers to the alloc/free functions in the obstack, in case
139 these functions have moved within the current gdb. */
140
141 int fd;
142
143 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
144 mapped);
145 if (fd >= 0)
146 {
147 CORE_ADDR mapto;
148 PTR md;
149
150 if (((mapto = map_to_address ()) == 0) ||
151 ((md = mmalloc_attach (fd, (PTR) mapto)) == NULL))
152 {
153 close (fd);
154 }
155 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
156 {
157 /* Update memory corruption handler function addresses. */
158 init_malloc (md);
159 objfile -> md = md;
160 objfile -> mmfd = fd;
161 /* Update pointers to functions to *our* copies */
162 obstack_chunkfun (&objfile -> psymbol_cache.cache, xmmalloc);
163 obstack_freefun (&objfile -> psymbol_cache.cache, mfree);
164 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
165 obstack_freefun (&objfile -> psymbol_obstack, mfree);
166 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
167 obstack_freefun (&objfile -> symbol_obstack, mfree);
168 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
169 obstack_freefun (&objfile -> type_obstack, mfree);
170 /* If already in objfile list, unlink it. */
171 unlink_objfile (objfile);
172 /* Forget things specific to a particular gdb, may have changed. */
173 objfile -> sf = NULL;
174 }
175 else
176 {
177
178 /* Set up to detect internal memory corruption. MUST be
179 done before the first malloc. See comments in
180 init_malloc() and mmcheck(). */
181
182 init_malloc (md);
183
184 objfile = (struct objfile *)
185 xmmalloc (md, sizeof (struct objfile));
186 memset (objfile, 0, sizeof (struct objfile));
187 objfile -> md = md;
188 objfile -> mmfd = fd;
189 objfile -> flags |= OBJF_MAPPED;
190 mmalloc_setkey (objfile -> md, 0, objfile);
191 obstack_specify_allocation_with_arg (&objfile -> psymbol_cache.cache,
192 0, 0, xmmalloc, mfree,
193 objfile -> md);
194 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
195 0, 0, xmmalloc, mfree,
196 objfile -> md);
197 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
198 0, 0, xmmalloc, mfree,
199 objfile -> md);
200 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
201 0, 0, xmmalloc, mfree,
202 objfile -> md);
203 }
204 }
205
206 if (mapped && (objfile == NULL))
207 {
208 warning ("symbol table for '%s' will not be mapped",
209 bfd_get_filename (abfd));
210 }
211 }
212 #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */
213
214 if (mapped)
215 {
216 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
217
218 /* Turn off the global flag so we don't try to do mapped symbol tables
219 any more, which shuts up gdb unless the user specifically gives the
220 "mapped" keyword again. */
221
222 mapped_symbol_files = 0;
223 }
224
225 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
226
227 /* If we don't support mapped symbol files, didn't ask for the file to be
228 mapped, or failed to open the mapped file for some reason, then revert
229 back to an unmapped objfile. */
230
231 if (objfile == NULL)
232 {
233 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
234 memset (objfile, 0, sizeof (struct objfile));
235 objfile -> md = NULL;
236 obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0,
237 xmalloc, free);
238 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
239 free);
240 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
241 free);
242 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
243 free);
244 }
245
246 /* Update the per-objfile information that comes from the bfd, ensuring
247 that any data that is reference is saved in the per-objfile data
248 region. */
249
250 objfile -> obfd = abfd;
251 if (objfile -> name != NULL)
252 {
253 mfree (objfile -> md, objfile -> name);
254 }
255 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
256 objfile -> mtime = bfd_get_mtime (abfd);
257
258 /* Build section table. */
259
260 if (build_objfile_section_table (objfile))
261 {
262 error ("Can't find the file sections in `%s': %s",
263 objfile -> name, bfd_errmsg (bfd_get_error ()));
264 }
265
266 /* Add this file onto the tail of the linked list of other such files. */
267
268 objfile -> next = NULL;
269 if (object_files == NULL)
270 object_files = objfile;
271 else
272 {
273 for (last_one = object_files;
274 last_one -> next;
275 last_one = last_one -> next);
276 last_one -> next = objfile;
277 }
278 return (objfile);
279 }
280
281 /* Put OBJFILE at the front of the list. */
282
283 void
284 objfile_to_front (objfile)
285 struct objfile *objfile;
286 {
287 struct objfile **objp;
288 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
289 {
290 if (*objp == objfile)
291 {
292 /* Unhook it from where it is. */
293 *objp = objfile->next;
294 /* Put it in the front. */
295 objfile->next = object_files;
296 object_files = objfile;
297 break;
298 }
299 }
300 }
301
302 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
303 list.
304
305 It is not a bug, or error, to call this function if OBJFILE is not known
306 to be in the current list. This is done in the case of mapped objfiles,
307 for example, just to ensure that the mapped objfile doesn't appear twice
308 in the list. Since the list is threaded, linking in a mapped objfile
309 twice would create a circular list.
310
311 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
312 unlinking it, just to ensure that we have completely severed any linkages
313 between the OBJFILE and the list. */
314
315 void
316 unlink_objfile (objfile)
317 struct objfile *objfile;
318 {
319 struct objfile** objpp;
320
321 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
322 {
323 if (*objpp == objfile)
324 {
325 *objpp = (*objpp) -> next;
326 objfile -> next = NULL;
327 break;
328 }
329 }
330 }
331
332
333 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
334 that as much as possible is allocated on the symbol_obstack and
335 psymbol_obstack, so that the memory can be efficiently freed.
336
337 Things which we do NOT free because they are not in malloc'd memory
338 or not in memory specific to the objfile include:
339
340 objfile -> sf
341
342 FIXME: If the objfile is using reusable symbol information (via mmalloc),
343 then we need to take into account the fact that more than one process
344 may be using the symbol information at the same time (when mmalloc is
345 extended to support cooperative locking). When more than one process
346 is using the mapped symbol info, we need to be more careful about when
347 we free objects in the reusable area. */
348
349 void
350 free_objfile (objfile)
351 struct objfile *objfile;
352 {
353 /* First do any symbol file specific actions required when we are
354 finished with a particular symbol file. Note that if the objfile
355 is using reusable symbol information (via mmalloc) then each of
356 these routines is responsible for doing the correct thing, either
357 freeing things which are valid only during this particular gdb
358 execution, or leaving them to be reused during the next one. */
359
360 if (objfile -> sf != NULL)
361 {
362 (*objfile -> sf -> sym_finish) (objfile);
363 }
364
365 /* We always close the bfd. */
366
367 if (objfile -> obfd != NULL)
368 {
369 char *name = bfd_get_filename (objfile->obfd);
370 if (!bfd_close (objfile -> obfd))
371 warning ("cannot close \"%s\": %s",
372 name, bfd_errmsg (bfd_get_error ()));
373 free (name);
374 }
375
376 /* Remove it from the chain of all objfiles. */
377
378 unlink_objfile (objfile);
379
380 /* If we are going to free the runtime common objfile, mark it
381 as unallocated. */
382
383 if (objfile == rt_common_objfile)
384 rt_common_objfile = NULL;
385
386 /* Before the symbol table code was redone to make it easier to
387 selectively load and remove information particular to a specific
388 linkage unit, gdb used to do these things whenever the monolithic
389 symbol table was blown away. How much still needs to be done
390 is unknown, but we play it safe for now and keep each action until
391 it is shown to be no longer needed. */
392
393 #if defined (CLEAR_SOLIB)
394 CLEAR_SOLIB ();
395 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
396 the to_sections for a core file might refer to those bfd's. So
397 detach any core file. */
398 {
399 struct target_ops *t = find_core_target ();
400 if (t != NULL)
401 (t->to_detach) (NULL, 0);
402 }
403 #endif
404 /* I *think* all our callers call clear_symtab_users. If so, no need
405 to call this here. */
406 clear_pc_function_cache ();
407
408 /* The last thing we do is free the objfile struct itself for the
409 non-reusable case, or detach from the mapped file for the reusable
410 case. Note that the mmalloc_detach or the mfree is the last thing
411 we can do with this objfile. */
412
413 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
414
415 if (objfile -> flags & OBJF_MAPPED)
416 {
417 /* Remember the fd so we can close it. We can't close it before
418 doing the detach, and after the detach the objfile is gone. */
419 int mmfd;
420
421 mmfd = objfile -> mmfd;
422 mmalloc_detach (objfile -> md);
423 objfile = NULL;
424 close (mmfd);
425 }
426
427 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
428
429 /* If we still have an objfile, then either we don't support reusable
430 objfiles or this one was not reusable. So free it normally. */
431
432 if (objfile != NULL)
433 {
434 if (objfile -> name != NULL)
435 {
436 mfree (objfile -> md, objfile -> name);
437 }
438 if (objfile->global_psymbols.list)
439 mfree (objfile->md, objfile->global_psymbols.list);
440 if (objfile->static_psymbols.list)
441 mfree (objfile->md, objfile->static_psymbols.list);
442 /* Free the obstacks for non-reusable objfiles */
443 obstack_free (&objfile -> psymbol_cache.cache, 0);
444 obstack_free (&objfile -> psymbol_obstack, 0);
445 obstack_free (&objfile -> symbol_obstack, 0);
446 obstack_free (&objfile -> type_obstack, 0);
447 mfree (objfile -> md, objfile);
448 objfile = NULL;
449 }
450 }
451
452
453 /* Free all the object files at once and clean up their users. */
454
455 void
456 free_all_objfiles ()
457 {
458 struct objfile *objfile, *temp;
459
460 ALL_OBJFILES_SAFE (objfile, temp)
461 {
462 free_objfile (objfile);
463 }
464 clear_symtab_users ();
465 }
466 \f
467 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
468 entries in new_offsets. */
469 void
470 objfile_relocate (objfile, new_offsets)
471 struct objfile *objfile;
472 struct section_offsets *new_offsets;
473 {
474 struct section_offsets *delta = (struct section_offsets *) alloca
475 (sizeof (struct section_offsets)
476 + objfile->num_sections * sizeof (delta->offsets));
477
478 {
479 int i;
480 int something_changed = 0;
481 for (i = 0; i < objfile->num_sections; ++i)
482 {
483 ANOFFSET (delta, i) =
484 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
485 if (ANOFFSET (delta, i) != 0)
486 something_changed = 1;
487 }
488 if (!something_changed)
489 return;
490 }
491
492 /* OK, get all the symtabs. */
493 {
494 struct symtab *s;
495
496 ALL_OBJFILE_SYMTABS (objfile, s)
497 {
498 struct linetable *l;
499 struct blockvector *bv;
500 int i;
501
502 /* First the line table. */
503 l = LINETABLE (s);
504 if (l)
505 {
506 for (i = 0; i < l->nitems; ++i)
507 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
508 }
509
510 /* Don't relocate a shared blockvector more than once. */
511 if (!s->primary)
512 continue;
513
514 bv = BLOCKVECTOR (s);
515 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
516 {
517 struct block *b;
518 int j;
519
520 b = BLOCKVECTOR_BLOCK (bv, i);
521 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
522 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
523
524 for (j = 0; j < BLOCK_NSYMS (b); ++j)
525 {
526 struct symbol *sym = BLOCK_SYM (b, j);
527 /* The RS6000 code from which this was taken skipped
528 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
529 But I'm leaving out that test, on the theory that
530 they can't possibly pass the tests below. */
531 if ((SYMBOL_CLASS (sym) == LOC_LABEL
532 || SYMBOL_CLASS (sym) == LOC_STATIC)
533 && SYMBOL_SECTION (sym) >= 0)
534 {
535 SYMBOL_VALUE_ADDRESS (sym) +=
536 ANOFFSET (delta, SYMBOL_SECTION (sym));
537 }
538 #ifdef MIPS_EFI_SYMBOL_NAME
539 /* Relocate Extra Function Info for ecoff. */
540
541 else
542 if (SYMBOL_CLASS (sym) == LOC_CONST
543 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
544 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
545 ecoff_relocate_efi (sym, ANOFFSET (delta, s->block_line_section));
546 #endif
547 }
548 }
549 }
550 }
551
552 {
553 struct partial_symtab *p;
554
555 ALL_OBJFILE_PSYMTABS (objfile, p)
556 {
557 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
558 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
559 }
560 }
561
562 {
563 struct partial_symbol **psym;
564
565 for (psym = objfile->global_psymbols.list;
566 psym < objfile->global_psymbols.next;
567 psym++)
568 if (SYMBOL_SECTION (*psym) >= 0)
569 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, SYMBOL_SECTION (*psym));
570 for (psym = objfile->static_psymbols.list;
571 psym < objfile->static_psymbols.next;
572 psym++)
573 if (SYMBOL_SECTION (*psym) >= 0)
574 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, SYMBOL_SECTION (*psym));
575 }
576
577 {
578 struct minimal_symbol *msym;
579 ALL_OBJFILE_MSYMBOLS (objfile, msym)
580 if (SYMBOL_SECTION (msym) >= 0)
581 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
582 }
583 /* Relocating different sections by different amounts may cause the symbols
584 to be out of order. */
585 msymbols_sort (objfile);
586
587 {
588 int i;
589 for (i = 0; i < objfile->num_sections; ++i)
590 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
591 }
592
593 {
594 struct obj_section *s;
595 bfd *abfd;
596
597 abfd = objfile->obfd;
598
599 for (s = objfile->sections;
600 s < objfile->sections_end; ++s)
601 {
602 flagword flags;
603
604 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
605
606 if (flags & SEC_CODE)
607 {
608 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
609 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
610 }
611 else if (flags & (SEC_DATA | SEC_LOAD))
612 {
613 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
614 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
615 }
616 else if (flags & SEC_ALLOC)
617 {
618 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
619 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
620 }
621 }
622 }
623
624 if (objfile->ei.entry_point != ~0)
625 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
626
627 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
628 {
629 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
630 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
631 }
632
633 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
634 {
635 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
636 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
637 }
638
639 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
640 {
641 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
642 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
643 }
644 }
645 \f
646 /* Many places in gdb want to test just to see if we have any partial
647 symbols available. This function returns zero if none are currently
648 available, nonzero otherwise. */
649
650 int
651 have_partial_symbols ()
652 {
653 struct objfile *ofp;
654
655 ALL_OBJFILES (ofp)
656 {
657 if (ofp -> psymtabs != NULL)
658 {
659 return 1;
660 }
661 }
662 return 0;
663 }
664
665 /* Many places in gdb want to test just to see if we have any full
666 symbols available. This function returns zero if none are currently
667 available, nonzero otherwise. */
668
669 int
670 have_full_symbols ()
671 {
672 struct objfile *ofp;
673
674 ALL_OBJFILES (ofp)
675 {
676 if (ofp -> symtabs != NULL)
677 {
678 return 1;
679 }
680 }
681 return 0;
682 }
683
684 /* Many places in gdb want to test just to see if we have any minimal
685 symbols available. This function returns zero if none are currently
686 available, nonzero otherwise. */
687
688 int
689 have_minimal_symbols ()
690 {
691 struct objfile *ofp;
692
693 ALL_OBJFILES (ofp)
694 {
695 if (ofp -> msymbols != NULL)
696 {
697 return 1;
698 }
699 }
700 return 0;
701 }
702
703 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
704
705 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
706 of the corresponding symbol file in MTIME, try to open an existing file
707 with the name SYMSFILENAME and verify it is more recent than the base
708 file by checking it's timestamp against MTIME.
709
710 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
711
712 If SYMSFILENAME does exist, but is out of date, we check to see if the
713 user has specified creation of a mapped file. If so, we don't issue
714 any warning message because we will be creating a new mapped file anyway,
715 overwriting the old one. If not, then we issue a warning message so that
716 the user will know why we aren't using this existing mapped symbol file.
717 In either case, we return -1.
718
719 If SYMSFILENAME does exist and is not out of date, but can't be opened for
720 some reason, then prints an appropriate system error message and returns -1.
721
722 Otherwise, returns the open file descriptor. */
723
724 static int
725 open_existing_mapped_file (symsfilename, mtime, mapped)
726 char *symsfilename;
727 long mtime;
728 int mapped;
729 {
730 int fd = -1;
731 struct stat sbuf;
732
733 if (stat (symsfilename, &sbuf) == 0)
734 {
735 if (sbuf.st_mtime < mtime)
736 {
737 if (!mapped)
738 {
739 warning ("mapped symbol file `%s' is out of date, ignored it",
740 symsfilename);
741 }
742 }
743 else if ((fd = open (symsfilename, O_RDWR)) < 0)
744 {
745 if (error_pre_print)
746 {
747 printf_unfiltered (error_pre_print);
748 }
749 print_sys_errmsg (symsfilename, errno);
750 }
751 }
752 return (fd);
753 }
754
755 /* Look for a mapped symbol file that corresponds to FILENAME and is more
756 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
757 use a mapped symbol file for this file, so create a new one if one does
758 not currently exist.
759
760 If found, then return an open file descriptor for the file, otherwise
761 return -1.
762
763 This routine is responsible for implementing the policy that generates
764 the name of the mapped symbol file from the name of a file containing
765 symbols that gdb would like to read. Currently this policy is to append
766 ".syms" to the name of the file.
767
768 This routine is also responsible for implementing the policy that
769 determines where the mapped symbol file is found (the search path).
770 This policy is that when reading an existing mapped file, a file of
771 the correct name in the current directory takes precedence over a
772 file of the correct name in the same directory as the symbol file.
773 When creating a new mapped file, it is always created in the current
774 directory. This helps to minimize the chances of a user unknowingly
775 creating big mapped files in places like /bin and /usr/local/bin, and
776 allows a local copy to override a manually installed global copy (in
777 /bin for example). */
778
779 static int
780 open_mapped_file (filename, mtime, mapped)
781 char *filename;
782 long mtime;
783 int mapped;
784 {
785 int fd;
786 char *symsfilename;
787
788 /* First try to open an existing file in the current directory, and
789 then try the directory where the symbol file is located. */
790
791 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
792 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
793 {
794 free (symsfilename);
795 symsfilename = concat (filename, ".syms", (char *) NULL);
796 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
797 }
798
799 /* If we don't have an open file by now, then either the file does not
800 already exist, or the base file has changed since it was created. In
801 either case, if the user has specified use of a mapped file, then
802 create a new mapped file, truncating any existing one. If we can't
803 create one, print a system error message saying why we can't.
804
805 By default the file is rw for everyone, with the user's umask taking
806 care of turning off the permissions the user wants off. */
807
808 if ((fd < 0) && mapped)
809 {
810 free (symsfilename);
811 symsfilename = concat ("./", basename (filename), ".syms",
812 (char *) NULL);
813 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
814 {
815 if (error_pre_print)
816 {
817 printf_unfiltered (error_pre_print);
818 }
819 print_sys_errmsg (symsfilename, errno);
820 }
821 }
822
823 free (symsfilename);
824 return (fd);
825 }
826
827 /* Return the base address at which we would like the next objfile's
828 mapped data to start.
829
830 For now, we use the kludge that the configuration specifies a base
831 address to which it is safe to map the first mmalloc heap, and an
832 increment to add to this address for each successive heap. There are
833 a lot of issues to deal with here to make this work reasonably, including:
834
835 Avoid memory collisions with existing mapped address spaces
836
837 Reclaim address spaces when their mmalloc heaps are unmapped
838
839 When mmalloc heaps are shared between processes they have to be
840 mapped at the same addresses in each
841
842 Once created, a mmalloc heap that is to be mapped back in must be
843 mapped at the original address. I.E. each objfile will expect to
844 be remapped at it's original address. This becomes a problem if
845 the desired address is already in use.
846
847 etc, etc, etc.
848
849 */
850
851
852 static CORE_ADDR
853 map_to_address ()
854 {
855
856 #if defined(MMAP_BASE_ADDRESS) && defined (MMAP_INCREMENT)
857
858 static CORE_ADDR next = MMAP_BASE_ADDRESS;
859 CORE_ADDR mapto = next;
860
861 next += MMAP_INCREMENT;
862 return (mapto);
863
864 #else
865
866 warning ("need to recompile gdb with MMAP_BASE_ADDRESS and MMAP_INCREMENT defined");
867 return (0);
868
869 #endif
870
871 }
872
873 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
874
875 /* Returns a section whose range includes PC or NULL if none found. */
876
877 struct obj_section *
878 find_pc_section(pc)
879 CORE_ADDR pc;
880 {
881 struct obj_section *s;
882 struct objfile *objfile;
883
884 ALL_OBJFILES (objfile)
885 for (s = objfile->sections; s < objfile->sections_end; ++s)
886 if (s->addr <= pc
887 && pc < s->endaddr)
888 return(s);
889
890 return(NULL);
891 }
892
893 /* In SVR4, we recognize a trampoline by it's section name.
894 That is, if the pc is in a section named ".plt" then we are in
895 a trampoline. */
896
897 int
898 in_plt_section(pc, name)
899 CORE_ADDR pc;
900 char *name;
901 {
902 struct obj_section *s;
903 int retval = 0;
904
905 s = find_pc_section(pc);
906
907 retval = (s != NULL
908 && s->the_bfd_section->name != NULL
909 && STREQ (s->the_bfd_section->name, ".plt"));
910 return(retval);
911 }
This page took 0.046879 seconds and 4 git commands to generate.