gdb/
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2004, 2007-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "mdebugread.h"
34 #include "expression.h"
35 #include "parser-defs.h"
36
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48 #include "source.h"
49 #include "addrmap.h"
50 #include "arch-utils.h"
51 #include "exec.h"
52 #include "observer.h"
53 #include "complaints.h"
54 #include "psymtab.h"
55 #include "solist.h"
56
57 /* Prototypes for local functions */
58
59 static void objfile_alloc_data (struct objfile *objfile);
60 static void objfile_free_data (struct objfile *objfile);
61
62 /* Externally visible variables that are owned by this module.
63 See declarations in objfile.h for more info. */
64
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 struct objfile_pspace_info
68 {
69 int objfiles_changed_p;
70 struct obj_section **sections;
71 int num_sections;
72 };
73
74 /* Per-program-space data key. */
75 static const struct program_space_data *objfiles_pspace_data;
76
77 static void
78 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79 {
80 struct objfile_pspace_info *info;
81
82 info = program_space_data (pspace, objfiles_pspace_data);
83 if (info != NULL)
84 {
85 xfree (info->sections);
86 xfree (info);
87 }
88 }
89
90 /* Get the current svr4 data. If none is found yet, add it now. This
91 function always returns a valid object. */
92
93 static struct objfile_pspace_info *
94 get_objfile_pspace_data (struct program_space *pspace)
95 {
96 struct objfile_pspace_info *info;
97
98 info = program_space_data (pspace, objfiles_pspace_data);
99 if (info == NULL)
100 {
101 info = XZALLOC (struct objfile_pspace_info);
102 set_program_space_data (pspace, objfiles_pspace_data, info);
103 }
104
105 return info;
106 }
107
108 /* Called via bfd_map_over_sections to build up the section table that
109 the objfile references. The objfile contains pointers to the start
110 of the table (objfile->sections) and to the first location after
111 the end of the table (objfile->sections_end). */
112
113 static void
114 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
115 void *objfilep)
116 {
117 struct objfile *objfile = (struct objfile *) objfilep;
118 struct obj_section section;
119 flagword aflag;
120
121 aflag = bfd_get_section_flags (abfd, asect);
122 if (!(aflag & SEC_ALLOC))
123 return;
124 if (bfd_section_size (abfd, asect) == 0)
125 return;
126
127 section.objfile = objfile;
128 section.the_bfd_section = asect;
129 section.ovly_mapped = 0;
130 obstack_grow (&objfile->objfile_obstack,
131 (char *) &section, sizeof (section));
132 objfile->sections_end
133 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
134 }
135
136 /* Builds a section table for OBJFILE.
137
138 Note that while we are building the table, which goes into the
139 objfile obstack, we hijack the sections_end pointer to instead hold
140 a count of the number of sections. When bfd_map_over_sections
141 returns, this count is used to compute the pointer to the end of
142 the sections table, which then overwrites the count.
143
144 Also note that the OFFSET and OVLY_MAPPED in each table entry
145 are initialized to zero.
146
147 Also note that if anything else writes to the objfile obstack while
148 we are building the table, we're pretty much hosed. */
149
150 void
151 build_objfile_section_table (struct objfile *objfile)
152 {
153 objfile->sections_end = 0;
154 bfd_map_over_sections (objfile->obfd,
155 add_to_objfile_sections, (void *) objfile);
156 objfile->sections = obstack_finish (&objfile->objfile_obstack);
157 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
158 }
159
160 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
161 allocate a new objfile struct, fill it in as best we can, link it
162 into the list of all known objfiles, and return a pointer to the
163 new objfile struct.
164
165 The FLAGS word contains various bits (OBJF_*) that can be taken as
166 requests for specific operations. Other bits like OBJF_SHARED are
167 simply copied through to the new objfile flags member. */
168
169 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
170 by jv-lang.c, to create an artificial objfile used to hold
171 information about dynamically-loaded Java classes. Unfortunately,
172 that branch of this function doesn't get tested very frequently, so
173 it's prone to breakage. (E.g. at one time the name was set to NULL
174 in that situation, which broke a loop over all names in the dynamic
175 library loader.) If you change this function, please try to leave
176 things in a consistent state even if abfd is NULL. */
177
178 struct objfile *
179 allocate_objfile (bfd *abfd, int flags)
180 {
181 struct objfile *objfile;
182
183 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
184 objfile->psymbol_cache = psymbol_bcache_init ();
185 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
186 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
187 /* We could use obstack_specify_allocation here instead, but
188 gdb_obstack.h specifies the alloc/dealloc functions. */
189 obstack_init (&objfile->objfile_obstack);
190 terminate_minimal_symbol_table (objfile);
191
192 objfile_alloc_data (objfile);
193
194 /* Update the per-objfile information that comes from the bfd, ensuring
195 that any data that is reference is saved in the per-objfile data
196 region. */
197
198 objfile->obfd = gdb_bfd_ref (abfd);
199 if (abfd != NULL)
200 {
201 /* Look up the gdbarch associated with the BFD. */
202 objfile->gdbarch = gdbarch_from_bfd (abfd);
203
204 objfile->name = xstrdup (bfd_get_filename (abfd));
205 objfile->mtime = bfd_get_mtime (abfd);
206
207 /* Build section table. */
208 build_objfile_section_table (objfile);
209 }
210 else
211 {
212 objfile->name = xstrdup ("<<anonymous objfile>>");
213 }
214
215 objfile->pspace = current_program_space;
216
217 /* Initialize the section indexes for this objfile, so that we can
218 later detect if they are used w/o being properly assigned to. */
219
220 objfile->sect_index_text = -1;
221 objfile->sect_index_data = -1;
222 objfile->sect_index_bss = -1;
223 objfile->sect_index_rodata = -1;
224
225 /* Add this file onto the tail of the linked list of other such files. */
226
227 objfile->next = NULL;
228 if (object_files == NULL)
229 object_files = objfile;
230 else
231 {
232 struct objfile *last_one;
233
234 for (last_one = object_files;
235 last_one->next;
236 last_one = last_one->next);
237 last_one->next = objfile;
238 }
239
240 /* Save passed in flag bits. */
241 objfile->flags |= flags;
242
243 /* Rebuild section map next time we need it. */
244 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
245
246 return objfile;
247 }
248
249 /* Retrieve the gdbarch associated with OBJFILE. */
250 struct gdbarch *
251 get_objfile_arch (struct objfile *objfile)
252 {
253 return objfile->gdbarch;
254 }
255
256 /* Initialize entry point information for this objfile. */
257
258 void
259 init_entry_point_info (struct objfile *objfile)
260 {
261 /* Save startup file's range of PC addresses to help blockframe.c
262 decide where the bottom of the stack is. */
263
264 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
265 {
266 /* Executable file -- record its entry point so we'll recognize
267 the startup file because it contains the entry point. */
268 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
269 objfile->ei.entry_point_p = 1;
270 }
271 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
272 && bfd_get_start_address (objfile->obfd) != 0)
273 {
274 /* Some shared libraries may have entry points set and be
275 runnable. There's no clear way to indicate this, so just check
276 for values other than zero. */
277 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
278 objfile->ei.entry_point_p = 1;
279 }
280 else
281 {
282 /* Examination of non-executable.o files. Short-circuit this stuff. */
283 objfile->ei.entry_point_p = 0;
284 }
285 }
286
287 /* If there is a valid and known entry point, function fills *ENTRY_P with it
288 and returns non-zero; otherwise it returns zero. */
289
290 int
291 entry_point_address_query (CORE_ADDR *entry_p)
292 {
293 struct gdbarch *gdbarch;
294 CORE_ADDR entry_point;
295
296 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
297 return 0;
298
299 gdbarch = get_objfile_arch (symfile_objfile);
300
301 entry_point = symfile_objfile->ei.entry_point;
302
303 /* Make certain that the address points at real code, and not a
304 function descriptor. */
305 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
306 &current_target);
307
308 /* Remove any ISA markers, so that this matches entries in the
309 symbol table. */
310 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
311
312 *entry_p = entry_point;
313 return 1;
314 }
315
316 /* Get current entry point address. Call error if it is not known. */
317
318 CORE_ADDR
319 entry_point_address (void)
320 {
321 CORE_ADDR retval;
322
323 if (!entry_point_address_query (&retval))
324 error (_("Entry point address is not known."));
325
326 return retval;
327 }
328
329 /* Iterator on PARENT and every separate debug objfile of PARENT.
330 The usage pattern is:
331 for (objfile = parent;
332 objfile;
333 objfile = objfile_separate_debug_iterate (parent, objfile))
334 ...
335 */
336
337 struct objfile *
338 objfile_separate_debug_iterate (const struct objfile *parent,
339 const struct objfile *objfile)
340 {
341 struct objfile *res;
342
343 /* If any, return the first child. */
344 res = objfile->separate_debug_objfile;
345 if (res)
346 return res;
347
348 /* Common case where there is no separate debug objfile. */
349 if (objfile == parent)
350 return NULL;
351
352 /* Return the brother if any. Note that we don't iterate on brothers of
353 the parents. */
354 res = objfile->separate_debug_objfile_link;
355 if (res)
356 return res;
357
358 for (res = objfile->separate_debug_objfile_backlink;
359 res != parent;
360 res = res->separate_debug_objfile_backlink)
361 {
362 gdb_assert (res != NULL);
363 if (res->separate_debug_objfile_link)
364 return res->separate_debug_objfile_link;
365 }
366 return NULL;
367 }
368
369 /* Put one object file before a specified on in the global list.
370 This can be used to make sure an object file is destroyed before
371 another when using ALL_OBJFILES_SAFE to free all objfiles. */
372 void
373 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
374 {
375 struct objfile **objp;
376
377 unlink_objfile (objfile);
378
379 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
380 {
381 if (*objp == before_this)
382 {
383 objfile->next = *objp;
384 *objp = objfile;
385 return;
386 }
387 }
388
389 internal_error (__FILE__, __LINE__,
390 _("put_objfile_before: before objfile not in list"));
391 }
392
393 /* Put OBJFILE at the front of the list. */
394
395 void
396 objfile_to_front (struct objfile *objfile)
397 {
398 struct objfile **objp;
399 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
400 {
401 if (*objp == objfile)
402 {
403 /* Unhook it from where it is. */
404 *objp = objfile->next;
405 /* Put it in the front. */
406 objfile->next = object_files;
407 object_files = objfile;
408 break;
409 }
410 }
411 }
412
413 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
414 list.
415
416 It is not a bug, or error, to call this function if OBJFILE is not known
417 to be in the current list. This is done in the case of mapped objfiles,
418 for example, just to ensure that the mapped objfile doesn't appear twice
419 in the list. Since the list is threaded, linking in a mapped objfile
420 twice would create a circular list.
421
422 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
423 unlinking it, just to ensure that we have completely severed any linkages
424 between the OBJFILE and the list. */
425
426 void
427 unlink_objfile (struct objfile *objfile)
428 {
429 struct objfile **objpp;
430
431 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
432 {
433 if (*objpp == objfile)
434 {
435 *objpp = (*objpp)->next;
436 objfile->next = NULL;
437 return;
438 }
439 }
440
441 internal_error (__FILE__, __LINE__,
442 _("unlink_objfile: objfile already unlinked"));
443 }
444
445 /* Add OBJFILE as a separate debug objfile of PARENT. */
446
447 void
448 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
449 {
450 gdb_assert (objfile && parent);
451
452 /* Must not be already in a list. */
453 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
454 gdb_assert (objfile->separate_debug_objfile_link == NULL);
455
456 objfile->separate_debug_objfile_backlink = parent;
457 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
458 parent->separate_debug_objfile = objfile;
459
460 /* Put the separate debug object before the normal one, this is so that
461 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
462 put_objfile_before (objfile, parent);
463 }
464
465 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
466 itself. */
467
468 void
469 free_objfile_separate_debug (struct objfile *objfile)
470 {
471 struct objfile *child;
472
473 for (child = objfile->separate_debug_objfile; child;)
474 {
475 struct objfile *next_child = child->separate_debug_objfile_link;
476 free_objfile (child);
477 child = next_child;
478 }
479 }
480
481 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
482 that as much as possible is allocated on the objfile_obstack
483 so that the memory can be efficiently freed.
484
485 Things which we do NOT free because they are not in malloc'd memory
486 or not in memory specific to the objfile include:
487
488 objfile -> sf
489
490 FIXME: If the objfile is using reusable symbol information (via mmalloc),
491 then we need to take into account the fact that more than one process
492 may be using the symbol information at the same time (when mmalloc is
493 extended to support cooperative locking). When more than one process
494 is using the mapped symbol info, we need to be more careful about when
495 we free objects in the reusable area. */
496
497 void
498 free_objfile (struct objfile *objfile)
499 {
500 /* Free all separate debug objfiles. */
501 free_objfile_separate_debug (objfile);
502
503 if (objfile->separate_debug_objfile_backlink)
504 {
505 /* We freed the separate debug file, make sure the base objfile
506 doesn't reference it. */
507 struct objfile *child;
508
509 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
510
511 if (child == objfile)
512 {
513 /* OBJFILE is the first child. */
514 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
515 objfile->separate_debug_objfile_link;
516 }
517 else
518 {
519 /* Find OBJFILE in the list. */
520 while (1)
521 {
522 if (child->separate_debug_objfile_link == objfile)
523 {
524 child->separate_debug_objfile_link =
525 objfile->separate_debug_objfile_link;
526 break;
527 }
528 child = child->separate_debug_objfile_link;
529 gdb_assert (child);
530 }
531 }
532 }
533
534 /* Remove any references to this objfile in the global value
535 lists. */
536 preserve_values (objfile);
537
538 /* It still may reference data modules have associated with the objfile and
539 the symbol file data. */
540 forget_cached_source_info_for_objfile (objfile);
541
542 /* First do any symbol file specific actions required when we are
543 finished with a particular symbol file. Note that if the objfile
544 is using reusable symbol information (via mmalloc) then each of
545 these routines is responsible for doing the correct thing, either
546 freeing things which are valid only during this particular gdb
547 execution, or leaving them to be reused during the next one. */
548
549 if (objfile->sf != NULL)
550 {
551 (*objfile->sf->sym_finish) (objfile);
552 }
553
554 /* Discard any data modules have associated with the objfile. The function
555 still may reference objfile->obfd. */
556 objfile_free_data (objfile);
557
558 gdb_bfd_unref (objfile->obfd);
559
560 /* Remove it from the chain of all objfiles. */
561
562 unlink_objfile (objfile);
563
564 if (objfile == symfile_objfile)
565 symfile_objfile = NULL;
566
567 if (objfile == rt_common_objfile)
568 rt_common_objfile = NULL;
569
570 /* Before the symbol table code was redone to make it easier to
571 selectively load and remove information particular to a specific
572 linkage unit, gdb used to do these things whenever the monolithic
573 symbol table was blown away. How much still needs to be done
574 is unknown, but we play it safe for now and keep each action until
575 it is shown to be no longer needed. */
576
577 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
578 for example), so we need to call this here. */
579 clear_pc_function_cache ();
580
581 /* Clear globals which might have pointed into a removed objfile.
582 FIXME: It's not clear which of these are supposed to persist
583 between expressions and which ought to be reset each time. */
584 expression_context_block = NULL;
585 innermost_block = NULL;
586
587 /* Check to see if the current_source_symtab belongs to this objfile,
588 and if so, call clear_current_source_symtab_and_line. */
589
590 {
591 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
592
593 if (cursal.symtab && cursal.symtab->objfile == objfile)
594 clear_current_source_symtab_and_line ();
595 }
596
597 /* The last thing we do is free the objfile struct itself. */
598
599 xfree (objfile->name);
600 if (objfile->global_psymbols.list)
601 xfree (objfile->global_psymbols.list);
602 if (objfile->static_psymbols.list)
603 xfree (objfile->static_psymbols.list);
604 /* Free the obstacks for non-reusable objfiles. */
605 psymbol_bcache_free (objfile->psymbol_cache);
606 bcache_xfree (objfile->macro_cache);
607 bcache_xfree (objfile->filename_cache);
608 if (objfile->demangled_names_hash)
609 htab_delete (objfile->demangled_names_hash);
610 obstack_free (&objfile->objfile_obstack, 0);
611
612 /* Rebuild section map next time we need it. */
613 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
614
615 xfree (objfile);
616 }
617
618 static void
619 do_free_objfile_cleanup (void *obj)
620 {
621 free_objfile (obj);
622 }
623
624 struct cleanup *
625 make_cleanup_free_objfile (struct objfile *obj)
626 {
627 return make_cleanup (do_free_objfile_cleanup, obj);
628 }
629
630 /* Free all the object files at once and clean up their users. */
631
632 void
633 free_all_objfiles (void)
634 {
635 struct objfile *objfile, *temp;
636 struct so_list *so;
637
638 /* Any objfile referencewould become stale. */
639 for (so = master_so_list (); so; so = so->next)
640 gdb_assert (so->objfile == NULL);
641
642 ALL_OBJFILES_SAFE (objfile, temp)
643 {
644 free_objfile (objfile);
645 }
646 clear_symtab_users (0);
647 }
648 \f
649 /* A helper function for objfile_relocate1 that relocates a single
650 symbol. */
651
652 static void
653 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
654 struct section_offsets *delta)
655 {
656 fixup_symbol_section (sym, objfile);
657
658 /* The RS6000 code from which this was taken skipped
659 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
660 But I'm leaving out that test, on the theory that
661 they can't possibly pass the tests below. */
662 if ((SYMBOL_CLASS (sym) == LOC_LABEL
663 || SYMBOL_CLASS (sym) == LOC_STATIC)
664 && SYMBOL_SECTION (sym) >= 0)
665 {
666 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
667 }
668 }
669
670 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
671 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
672 Return non-zero iff any change happened. */
673
674 static int
675 objfile_relocate1 (struct objfile *objfile,
676 struct section_offsets *new_offsets)
677 {
678 struct obj_section *s;
679 struct section_offsets *delta =
680 ((struct section_offsets *)
681 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
682
683 int i;
684 int something_changed = 0;
685
686 for (i = 0; i < objfile->num_sections; ++i)
687 {
688 delta->offsets[i] =
689 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
690 if (ANOFFSET (delta, i) != 0)
691 something_changed = 1;
692 }
693 if (!something_changed)
694 return 0;
695
696 /* OK, get all the symtabs. */
697 {
698 struct symtab *s;
699
700 ALL_OBJFILE_SYMTABS (objfile, s)
701 {
702 struct linetable *l;
703 struct blockvector *bv;
704 int i;
705
706 /* First the line table. */
707 l = LINETABLE (s);
708 if (l)
709 {
710 for (i = 0; i < l->nitems; ++i)
711 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
712 }
713
714 /* Don't relocate a shared blockvector more than once. */
715 if (!s->primary)
716 continue;
717
718 bv = BLOCKVECTOR (s);
719 if (BLOCKVECTOR_MAP (bv))
720 addrmap_relocate (BLOCKVECTOR_MAP (bv),
721 ANOFFSET (delta, s->block_line_section));
722
723 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
724 {
725 struct block *b;
726 struct symbol *sym;
727 struct dict_iterator iter;
728
729 b = BLOCKVECTOR_BLOCK (bv, i);
730 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
731 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
732
733 /* We only want to iterate over the local symbols, not any
734 symbols in included symtabs. */
735 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
736 {
737 relocate_one_symbol (sym, objfile, delta);
738 }
739 }
740 }
741 }
742
743 /* Relocate isolated symbols. */
744 {
745 struct symbol *iter;
746
747 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
748 relocate_one_symbol (iter, objfile, delta);
749 }
750
751 if (objfile->psymtabs_addrmap)
752 addrmap_relocate (objfile->psymtabs_addrmap,
753 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
754
755 if (objfile->sf)
756 objfile->sf->qf->relocate (objfile, new_offsets, delta);
757
758 {
759 struct minimal_symbol *msym;
760
761 ALL_OBJFILE_MSYMBOLS (objfile, msym)
762 if (SYMBOL_SECTION (msym) >= 0)
763 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
764 }
765 /* Relocating different sections by different amounts may cause the symbols
766 to be out of order. */
767 msymbols_sort (objfile);
768
769 if (objfile->ei.entry_point_p)
770 {
771 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
772 only as a fallback. */
773 struct obj_section *s;
774 s = find_pc_section (objfile->ei.entry_point);
775 if (s)
776 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
777 else
778 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
779 }
780
781 {
782 int i;
783
784 for (i = 0; i < objfile->num_sections; ++i)
785 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
786 }
787
788 /* Rebuild section map next time we need it. */
789 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
790
791 /* Update the table in exec_ops, used to read memory. */
792 ALL_OBJFILE_OSECTIONS (objfile, s)
793 {
794 int idx = s->the_bfd_section->index;
795
796 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
797 obj_section_addr (s));
798 }
799
800 /* Relocating probes. */
801 if (objfile->sf && objfile->sf->sym_probe_fns)
802 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
803 new_offsets, delta);
804
805 /* Data changed. */
806 return 1;
807 }
808
809 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
810 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
811
812 The number and ordering of sections does differ between the two objfiles.
813 Only their names match. Also the file offsets will differ (objfile being
814 possibly prelinked but separate_debug_objfile is probably not prelinked) but
815 the in-memory absolute address as specified by NEW_OFFSETS must match both
816 files. */
817
818 void
819 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
820 {
821 struct objfile *debug_objfile;
822 int changed = 0;
823
824 changed |= objfile_relocate1 (objfile, new_offsets);
825
826 for (debug_objfile = objfile->separate_debug_objfile;
827 debug_objfile;
828 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
829 {
830 struct section_addr_info *objfile_addrs;
831 struct section_offsets *new_debug_offsets;
832 struct cleanup *my_cleanups;
833
834 objfile_addrs = build_section_addr_info_from_objfile (objfile);
835 my_cleanups = make_cleanup (xfree, objfile_addrs);
836
837 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
838 relative ones must be already created according to debug_objfile. */
839
840 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
841
842 gdb_assert (debug_objfile->num_sections
843 == bfd_count_sections (debug_objfile->obfd));
844 new_debug_offsets =
845 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
846 make_cleanup (xfree, new_debug_offsets);
847 relative_addr_info_to_section_offsets (new_debug_offsets,
848 debug_objfile->num_sections,
849 objfile_addrs);
850
851 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
852
853 do_cleanups (my_cleanups);
854 }
855
856 /* Relocate breakpoints as necessary, after things are relocated. */
857 if (changed)
858 breakpoint_re_set ();
859 }
860 \f
861 /* Return non-zero if OBJFILE has partial symbols. */
862
863 int
864 objfile_has_partial_symbols (struct objfile *objfile)
865 {
866 if (!objfile->sf)
867 return 0;
868
869 /* If we have not read psymbols, but we have a function capable of reading
870 them, then that is an indication that they are in fact available. Without
871 this function the symbols may have been already read in but they also may
872 not be present in this objfile. */
873 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
874 && objfile->sf->sym_read_psymbols != NULL)
875 return 1;
876
877 return objfile->sf->qf->has_symbols (objfile);
878 }
879
880 /* Return non-zero if OBJFILE has full symbols. */
881
882 int
883 objfile_has_full_symbols (struct objfile *objfile)
884 {
885 return objfile->symtabs != NULL;
886 }
887
888 /* Return non-zero if OBJFILE has full or partial symbols, either directly
889 or through a separate debug file. */
890
891 int
892 objfile_has_symbols (struct objfile *objfile)
893 {
894 struct objfile *o;
895
896 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
897 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
898 return 1;
899 return 0;
900 }
901
902
903 /* Many places in gdb want to test just to see if we have any partial
904 symbols available. This function returns zero if none are currently
905 available, nonzero otherwise. */
906
907 int
908 have_partial_symbols (void)
909 {
910 struct objfile *ofp;
911
912 ALL_OBJFILES (ofp)
913 {
914 if (objfile_has_partial_symbols (ofp))
915 return 1;
916 }
917 return 0;
918 }
919
920 /* Many places in gdb want to test just to see if we have any full
921 symbols available. This function returns zero if none are currently
922 available, nonzero otherwise. */
923
924 int
925 have_full_symbols (void)
926 {
927 struct objfile *ofp;
928
929 ALL_OBJFILES (ofp)
930 {
931 if (objfile_has_full_symbols (ofp))
932 return 1;
933 }
934 return 0;
935 }
936
937
938 /* This operations deletes all objfile entries that represent solibs that
939 weren't explicitly loaded by the user, via e.g., the add-symbol-file
940 command. */
941
942 void
943 objfile_purge_solibs (void)
944 {
945 struct objfile *objf;
946 struct objfile *temp;
947
948 ALL_OBJFILES_SAFE (objf, temp)
949 {
950 /* We assume that the solib package has been purged already, or will
951 be soon. */
952
953 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
954 free_objfile (objf);
955 }
956 }
957
958
959 /* Many places in gdb want to test just to see if we have any minimal
960 symbols available. This function returns zero if none are currently
961 available, nonzero otherwise. */
962
963 int
964 have_minimal_symbols (void)
965 {
966 struct objfile *ofp;
967
968 ALL_OBJFILES (ofp)
969 {
970 if (ofp->minimal_symbol_count > 0)
971 {
972 return 1;
973 }
974 }
975 return 0;
976 }
977
978 /* Qsort comparison function. */
979
980 static int
981 qsort_cmp (const void *a, const void *b)
982 {
983 const struct obj_section *sect1 = *(const struct obj_section **) a;
984 const struct obj_section *sect2 = *(const struct obj_section **) b;
985 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
986 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
987
988 if (sect1_addr < sect2_addr)
989 return -1;
990 else if (sect1_addr > sect2_addr)
991 return 1;
992 else
993 {
994 /* Sections are at the same address. This could happen if
995 A) we have an objfile and a separate debuginfo.
996 B) we are confused, and have added sections without proper relocation,
997 or something like that. */
998
999 const struct objfile *const objfile1 = sect1->objfile;
1000 const struct objfile *const objfile2 = sect2->objfile;
1001
1002 if (objfile1->separate_debug_objfile == objfile2
1003 || objfile2->separate_debug_objfile == objfile1)
1004 {
1005 /* Case A. The ordering doesn't matter: separate debuginfo files
1006 will be filtered out later. */
1007
1008 return 0;
1009 }
1010
1011 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1012 triage. This section could be slow (since we iterate over all
1013 objfiles in each call to qsort_cmp), but this shouldn't happen
1014 very often (GDB is already in a confused state; one hopes this
1015 doesn't happen at all). If you discover that significant time is
1016 spent in the loops below, do 'set complaints 100' and examine the
1017 resulting complaints. */
1018
1019 if (objfile1 == objfile2)
1020 {
1021 /* Both sections came from the same objfile. We are really confused.
1022 Sort on sequence order of sections within the objfile. */
1023
1024 const struct obj_section *osect;
1025
1026 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1027 if (osect == sect1)
1028 return -1;
1029 else if (osect == sect2)
1030 return 1;
1031
1032 /* We should have found one of the sections before getting here. */
1033 gdb_assert_not_reached ("section not found");
1034 }
1035 else
1036 {
1037 /* Sort on sequence number of the objfile in the chain. */
1038
1039 const struct objfile *objfile;
1040
1041 ALL_OBJFILES (objfile)
1042 if (objfile == objfile1)
1043 return -1;
1044 else if (objfile == objfile2)
1045 return 1;
1046
1047 /* We should have found one of the objfiles before getting here. */
1048 gdb_assert_not_reached ("objfile not found");
1049 }
1050 }
1051
1052 /* Unreachable. */
1053 gdb_assert_not_reached ("unexpected code path");
1054 return 0;
1055 }
1056
1057 /* Select "better" obj_section to keep. We prefer the one that came from
1058 the real object, rather than the one from separate debuginfo.
1059 Most of the time the two sections are exactly identical, but with
1060 prelinking the .rel.dyn section in the real object may have different
1061 size. */
1062
1063 static struct obj_section *
1064 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1065 {
1066 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1067 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1068 || (b->objfile->separate_debug_objfile == a->objfile));
1069 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1070 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1071
1072 if (a->objfile->separate_debug_objfile != NULL)
1073 return a;
1074 return b;
1075 }
1076
1077 /* Return 1 if SECTION should be inserted into the section map.
1078 We want to insert only non-overlay and non-TLS section. */
1079
1080 static int
1081 insert_section_p (const struct bfd *abfd,
1082 const struct bfd_section *section)
1083 {
1084 const bfd_vma lma = bfd_section_lma (abfd, section);
1085
1086 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1087 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1088 /* This is an overlay section. IN_MEMORY check is needed to avoid
1089 discarding sections from the "system supplied DSO" (aka vdso)
1090 on some Linux systems (e.g. Fedora 11). */
1091 return 0;
1092 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1093 /* This is a TLS section. */
1094 return 0;
1095
1096 return 1;
1097 }
1098
1099 /* Filter out overlapping sections where one section came from the real
1100 objfile, and the other from a separate debuginfo file.
1101 Return the size of table after redundant sections have been eliminated. */
1102
1103 static int
1104 filter_debuginfo_sections (struct obj_section **map, int map_size)
1105 {
1106 int i, j;
1107
1108 for (i = 0, j = 0; i < map_size - 1; i++)
1109 {
1110 struct obj_section *const sect1 = map[i];
1111 struct obj_section *const sect2 = map[i + 1];
1112 const struct objfile *const objfile1 = sect1->objfile;
1113 const struct objfile *const objfile2 = sect2->objfile;
1114 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1115 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1116
1117 if (sect1_addr == sect2_addr
1118 && (objfile1->separate_debug_objfile == objfile2
1119 || objfile2->separate_debug_objfile == objfile1))
1120 {
1121 map[j++] = preferred_obj_section (sect1, sect2);
1122 ++i;
1123 }
1124 else
1125 map[j++] = sect1;
1126 }
1127
1128 if (i < map_size)
1129 {
1130 gdb_assert (i == map_size - 1);
1131 map[j++] = map[i];
1132 }
1133
1134 /* The map should not have shrunk to less than half the original size. */
1135 gdb_assert (map_size / 2 <= j);
1136
1137 return j;
1138 }
1139
1140 /* Filter out overlapping sections, issuing a warning if any are found.
1141 Overlapping sections could really be overlay sections which we didn't
1142 classify as such in insert_section_p, or we could be dealing with a
1143 corrupt binary. */
1144
1145 static int
1146 filter_overlapping_sections (struct obj_section **map, int map_size)
1147 {
1148 int i, j;
1149
1150 for (i = 0, j = 0; i < map_size - 1; )
1151 {
1152 int k;
1153
1154 map[j++] = map[i];
1155 for (k = i + 1; k < map_size; k++)
1156 {
1157 struct obj_section *const sect1 = map[i];
1158 struct obj_section *const sect2 = map[k];
1159 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1160 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1161 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1162
1163 gdb_assert (sect1_addr <= sect2_addr);
1164
1165 if (sect1_endaddr <= sect2_addr)
1166 break;
1167 else
1168 {
1169 /* We have an overlap. Report it. */
1170
1171 struct objfile *const objf1 = sect1->objfile;
1172 struct objfile *const objf2 = sect2->objfile;
1173
1174 const struct bfd *const abfd1 = objf1->obfd;
1175 const struct bfd *const abfd2 = objf2->obfd;
1176
1177 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1178 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1179
1180 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1181
1182 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1183
1184 complaint (&symfile_complaints,
1185 _("unexpected overlap between:\n"
1186 " (A) section `%s' from `%s' [%s, %s)\n"
1187 " (B) section `%s' from `%s' [%s, %s).\n"
1188 "Will ignore section B"),
1189 bfd_section_name (abfd1, bfds1), objf1->name,
1190 paddress (gdbarch, sect1_addr),
1191 paddress (gdbarch, sect1_endaddr),
1192 bfd_section_name (abfd2, bfds2), objf2->name,
1193 paddress (gdbarch, sect2_addr),
1194 paddress (gdbarch, sect2_endaddr));
1195 }
1196 }
1197 i = k;
1198 }
1199
1200 if (i < map_size)
1201 {
1202 gdb_assert (i == map_size - 1);
1203 map[j++] = map[i];
1204 }
1205
1206 return j;
1207 }
1208
1209
1210 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1211 TLS, overlay and overlapping sections. */
1212
1213 static void
1214 update_section_map (struct program_space *pspace,
1215 struct obj_section ***pmap, int *pmap_size)
1216 {
1217 int alloc_size, map_size, i;
1218 struct obj_section *s, **map;
1219 struct objfile *objfile;
1220
1221 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1222
1223 map = *pmap;
1224 xfree (map);
1225
1226 alloc_size = 0;
1227 ALL_PSPACE_OBJFILES (pspace, objfile)
1228 ALL_OBJFILE_OSECTIONS (objfile, s)
1229 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1230 alloc_size += 1;
1231
1232 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1233 if (alloc_size == 0)
1234 {
1235 *pmap = NULL;
1236 *pmap_size = 0;
1237 return;
1238 }
1239
1240 map = xmalloc (alloc_size * sizeof (*map));
1241
1242 i = 0;
1243 ALL_PSPACE_OBJFILES (pspace, objfile)
1244 ALL_OBJFILE_OSECTIONS (objfile, s)
1245 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1246 map[i++] = s;
1247
1248 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1249 map_size = filter_debuginfo_sections(map, alloc_size);
1250 map_size = filter_overlapping_sections(map, map_size);
1251
1252 if (map_size < alloc_size)
1253 /* Some sections were eliminated. Trim excess space. */
1254 map = xrealloc (map, map_size * sizeof (*map));
1255 else
1256 gdb_assert (alloc_size == map_size);
1257
1258 *pmap = map;
1259 *pmap_size = map_size;
1260 }
1261
1262 /* Bsearch comparison function. */
1263
1264 static int
1265 bsearch_cmp (const void *key, const void *elt)
1266 {
1267 const CORE_ADDR pc = *(CORE_ADDR *) key;
1268 const struct obj_section *section = *(const struct obj_section **) elt;
1269
1270 if (pc < obj_section_addr (section))
1271 return -1;
1272 if (pc < obj_section_endaddr (section))
1273 return 0;
1274 return 1;
1275 }
1276
1277 /* Returns a section whose range includes PC or NULL if none found. */
1278
1279 struct obj_section *
1280 find_pc_section (CORE_ADDR pc)
1281 {
1282 struct objfile_pspace_info *pspace_info;
1283 struct obj_section *s, **sp;
1284
1285 /* Check for mapped overlay section first. */
1286 s = find_pc_mapped_section (pc);
1287 if (s)
1288 return s;
1289
1290 pspace_info = get_objfile_pspace_data (current_program_space);
1291 if (pspace_info->objfiles_changed_p != 0)
1292 {
1293 update_section_map (current_program_space,
1294 &pspace_info->sections,
1295 &pspace_info->num_sections);
1296
1297 /* Don't need updates to section map until objfiles are added,
1298 removed or relocated. */
1299 pspace_info->objfiles_changed_p = 0;
1300 }
1301
1302 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1303 bsearch be non-NULL. */
1304 if (pspace_info->sections == NULL)
1305 {
1306 gdb_assert (pspace_info->num_sections == 0);
1307 return NULL;
1308 }
1309
1310 sp = (struct obj_section **) bsearch (&pc,
1311 pspace_info->sections,
1312 pspace_info->num_sections,
1313 sizeof (*pspace_info->sections),
1314 bsearch_cmp);
1315 if (sp != NULL)
1316 return *sp;
1317 return NULL;
1318 }
1319
1320
1321 /* In SVR4, we recognize a trampoline by it's section name.
1322 That is, if the pc is in a section named ".plt" then we are in
1323 a trampoline. */
1324
1325 int
1326 in_plt_section (CORE_ADDR pc, char *name)
1327 {
1328 struct obj_section *s;
1329 int retval = 0;
1330
1331 s = find_pc_section (pc);
1332
1333 retval = (s != NULL
1334 && s->the_bfd_section->name != NULL
1335 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1336 return (retval);
1337 }
1338 \f
1339
1340 /* Keep a registry of per-objfile data-pointers required by other GDB
1341 modules. */
1342
1343 struct objfile_data
1344 {
1345 unsigned index;
1346 void (*save) (struct objfile *, void *);
1347 void (*free) (struct objfile *, void *);
1348 };
1349
1350 struct objfile_data_registration
1351 {
1352 struct objfile_data *data;
1353 struct objfile_data_registration *next;
1354 };
1355
1356 struct objfile_data_registry
1357 {
1358 struct objfile_data_registration *registrations;
1359 unsigned num_registrations;
1360 };
1361
1362 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1363
1364 const struct objfile_data *
1365 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1366 void (*free) (struct objfile *, void *))
1367 {
1368 struct objfile_data_registration **curr;
1369
1370 /* Append new registration. */
1371 for (curr = &objfile_data_registry.registrations;
1372 *curr != NULL; curr = &(*curr)->next);
1373
1374 *curr = XMALLOC (struct objfile_data_registration);
1375 (*curr)->next = NULL;
1376 (*curr)->data = XMALLOC (struct objfile_data);
1377 (*curr)->data->index = objfile_data_registry.num_registrations++;
1378 (*curr)->data->save = save;
1379 (*curr)->data->free = free;
1380
1381 return (*curr)->data;
1382 }
1383
1384 const struct objfile_data *
1385 register_objfile_data (void)
1386 {
1387 return register_objfile_data_with_cleanup (NULL, NULL);
1388 }
1389
1390 static void
1391 objfile_alloc_data (struct objfile *objfile)
1392 {
1393 gdb_assert (objfile->data == NULL);
1394 objfile->num_data = objfile_data_registry.num_registrations;
1395 objfile->data = XCALLOC (objfile->num_data, void *);
1396 }
1397
1398 static void
1399 objfile_free_data (struct objfile *objfile)
1400 {
1401 gdb_assert (objfile->data != NULL);
1402 clear_objfile_data (objfile);
1403 xfree (objfile->data);
1404 objfile->data = NULL;
1405 }
1406
1407 void
1408 clear_objfile_data (struct objfile *objfile)
1409 {
1410 struct objfile_data_registration *registration;
1411 int i;
1412
1413 gdb_assert (objfile->data != NULL);
1414
1415 /* Process all the save handlers. */
1416
1417 for (registration = objfile_data_registry.registrations, i = 0;
1418 i < objfile->num_data;
1419 registration = registration->next, i++)
1420 if (objfile->data[i] != NULL && registration->data->save != NULL)
1421 registration->data->save (objfile, objfile->data[i]);
1422
1423 /* Now process all the free handlers. */
1424
1425 for (registration = objfile_data_registry.registrations, i = 0;
1426 i < objfile->num_data;
1427 registration = registration->next, i++)
1428 if (objfile->data[i] != NULL && registration->data->free != NULL)
1429 registration->data->free (objfile, objfile->data[i]);
1430
1431 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1432 }
1433
1434 void
1435 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1436 void *value)
1437 {
1438 gdb_assert (data->index < objfile->num_data);
1439 objfile->data[data->index] = value;
1440 }
1441
1442 void *
1443 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1444 {
1445 gdb_assert (data->index < objfile->num_data);
1446 return objfile->data[data->index];
1447 }
1448
1449 /* Set objfiles_changed_p so section map will be rebuilt next time it
1450 is used. Called by reread_symbols. */
1451
1452 void
1453 objfiles_changed (void)
1454 {
1455 /* Rebuild section map next time we need it. */
1456 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1457 }
1458
1459 /* Close ABFD, and warn if that fails. */
1460
1461 int
1462 gdb_bfd_close_or_warn (struct bfd *abfd)
1463 {
1464 int ret;
1465 char *name = bfd_get_filename (abfd);
1466
1467 ret = bfd_close (abfd);
1468
1469 if (!ret)
1470 warning (_("cannot close \"%s\": %s"),
1471 name, bfd_errmsg (bfd_get_error ()));
1472
1473 return ret;
1474 }
1475
1476 /* Add reference to ABFD. Returns ABFD. */
1477 struct bfd *
1478 gdb_bfd_ref (struct bfd *abfd)
1479 {
1480 int *p_refcount;
1481
1482 if (abfd == NULL)
1483 return NULL;
1484
1485 p_refcount = bfd_usrdata (abfd);
1486
1487 if (p_refcount != NULL)
1488 {
1489 *p_refcount += 1;
1490 return abfd;
1491 }
1492
1493 p_refcount = xmalloc (sizeof (*p_refcount));
1494 *p_refcount = 1;
1495 bfd_usrdata (abfd) = p_refcount;
1496
1497 return abfd;
1498 }
1499
1500 /* Unreference and possibly close ABFD. */
1501 void
1502 gdb_bfd_unref (struct bfd *abfd)
1503 {
1504 int *p_refcount;
1505 char *name;
1506
1507 if (abfd == NULL)
1508 return;
1509
1510 p_refcount = bfd_usrdata (abfd);
1511
1512 /* Valid range for p_refcount: a pointer to int counter, which has a
1513 value of 1 (single owner) or 2 (shared). */
1514 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1515
1516 *p_refcount -= 1;
1517 if (*p_refcount > 0)
1518 return;
1519
1520 xfree (p_refcount);
1521 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1522
1523 name = bfd_get_filename (abfd);
1524 gdb_bfd_close_or_warn (abfd);
1525 xfree (name);
1526 }
1527
1528 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1529 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1530 searching the objfiles in the order they are stored internally,
1531 ignoring CURRENT_OBJFILE.
1532
1533 On most platorms, it should be close enough to doing the best
1534 we can without some knowledge specific to the architecture. */
1535
1536 void
1537 default_iterate_over_objfiles_in_search_order
1538 (struct gdbarch *gdbarch,
1539 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1540 void *cb_data, struct objfile *current_objfile)
1541 {
1542 int stop = 0;
1543 struct objfile *objfile;
1544
1545 ALL_OBJFILES (objfile)
1546 {
1547 stop = cb (objfile, cb_data);
1548 if (stop)
1549 return;
1550 }
1551 }
1552
1553 /* Provide a prototype to silence -Wmissing-prototypes. */
1554 extern initialize_file_ftype _initialize_objfiles;
1555
1556 void
1557 _initialize_objfiles (void)
1558 {
1559 objfiles_pspace_data
1560 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1561 }
This page took 0.062589 seconds and 4 git commands to generate.