*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* This file contains support routines for creating, manipulating, and
26 destroying objfile structures. */
27
28 #include "defs.h"
29 #include "bfd.h" /* Binary File Description */
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "target.h"
35 #include "bcache.h"
36
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48
49 /* Prototypes for local functions */
50
51 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
52
53 #include "mmalloc.h"
54
55 static int open_existing_mapped_file (char *, long, int);
56
57 static int open_mapped_file (char *filename, long mtime, int flags);
58
59 static void *map_to_file (int);
60
61 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
62
63 static void add_to_objfile_sections (bfd *, sec_ptr, void *);
64
65 static void objfile_alloc_data (struct objfile *objfile);
66 static void objfile_free_data (struct objfile *objfile);
67
68 /* Externally visible variables that are owned by this module.
69 See declarations in objfile.h for more info. */
70
71 struct objfile *object_files; /* Linked list of all objfiles */
72 struct objfile *current_objfile; /* For symbol file being read in */
73 struct objfile *symfile_objfile; /* Main symbol table loaded from */
74 struct objfile *rt_common_objfile; /* For runtime common symbols */
75
76 int mapped_symbol_files; /* Try to use mapped symbol files */
77
78 /* Locate all mappable sections of a BFD file.
79 objfile_p_char is a char * to get it through
80 bfd_map_over_sections; we cast it back to its proper type. */
81
82 #ifndef TARGET_KEEP_SECTION
83 #define TARGET_KEEP_SECTION(ASECT) 0
84 #endif
85
86 /* Called via bfd_map_over_sections to build up the section table that
87 the objfile references. The objfile contains pointers to the start
88 of the table (objfile->sections) and to the first location after
89 the end of the table (objfile->sections_end). */
90
91 static void
92 add_to_objfile_sections (bfd *abfd, sec_ptr asect, void *objfile_p_char)
93 {
94 struct objfile *objfile = (struct objfile *) objfile_p_char;
95 struct obj_section section;
96 flagword aflag;
97
98 aflag = bfd_get_section_flags (abfd, asect);
99
100 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
101 return;
102
103 if (0 == bfd_section_size (abfd, asect))
104 return;
105 section.offset = 0;
106 section.objfile = objfile;
107 section.the_bfd_section = asect;
108 section.ovly_mapped = 0;
109 section.addr = bfd_section_vma (abfd, asect);
110 section.endaddr = section.addr + bfd_section_size (abfd, asect);
111 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
112 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
113 }
114
115 /* Builds a section table for OBJFILE.
116 Returns 0 if OK, 1 on error (in which case bfd_error contains the
117 error).
118
119 Note that while we are building the table, which goes into the
120 psymbol obstack, we hijack the sections_end pointer to instead hold
121 a count of the number of sections. When bfd_map_over_sections
122 returns, this count is used to compute the pointer to the end of
123 the sections table, which then overwrites the count.
124
125 Also note that the OFFSET and OVLY_MAPPED in each table entry
126 are initialized to zero.
127
128 Also note that if anything else writes to the psymbol obstack while
129 we are building the table, we're pretty much hosed. */
130
131 int
132 build_objfile_section_table (struct objfile *objfile)
133 {
134 /* objfile->sections can be already set when reading a mapped symbol
135 file. I believe that we do need to rebuild the section table in
136 this case (we rebuild other things derived from the bfd), but we
137 can't free the old one (it's in the psymbol_obstack). So we just
138 waste some memory. */
139
140 objfile->sections_end = 0;
141 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
142 objfile->sections = (struct obj_section *)
143 obstack_finish (&objfile->psymbol_obstack);
144 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
145 return (0);
146 }
147
148 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
149 allocate a new objfile struct, fill it in as best we can, link it
150 into the list of all known objfiles, and return a pointer to the
151 new objfile struct.
152
153 The FLAGS word contains various bits (OBJF_*) that can be taken as
154 requests for specific operations, like trying to open a mapped
155 version of the objfile (OBJF_MAPPED). Other bits like
156 OBJF_SHARED are simply copied through to the new objfile flags
157 member. */
158
159 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
160 by jv-lang.c, to create an artificial objfile used to hold
161 information about dynamically-loaded Java classes. Unfortunately,
162 that branch of this function doesn't get tested very frequently, so
163 it's prone to breakage. (E.g. at one time the name was set to NULL
164 in that situation, which broke a loop over all names in the dynamic
165 library loader.) If you change this function, please try to leave
166 things in a consistent state even if abfd is NULL. */
167
168 struct objfile *
169 allocate_objfile (bfd *abfd, int flags)
170 {
171 struct objfile *objfile = NULL;
172 struct objfile *last_one = NULL;
173
174 if (mapped_symbol_files)
175 flags |= OBJF_MAPPED;
176
177 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
178 if (abfd != NULL)
179 {
180
181 /* If we can support mapped symbol files, try to open/reopen the
182 mapped file that corresponds to the file from which we wish to
183 read symbols. If the objfile is to be mapped, we must malloc
184 the structure itself using the mmap version, and arrange that
185 all memory allocation for the objfile uses the mmap routines.
186 If we are reusing an existing mapped file, from which we get
187 our objfile pointer, we have to make sure that we update the
188 pointers to the alloc/free functions in the obstack, in case
189 these functions have moved within the current gdb. */
190
191 int fd;
192
193 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
194 flags);
195 if (fd >= 0)
196 {
197 void *md;
198
199 if ((md = map_to_file (fd)) == NULL)
200 {
201 close (fd);
202 }
203 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
204 {
205 /* Update memory corruption handler function addresses. */
206 init_malloc (md);
207 objfile->md = md;
208 objfile->mmfd = fd;
209 /* Update pointers to functions to *our* copies */
210 if (objfile->demangled_names_hash)
211 htab_set_functions_ex
212 (objfile->demangled_names_hash, htab_hash_string,
213 (int (*) (const void *, const void *)) streq, NULL,
214 objfile->md, xmcalloc, xmfree);
215 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
216 obstack_freefun (&objfile->psymbol_cache.cache, xmfree);
217 obstack_chunkfun (&objfile->macro_cache.cache, xmmalloc);
218 obstack_freefun (&objfile->macro_cache.cache, xmfree);
219 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
220 obstack_freefun (&objfile->psymbol_obstack, xmfree);
221 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
222 obstack_freefun (&objfile->symbol_obstack, xmfree);
223 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
224 obstack_freefun (&objfile->type_obstack, xmfree);
225 /* If already in objfile list, unlink it. */
226 unlink_objfile (objfile);
227 /* Forget things specific to a particular gdb, may have changed. */
228 objfile->sf = NULL;
229 }
230 else
231 {
232
233 /* Set up to detect internal memory corruption. MUST be
234 done before the first malloc. See comments in
235 init_malloc() and mmcheck(). */
236
237 init_malloc (md);
238
239 objfile = (struct objfile *)
240 xmmalloc (md, sizeof (struct objfile));
241 memset (objfile, 0, sizeof (struct objfile));
242 objfile->md = md;
243 objfile->mmfd = fd;
244 objfile->flags |= OBJF_MAPPED;
245 mmalloc_setkey (objfile->md, 0, objfile);
246 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
247 0, 0, xmmalloc, xmfree,
248 objfile->md);
249 obstack_specify_allocation_with_arg (&objfile->macro_cache.cache,
250 0, 0, xmmalloc, xmfree,
251 objfile->md);
252 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
253 0, 0, xmmalloc, xmfree,
254 objfile->md);
255 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
256 0, 0, xmmalloc, xmfree,
257 objfile->md);
258 obstack_specify_allocation_with_arg (&objfile->type_obstack,
259 0, 0, xmmalloc, xmfree,
260 objfile->md);
261 }
262 }
263
264 if ((flags & OBJF_MAPPED) && (objfile == NULL))
265 {
266 warning ("symbol table for '%s' will not be mapped",
267 bfd_get_filename (abfd));
268 flags &= ~OBJF_MAPPED;
269 }
270 }
271 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
272
273 if (flags & OBJF_MAPPED)
274 {
275 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
276
277 /* Turn off the global flag so we don't try to do mapped symbol tables
278 any more, which shuts up gdb unless the user specifically gives the
279 "mapped" keyword again. */
280
281 mapped_symbol_files = 0;
282 flags &= ~OBJF_MAPPED;
283 }
284
285 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
286
287 /* If we don't support mapped symbol files, didn't ask for the file to be
288 mapped, or failed to open the mapped file for some reason, then revert
289 back to an unmapped objfile. */
290
291 if (objfile == NULL)
292 {
293 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
294 memset (objfile, 0, sizeof (struct objfile));
295 objfile->md = NULL;
296 objfile->psymbol_cache = bcache_xmalloc ();
297 objfile->macro_cache = bcache_xmalloc ();
298 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
299 xfree);
300 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
301 xfree);
302 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
303 xfree);
304 flags &= ~OBJF_MAPPED;
305
306 terminate_minimal_symbol_table (objfile);
307 }
308
309 objfile_alloc_data (objfile);
310
311 /* Update the per-objfile information that comes from the bfd, ensuring
312 that any data that is reference is saved in the per-objfile data
313 region. */
314
315 objfile->obfd = abfd;
316 if (objfile->name != NULL)
317 {
318 xmfree (objfile->md, objfile->name);
319 }
320 if (abfd != NULL)
321 {
322 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
323 objfile->mtime = bfd_get_mtime (abfd);
324
325 /* Build section table. */
326
327 if (build_objfile_section_table (objfile))
328 {
329 error ("Can't find the file sections in `%s': %s",
330 objfile->name, bfd_errmsg (bfd_get_error ()));
331 }
332 }
333 else
334 {
335 objfile->name = mstrsave (objfile->md, "<<anonymous objfile>>");
336 }
337
338 /* Initialize the section indexes for this objfile, so that we can
339 later detect if they are used w/o being properly assigned to. */
340
341 objfile->sect_index_text = -1;
342 objfile->sect_index_data = -1;
343 objfile->sect_index_bss = -1;
344 objfile->sect_index_rodata = -1;
345
346 /* Add this file onto the tail of the linked list of other such files. */
347
348 objfile->next = NULL;
349 if (object_files == NULL)
350 object_files = objfile;
351 else
352 {
353 for (last_one = object_files;
354 last_one->next;
355 last_one = last_one->next);
356 last_one->next = objfile;
357 }
358
359 /* Save passed in flag bits. */
360 objfile->flags |= flags;
361
362 return (objfile);
363 }
364
365
366 /* Create the terminating entry of OBJFILE's minimal symbol table.
367 If OBJFILE->msymbols is zero, allocate a single entry from
368 OBJFILE->symbol_obstack; otherwise, just initialize
369 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
370 void
371 terminate_minimal_symbol_table (struct objfile *objfile)
372 {
373 if (! objfile->msymbols)
374 objfile->msymbols = ((struct minimal_symbol *)
375 obstack_alloc (&objfile->symbol_obstack,
376 sizeof (objfile->msymbols[0])));
377
378 {
379 struct minimal_symbol *m
380 = &objfile->msymbols[objfile->minimal_symbol_count];
381
382 memset (m, 0, sizeof (*m));
383 DEPRECATED_SYMBOL_NAME (m) = NULL;
384 SYMBOL_VALUE_ADDRESS (m) = 0;
385 MSYMBOL_INFO (m) = NULL;
386 MSYMBOL_TYPE (m) = mst_unknown;
387 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
388 }
389 }
390
391
392 /* Put one object file before a specified on in the global list.
393 This can be used to make sure an object file is destroyed before
394 another when using ALL_OBJFILES_SAFE to free all objfiles. */
395 void
396 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
397 {
398 struct objfile **objp;
399
400 unlink_objfile (objfile);
401
402 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
403 {
404 if (*objp == before_this)
405 {
406 objfile->next = *objp;
407 *objp = objfile;
408 return;
409 }
410 }
411
412 internal_error (__FILE__, __LINE__,
413 "put_objfile_before: before objfile not in list");
414 }
415
416 /* Put OBJFILE at the front of the list. */
417
418 void
419 objfile_to_front (struct objfile *objfile)
420 {
421 struct objfile **objp;
422 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
423 {
424 if (*objp == objfile)
425 {
426 /* Unhook it from where it is. */
427 *objp = objfile->next;
428 /* Put it in the front. */
429 objfile->next = object_files;
430 object_files = objfile;
431 break;
432 }
433 }
434 }
435
436 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
437 list.
438
439 It is not a bug, or error, to call this function if OBJFILE is not known
440 to be in the current list. This is done in the case of mapped objfiles,
441 for example, just to ensure that the mapped objfile doesn't appear twice
442 in the list. Since the list is threaded, linking in a mapped objfile
443 twice would create a circular list.
444
445 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
446 unlinking it, just to ensure that we have completely severed any linkages
447 between the OBJFILE and the list. */
448
449 void
450 unlink_objfile (struct objfile *objfile)
451 {
452 struct objfile **objpp;
453
454 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
455 {
456 if (*objpp == objfile)
457 {
458 *objpp = (*objpp)->next;
459 objfile->next = NULL;
460 return;
461 }
462 }
463
464 internal_error (__FILE__, __LINE__,
465 "unlink_objfile: objfile already unlinked");
466 }
467
468
469 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
470 that as much as possible is allocated on the symbol_obstack and
471 psymbol_obstack, so that the memory can be efficiently freed.
472
473 Things which we do NOT free because they are not in malloc'd memory
474 or not in memory specific to the objfile include:
475
476 objfile -> sf
477
478 FIXME: If the objfile is using reusable symbol information (via mmalloc),
479 then we need to take into account the fact that more than one process
480 may be using the symbol information at the same time (when mmalloc is
481 extended to support cooperative locking). When more than one process
482 is using the mapped symbol info, we need to be more careful about when
483 we free objects in the reusable area. */
484
485 void
486 free_objfile (struct objfile *objfile)
487 {
488 if (objfile->separate_debug_objfile)
489 {
490 free_objfile (objfile->separate_debug_objfile);
491 }
492
493 if (objfile->separate_debug_objfile_backlink)
494 {
495 /* We freed the separate debug file, make sure the base objfile
496 doesn't reference it. */
497 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
498 }
499
500 /* First do any symbol file specific actions required when we are
501 finished with a particular symbol file. Note that if the objfile
502 is using reusable symbol information (via mmalloc) then each of
503 these routines is responsible for doing the correct thing, either
504 freeing things which are valid only during this particular gdb
505 execution, or leaving them to be reused during the next one. */
506
507 if (objfile->sf != NULL)
508 {
509 (*objfile->sf->sym_finish) (objfile);
510 }
511
512 /* We always close the bfd. */
513
514 if (objfile->obfd != NULL)
515 {
516 char *name = bfd_get_filename (objfile->obfd);
517 if (!bfd_close (objfile->obfd))
518 warning ("cannot close \"%s\": %s",
519 name, bfd_errmsg (bfd_get_error ()));
520 xfree (name);
521 }
522
523 /* Remove it from the chain of all objfiles. */
524
525 unlink_objfile (objfile);
526
527 /* If we are going to free the runtime common objfile, mark it
528 as unallocated. */
529
530 if (objfile == rt_common_objfile)
531 rt_common_objfile = NULL;
532
533 /* Before the symbol table code was redone to make it easier to
534 selectively load and remove information particular to a specific
535 linkage unit, gdb used to do these things whenever the monolithic
536 symbol table was blown away. How much still needs to be done
537 is unknown, but we play it safe for now and keep each action until
538 it is shown to be no longer needed. */
539
540 /* I *think* all our callers call clear_symtab_users. If so, no need
541 to call this here. */
542 clear_pc_function_cache ();
543
544 /* The last thing we do is free the objfile struct itself for the
545 non-reusable case, or detach from the mapped file for the
546 reusable case. Note that the mmalloc_detach or the xmfree() is
547 the last thing we can do with this objfile. */
548
549 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
550
551 if (objfile->flags & OBJF_MAPPED)
552 {
553 /* Remember the fd so we can close it. We can't close it before
554 doing the detach, and after the detach the objfile is gone. */
555 int mmfd;
556
557 mmfd = objfile->mmfd;
558 mmalloc_detach (objfile->md);
559 objfile = NULL;
560 close (mmfd);
561 }
562
563 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
564
565 /* If we still have an objfile, then either we don't support reusable
566 objfiles or this one was not reusable. So free it normally. */
567
568 if (objfile != NULL)
569 {
570 objfile_free_data (objfile);
571 if (objfile->name != NULL)
572 {
573 xmfree (objfile->md, objfile->name);
574 }
575 if (objfile->global_psymbols.list)
576 xmfree (objfile->md, objfile->global_psymbols.list);
577 if (objfile->static_psymbols.list)
578 xmfree (objfile->md, objfile->static_psymbols.list);
579 /* Free the obstacks for non-reusable objfiles */
580 bcache_xfree (objfile->psymbol_cache);
581 bcache_xfree (objfile->macro_cache);
582 if (objfile->demangled_names_hash)
583 htab_delete (objfile->demangled_names_hash);
584 obstack_free (&objfile->psymbol_obstack, 0);
585 obstack_free (&objfile->symbol_obstack, 0);
586 obstack_free (&objfile->type_obstack, 0);
587 xmfree (objfile->md, objfile);
588 objfile = NULL;
589 }
590 }
591
592 static void
593 do_free_objfile_cleanup (void *obj)
594 {
595 free_objfile (obj);
596 }
597
598 struct cleanup *
599 make_cleanup_free_objfile (struct objfile *obj)
600 {
601 return make_cleanup (do_free_objfile_cleanup, obj);
602 }
603
604 /* Free all the object files at once and clean up their users. */
605
606 void
607 free_all_objfiles (void)
608 {
609 struct objfile *objfile, *temp;
610
611 ALL_OBJFILES_SAFE (objfile, temp)
612 {
613 free_objfile (objfile);
614 }
615 clear_symtab_users ();
616 }
617 \f
618 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
619 entries in new_offsets. */
620 void
621 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
622 {
623 struct section_offsets *delta =
624 ((struct section_offsets *)
625 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
626
627 {
628 int i;
629 int something_changed = 0;
630 for (i = 0; i < objfile->num_sections; ++i)
631 {
632 delta->offsets[i] =
633 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
634 if (ANOFFSET (delta, i) != 0)
635 something_changed = 1;
636 }
637 if (!something_changed)
638 return;
639 }
640
641 /* OK, get all the symtabs. */
642 {
643 struct symtab *s;
644
645 ALL_OBJFILE_SYMTABS (objfile, s)
646 {
647 struct linetable *l;
648 struct blockvector *bv;
649 int i;
650
651 /* First the line table. */
652 l = LINETABLE (s);
653 if (l)
654 {
655 for (i = 0; i < l->nitems; ++i)
656 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
657 }
658
659 /* Don't relocate a shared blockvector more than once. */
660 if (!s->primary)
661 continue;
662
663 bv = BLOCKVECTOR (s);
664 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
665 {
666 struct block *b;
667 struct symbol *sym;
668 struct dict_iterator iter;
669
670 b = BLOCKVECTOR_BLOCK (bv, i);
671 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
672 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
673
674 ALL_BLOCK_SYMBOLS (b, iter, sym)
675 {
676 fixup_symbol_section (sym, objfile);
677
678 /* The RS6000 code from which this was taken skipped
679 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
680 But I'm leaving out that test, on the theory that
681 they can't possibly pass the tests below. */
682 if ((SYMBOL_CLASS (sym) == LOC_LABEL
683 || SYMBOL_CLASS (sym) == LOC_STATIC
684 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
685 && SYMBOL_SECTION (sym) >= 0)
686 {
687 SYMBOL_VALUE_ADDRESS (sym) +=
688 ANOFFSET (delta, SYMBOL_SECTION (sym));
689 }
690 #ifdef MIPS_EFI_SYMBOL_NAME
691 /* Relocate Extra Function Info for ecoff. */
692
693 else if (SYMBOL_CLASS (sym) == LOC_CONST
694 && SYMBOL_DOMAIN (sym) == LABEL_DOMAIN
695 && strcmp (DEPRECATED_SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
696 ecoff_relocate_efi (sym, ANOFFSET (delta,
697 s->block_line_section));
698 #endif
699 }
700 }
701 }
702 }
703
704 {
705 struct partial_symtab *p;
706
707 ALL_OBJFILE_PSYMTABS (objfile, p)
708 {
709 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
710 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
711 }
712 }
713
714 {
715 struct partial_symbol **psym;
716
717 for (psym = objfile->global_psymbols.list;
718 psym < objfile->global_psymbols.next;
719 psym++)
720 {
721 fixup_psymbol_section (*psym, objfile);
722 if (SYMBOL_SECTION (*psym) >= 0)
723 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
724 SYMBOL_SECTION (*psym));
725 }
726 for (psym = objfile->static_psymbols.list;
727 psym < objfile->static_psymbols.next;
728 psym++)
729 {
730 fixup_psymbol_section (*psym, objfile);
731 if (SYMBOL_SECTION (*psym) >= 0)
732 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
733 SYMBOL_SECTION (*psym));
734 }
735 }
736
737 {
738 struct minimal_symbol *msym;
739 ALL_OBJFILE_MSYMBOLS (objfile, msym)
740 if (SYMBOL_SECTION (msym) >= 0)
741 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
742 }
743 /* Relocating different sections by different amounts may cause the symbols
744 to be out of order. */
745 msymbols_sort (objfile);
746
747 {
748 int i;
749 for (i = 0; i < objfile->num_sections; ++i)
750 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
751 }
752
753 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
754 {
755 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
756 only as a fallback. */
757 struct obj_section *s;
758 s = find_pc_section (objfile->ei.entry_point);
759 if (s)
760 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
761 else
762 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
763 }
764
765 {
766 struct obj_section *s;
767 bfd *abfd;
768
769 abfd = objfile->obfd;
770
771 ALL_OBJFILE_OSECTIONS (objfile, s)
772 {
773 int idx = s->the_bfd_section->index;
774
775 s->addr += ANOFFSET (delta, idx);
776 s->endaddr += ANOFFSET (delta, idx);
777 }
778 }
779
780 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
781 {
782 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
783 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
784 }
785
786 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
787 {
788 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
789 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
790 }
791
792 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
793 {
794 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
795 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
796 }
797
798 /* Relocate breakpoints as necessary, after things are relocated. */
799 breakpoint_re_set ();
800 }
801 \f
802 /* Many places in gdb want to test just to see if we have any partial
803 symbols available. This function returns zero if none are currently
804 available, nonzero otherwise. */
805
806 int
807 have_partial_symbols (void)
808 {
809 struct objfile *ofp;
810
811 ALL_OBJFILES (ofp)
812 {
813 if (ofp->psymtabs != NULL)
814 {
815 return 1;
816 }
817 }
818 return 0;
819 }
820
821 /* Many places in gdb want to test just to see if we have any full
822 symbols available. This function returns zero if none are currently
823 available, nonzero otherwise. */
824
825 int
826 have_full_symbols (void)
827 {
828 struct objfile *ofp;
829
830 ALL_OBJFILES (ofp)
831 {
832 if (ofp->symtabs != NULL)
833 {
834 return 1;
835 }
836 }
837 return 0;
838 }
839
840
841 /* This operations deletes all objfile entries that represent solibs that
842 weren't explicitly loaded by the user, via e.g., the add-symbol-file
843 command.
844 */
845 void
846 objfile_purge_solibs (void)
847 {
848 struct objfile *objf;
849 struct objfile *temp;
850
851 ALL_OBJFILES_SAFE (objf, temp)
852 {
853 /* We assume that the solib package has been purged already, or will
854 be soon.
855 */
856 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
857 free_objfile (objf);
858 }
859 }
860
861
862 /* Many places in gdb want to test just to see if we have any minimal
863 symbols available. This function returns zero if none are currently
864 available, nonzero otherwise. */
865
866 int
867 have_minimal_symbols (void)
868 {
869 struct objfile *ofp;
870
871 ALL_OBJFILES (ofp)
872 {
873 if (ofp->minimal_symbol_count > 0)
874 {
875 return 1;
876 }
877 }
878 return 0;
879 }
880
881 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
882
883 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
884 of the corresponding symbol file in MTIME, try to open an existing file
885 with the name SYMSFILENAME and verify it is more recent than the base
886 file by checking it's timestamp against MTIME.
887
888 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
889
890 If SYMSFILENAME does exist, but is out of date, we check to see if the
891 user has specified creation of a mapped file. If so, we don't issue
892 any warning message because we will be creating a new mapped file anyway,
893 overwriting the old one. If not, then we issue a warning message so that
894 the user will know why we aren't using this existing mapped symbol file.
895 In either case, we return -1.
896
897 If SYMSFILENAME does exist and is not out of date, but can't be opened for
898 some reason, then prints an appropriate system error message and returns -1.
899
900 Otherwise, returns the open file descriptor. */
901
902 static int
903 open_existing_mapped_file (char *symsfilename, long mtime, int flags)
904 {
905 int fd = -1;
906 struct stat sbuf;
907
908 if (stat (symsfilename, &sbuf) == 0)
909 {
910 if (sbuf.st_mtime < mtime)
911 {
912 if (!(flags & OBJF_MAPPED))
913 {
914 warning ("mapped symbol file `%s' is out of date, ignored it",
915 symsfilename);
916 }
917 }
918 else if ((fd = open (symsfilename, O_RDWR)) < 0)
919 {
920 if (error_pre_print)
921 {
922 printf_unfiltered (error_pre_print);
923 }
924 print_sys_errmsg (symsfilename, errno);
925 }
926 }
927 return (fd);
928 }
929
930 /* Look for a mapped symbol file that corresponds to FILENAME and is more
931 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
932 use a mapped symbol file for this file, so create a new one if one does
933 not currently exist.
934
935 If found, then return an open file descriptor for the file, otherwise
936 return -1.
937
938 This routine is responsible for implementing the policy that generates
939 the name of the mapped symbol file from the name of a file containing
940 symbols that gdb would like to read. Currently this policy is to append
941 ".syms" to the name of the file.
942
943 This routine is also responsible for implementing the policy that
944 determines where the mapped symbol file is found (the search path).
945 This policy is that when reading an existing mapped file, a file of
946 the correct name in the current directory takes precedence over a
947 file of the correct name in the same directory as the symbol file.
948 When creating a new mapped file, it is always created in the current
949 directory. This helps to minimize the chances of a user unknowingly
950 creating big mapped files in places like /bin and /usr/local/bin, and
951 allows a local copy to override a manually installed global copy (in
952 /bin for example). */
953
954 static int
955 open_mapped_file (char *filename, long mtime, int flags)
956 {
957 int fd;
958 char *symsfilename;
959
960 /* First try to open an existing file in the current directory, and
961 then try the directory where the symbol file is located. */
962
963 symsfilename = concat ("./", lbasename (filename), ".syms", (char *) NULL);
964 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
965 {
966 xfree (symsfilename);
967 symsfilename = concat (filename, ".syms", (char *) NULL);
968 fd = open_existing_mapped_file (symsfilename, mtime, flags);
969 }
970
971 /* If we don't have an open file by now, then either the file does not
972 already exist, or the base file has changed since it was created. In
973 either case, if the user has specified use of a mapped file, then
974 create a new mapped file, truncating any existing one. If we can't
975 create one, print a system error message saying why we can't.
976
977 By default the file is rw for everyone, with the user's umask taking
978 care of turning off the permissions the user wants off. */
979
980 if ((fd < 0) && (flags & OBJF_MAPPED))
981 {
982 xfree (symsfilename);
983 symsfilename = concat ("./", lbasename (filename), ".syms",
984 (char *) NULL);
985 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
986 {
987 if (error_pre_print)
988 {
989 printf_unfiltered (error_pre_print);
990 }
991 print_sys_errmsg (symsfilename, errno);
992 }
993 }
994
995 xfree (symsfilename);
996 return (fd);
997 }
998
999 static void *
1000 map_to_file (int fd)
1001 {
1002 void *md;
1003 CORE_ADDR mapto;
1004
1005 md = mmalloc_attach (fd, 0);
1006 if (md != NULL)
1007 {
1008 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
1009 md = mmalloc_detach (md);
1010 if (md != NULL)
1011 {
1012 /* FIXME: should figure out why detach failed */
1013 md = NULL;
1014 }
1015 else if (mapto != (CORE_ADDR) NULL)
1016 {
1017 /* This mapping file needs to be remapped at "mapto" */
1018 md = mmalloc_attach (fd, mapto);
1019 }
1020 else
1021 {
1022 /* This is a freshly created mapping file. */
1023 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
1024 if (mapto != 0)
1025 {
1026 /* To avoid reusing the freshly created mapping file, at the
1027 address selected by mmap, we must truncate it before trying
1028 to do an attach at the address we want. */
1029 ftruncate (fd, 0);
1030 md = mmalloc_attach (fd, mapto);
1031 if (md != NULL)
1032 {
1033 mmalloc_setkey (md, 1, mapto);
1034 }
1035 }
1036 }
1037 }
1038 return (md);
1039 }
1040
1041 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
1042
1043 /* Returns a section whose range includes PC and SECTION,
1044 or NULL if none found. Note the distinction between the return type,
1045 struct obj_section (which is defined in gdb), and the input type
1046 struct sec (which is a bfd-defined data type). The obj_section
1047 contains a pointer to the bfd struct sec section. */
1048
1049 struct obj_section *
1050 find_pc_sect_section (CORE_ADDR pc, struct sec *section)
1051 {
1052 struct obj_section *s;
1053 struct objfile *objfile;
1054
1055 ALL_OBJSECTIONS (objfile, s)
1056 if ((section == 0 || section == s->the_bfd_section) &&
1057 s->addr <= pc && pc < s->endaddr)
1058 return (s);
1059
1060 return (NULL);
1061 }
1062
1063 /* Returns a section whose range includes PC or NULL if none found.
1064 Backward compatibility, no section. */
1065
1066 struct obj_section *
1067 find_pc_section (CORE_ADDR pc)
1068 {
1069 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
1070 }
1071
1072
1073 /* In SVR4, we recognize a trampoline by it's section name.
1074 That is, if the pc is in a section named ".plt" then we are in
1075 a trampoline. */
1076
1077 int
1078 in_plt_section (CORE_ADDR pc, char *name)
1079 {
1080 struct obj_section *s;
1081 int retval = 0;
1082
1083 s = find_pc_section (pc);
1084
1085 retval = (s != NULL
1086 && s->the_bfd_section->name != NULL
1087 && STREQ (s->the_bfd_section->name, ".plt"));
1088 return (retval);
1089 }
1090
1091 /* Return nonzero if NAME is in the import list of OBJFILE. Else
1092 return zero. */
1093
1094 int
1095 is_in_import_list (char *name, struct objfile *objfile)
1096 {
1097 register int i;
1098
1099 if (!objfile || !name || !*name)
1100 return 0;
1101
1102 for (i = 0; i < objfile->import_list_size; i++)
1103 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
1104 return 1;
1105 return 0;
1106 }
1107 \f
1108
1109 /* Keep a registry of per-objfile data-pointers required by other GDB
1110 modules. */
1111
1112 struct objfile_data
1113 {
1114 unsigned index;
1115 };
1116
1117 struct objfile_data_registration
1118 {
1119 struct objfile_data *data;
1120 struct objfile_data_registration *next;
1121 };
1122
1123 struct objfile_data_registry
1124 {
1125 struct objfile_data_registration *registrations;
1126 unsigned num_registrations;
1127 };
1128
1129 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1130
1131 const struct objfile_data *
1132 register_objfile_data (void)
1133 {
1134 struct objfile_data_registration **curr;
1135
1136 /* Append new registration. */
1137 for (curr = &objfile_data_registry.registrations;
1138 *curr != NULL; curr = &(*curr)->next);
1139
1140 *curr = XMALLOC (struct objfile_data_registration);
1141 (*curr)->next = NULL;
1142 (*curr)->data = XMALLOC (struct objfile_data);
1143 (*curr)->data->index = objfile_data_registry.num_registrations++;
1144
1145 return (*curr)->data;
1146 }
1147
1148 static void
1149 objfile_alloc_data (struct objfile *objfile)
1150 {
1151 gdb_assert (objfile->data == NULL);
1152 objfile->num_data = objfile_data_registry.num_registrations;
1153 objfile->data = XCALLOC (objfile->num_data, void *);
1154 }
1155
1156 static void
1157 objfile_free_data (struct objfile *objfile)
1158 {
1159 gdb_assert (objfile->data != NULL);
1160 xfree (objfile->data);
1161 objfile->data = NULL;
1162 }
1163
1164 void
1165 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1166 void *value)
1167 {
1168 gdb_assert (data->index < objfile->num_data);
1169 objfile->data[data->index] = value;
1170 }
1171
1172 void *
1173 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1174 {
1175 gdb_assert (data->index < objfile->num_data);
1176 return objfile->data[data->index];
1177 }
This page took 0.080964 seconds and 4 git commands to generate.