Fix native follow-exec-mode "new"
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observer.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55
56 /* Keep a registry of per-objfile data-pointers required by other GDB
57 modules. */
58
59 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
60
61 /* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
64 struct objfile_pspace_info
65 {
66 struct obj_section **sections;
67 int num_sections;
68
69 /* Nonzero if object files have been added since the section map
70 was last updated. */
71 int new_objfiles_available;
72
73 /* Nonzero if the section map MUST be updated before use. */
74 int section_map_dirty;
75
76 /* Nonzero if section map updates should be inhibited if possible. */
77 int inhibit_updates;
78 };
79
80 /* Per-program-space data key. */
81 static const struct program_space_data *objfiles_pspace_data;
82
83 static void
84 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
85 {
86 struct objfile_pspace_info *info = arg;
87
88 xfree (info->sections);
89 xfree (info);
90 }
91
92 /* Get the current svr4 data. If none is found yet, add it now. This
93 function always returns a valid object. */
94
95 static struct objfile_pspace_info *
96 get_objfile_pspace_data (struct program_space *pspace)
97 {
98 struct objfile_pspace_info *info;
99
100 info = program_space_data (pspace, objfiles_pspace_data);
101 if (info == NULL)
102 {
103 info = XCNEW (struct objfile_pspace_info);
104 set_program_space_data (pspace, objfiles_pspace_data, info);
105 }
106
107 return info;
108 }
109
110 \f
111
112 /* Per-BFD data key. */
113
114 static const struct bfd_data *objfiles_bfd_data;
115
116 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
117 NULL, and it already has a per-BFD storage object, use that.
118 Otherwise, allocate a new per-BFD storage object. If ABFD is not
119 NULL, the object is allocated on the BFD; otherwise it is allocated
120 on OBJFILE's obstack. Note that it is not safe to call this
121 multiple times for a given OBJFILE -- it can only be called when
122 allocating or re-initializing OBJFILE. */
123
124 static struct objfile_per_bfd_storage *
125 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
126 {
127 struct objfile_per_bfd_storage *storage = NULL;
128
129 if (abfd != NULL)
130 storage = bfd_data (abfd, objfiles_bfd_data);
131
132 if (storage == NULL)
133 {
134 /* If the object requires gdb to do relocations, we simply fall
135 back to not sharing data across users. These cases are rare
136 enough that this seems reasonable. */
137 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
138 {
139 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
140 set_bfd_data (abfd, objfiles_bfd_data, storage);
141 }
142 else
143 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
144 struct objfile_per_bfd_storage);
145
146 /* Look up the gdbarch associated with the BFD. */
147 if (abfd != NULL)
148 storage->gdbarch = gdbarch_from_bfd (abfd);
149
150 obstack_init (&storage->storage_obstack);
151 storage->filename_cache = bcache_xmalloc (NULL, NULL);
152 storage->macro_cache = bcache_xmalloc (NULL, NULL);
153 storage->language_of_main = language_unknown;
154 }
155
156 return storage;
157 }
158
159 /* Free STORAGE. */
160
161 static void
162 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
163 {
164 bcache_xfree (storage->filename_cache);
165 bcache_xfree (storage->macro_cache);
166 if (storage->demangled_names_hash)
167 htab_delete (storage->demangled_names_hash);
168 obstack_free (&storage->storage_obstack, 0);
169 }
170
171 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
172 cleanup function to the BFD registry. */
173
174 static void
175 objfile_bfd_data_free (struct bfd *unused, void *d)
176 {
177 free_objfile_per_bfd_storage (d);
178 }
179
180 /* See objfiles.h. */
181
182 void
183 set_objfile_per_bfd (struct objfile *objfile)
184 {
185 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
186 }
187
188 /* Set the objfile's per-BFD notion of the "main" name and
189 language. */
190
191 void
192 set_objfile_main_name (struct objfile *objfile,
193 const char *name, enum language lang)
194 {
195 if (objfile->per_bfd->name_of_main == NULL
196 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
197 objfile->per_bfd->name_of_main
198 = obstack_copy0 (&objfile->per_bfd->storage_obstack, name, strlen (name));
199 objfile->per_bfd->language_of_main = lang;
200 }
201
202 /* Helper structure to map blocks to static link properties in hash tables. */
203
204 struct static_link_htab_entry
205 {
206 const struct block *block;
207 const struct dynamic_prop *static_link;
208 };
209
210 /* Return a hash code for struct static_link_htab_entry *P. */
211
212 static hashval_t
213 static_link_htab_entry_hash (const void *p)
214 {
215 const struct static_link_htab_entry *e
216 = (const struct static_link_htab_entry *) p;
217
218 return htab_hash_pointer (e->block);
219 }
220
221 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
222 mappings for the same block. */
223
224 static int
225 static_link_htab_entry_eq (const void *p1, const void *p2)
226 {
227 const struct static_link_htab_entry *e1
228 = (const struct static_link_htab_entry *) p1;
229 const struct static_link_htab_entry *e2
230 = (const struct static_link_htab_entry *) p2;
231
232 return e1->block == e2->block;
233 }
234
235 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
236 Must not be called more than once for each BLOCK. */
237
238 void
239 objfile_register_static_link (struct objfile *objfile,
240 const struct block *block,
241 const struct dynamic_prop *static_link)
242 {
243 void **slot;
244 struct static_link_htab_entry lookup_entry;
245 struct static_link_htab_entry *entry;
246
247 if (objfile->static_links == NULL)
248 objfile->static_links = htab_create_alloc
249 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
250 xcalloc, xfree);
251
252 /* Create a slot for the mapping, make sure it's the first mapping for this
253 block and then create the mapping itself. */
254 lookup_entry.block = block;
255 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
256 gdb_assert (*slot == NULL);
257
258 entry = (struct static_link_htab_entry *) obstack_alloc
259 (&objfile->objfile_obstack, sizeof (*entry));
260 entry->block = block;
261 entry->static_link = static_link;
262 *slot = (void *) entry;
263 }
264
265 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
266 none was found. */
267
268 const struct dynamic_prop *
269 objfile_lookup_static_link (struct objfile *objfile,
270 const struct block *block)
271 {
272 struct static_link_htab_entry *entry;
273 struct static_link_htab_entry lookup_entry;
274
275 if (objfile->static_links == NULL)
276 return NULL;
277 lookup_entry.block = block;
278 entry
279 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
280 &lookup_entry);
281 if (entry == NULL)
282 return NULL;
283
284 gdb_assert (entry->block == block);
285 return entry->static_link;
286 }
287
288 \f
289
290 /* Called via bfd_map_over_sections to build up the section table that
291 the objfile references. The objfile contains pointers to the start
292 of the table (objfile->sections) and to the first location after
293 the end of the table (objfile->sections_end). */
294
295 static void
296 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
297 struct objfile *objfile, int force)
298 {
299 struct obj_section *section;
300
301 if (!force)
302 {
303 flagword aflag;
304
305 aflag = bfd_get_section_flags (abfd, asect);
306 if (!(aflag & SEC_ALLOC))
307 return;
308 }
309
310 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
311 section->objfile = objfile;
312 section->the_bfd_section = asect;
313 section->ovly_mapped = 0;
314 }
315
316 static void
317 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
318 void *objfilep)
319 {
320 add_to_objfile_sections_full (abfd, asect, objfilep, 0);
321 }
322
323 /* Builds a section table for OBJFILE.
324
325 Note that the OFFSET and OVLY_MAPPED in each table entry are
326 initialized to zero. */
327
328 void
329 build_objfile_section_table (struct objfile *objfile)
330 {
331 int count = gdb_bfd_count_sections (objfile->obfd);
332
333 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
334 count,
335 struct obj_section);
336 objfile->sections_end = (objfile->sections + count);
337 bfd_map_over_sections (objfile->obfd,
338 add_to_objfile_sections, (void *) objfile);
339
340 /* See gdb_bfd_section_index. */
341 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
342 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
343 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
344 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
345 }
346
347 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
348 allocate a new objfile struct, fill it in as best we can, link it
349 into the list of all known objfiles, and return a pointer to the
350 new objfile struct.
351
352 NAME should contain original non-canonicalized filename or other
353 identifier as entered by user. If there is no better source use
354 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
355 NAME content is copied into returned objfile.
356
357 The FLAGS word contains various bits (OBJF_*) that can be taken as
358 requests for specific operations. Other bits like OBJF_SHARED are
359 simply copied through to the new objfile flags member. */
360
361 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
362 by jv-lang.c, to create an artificial objfile used to hold
363 information about dynamically-loaded Java classes. Unfortunately,
364 that branch of this function doesn't get tested very frequently, so
365 it's prone to breakage. (E.g. at one time the name was set to NULL
366 in that situation, which broke a loop over all names in the dynamic
367 library loader.) If you change this function, please try to leave
368 things in a consistent state even if abfd is NULL. */
369
370 struct objfile *
371 allocate_objfile (bfd *abfd, const char *name, int flags)
372 {
373 struct objfile *objfile;
374 char *expanded_name;
375
376 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
377 objfile->psymbol_cache = psymbol_bcache_init ();
378 /* We could use obstack_specify_allocation here instead, but
379 gdb_obstack.h specifies the alloc/dealloc functions. */
380 obstack_init (&objfile->objfile_obstack);
381
382 objfile_alloc_data (objfile);
383
384 if (name == NULL)
385 {
386 gdb_assert (abfd == NULL);
387 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
388 expanded_name = xstrdup ("<<anonymous objfile>>");
389 }
390 else if ((flags & OBJF_NOT_FILENAME) != 0
391 || is_target_filename (name))
392 expanded_name = xstrdup (name);
393 else
394 expanded_name = gdb_abspath (name);
395 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
396 expanded_name,
397 strlen (expanded_name));
398 xfree (expanded_name);
399
400 /* Update the per-objfile information that comes from the bfd, ensuring
401 that any data that is reference is saved in the per-objfile data
402 region. */
403
404 objfile->obfd = abfd;
405 gdb_bfd_ref (abfd);
406 if (abfd != NULL)
407 {
408 objfile->mtime = bfd_get_mtime (abfd);
409
410 /* Build section table. */
411 build_objfile_section_table (objfile);
412 }
413
414 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
415 objfile->pspace = current_program_space;
416
417 terminate_minimal_symbol_table (objfile);
418
419 /* Initialize the section indexes for this objfile, so that we can
420 later detect if they are used w/o being properly assigned to. */
421
422 objfile->sect_index_text = -1;
423 objfile->sect_index_data = -1;
424 objfile->sect_index_bss = -1;
425 objfile->sect_index_rodata = -1;
426
427 /* Add this file onto the tail of the linked list of other such files. */
428
429 objfile->next = NULL;
430 if (object_files == NULL)
431 object_files = objfile;
432 else
433 {
434 struct objfile *last_one;
435
436 for (last_one = object_files;
437 last_one->next;
438 last_one = last_one->next);
439 last_one->next = objfile;
440 }
441
442 /* Save passed in flag bits. */
443 objfile->flags |= flags;
444
445 /* Rebuild section map next time we need it. */
446 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
447
448 return objfile;
449 }
450
451 /* Retrieve the gdbarch associated with OBJFILE. */
452
453 struct gdbarch *
454 get_objfile_arch (const struct objfile *objfile)
455 {
456 return objfile->per_bfd->gdbarch;
457 }
458
459 /* If there is a valid and known entry point, function fills *ENTRY_P with it
460 and returns non-zero; otherwise it returns zero. */
461
462 int
463 entry_point_address_query (CORE_ADDR *entry_p)
464 {
465 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
466 return 0;
467
468 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
469 + ANOFFSET (symfile_objfile->section_offsets,
470 symfile_objfile->per_bfd->ei.the_bfd_section_index));
471
472 return 1;
473 }
474
475 /* Get current entry point address. Call error if it is not known. */
476
477 CORE_ADDR
478 entry_point_address (void)
479 {
480 CORE_ADDR retval;
481
482 if (!entry_point_address_query (&retval))
483 error (_("Entry point address is not known."));
484
485 return retval;
486 }
487
488 /* Iterator on PARENT and every separate debug objfile of PARENT.
489 The usage pattern is:
490 for (objfile = parent;
491 objfile;
492 objfile = objfile_separate_debug_iterate (parent, objfile))
493 ...
494 */
495
496 struct objfile *
497 objfile_separate_debug_iterate (const struct objfile *parent,
498 const struct objfile *objfile)
499 {
500 struct objfile *res;
501
502 /* If any, return the first child. */
503 res = objfile->separate_debug_objfile;
504 if (res)
505 return res;
506
507 /* Common case where there is no separate debug objfile. */
508 if (objfile == parent)
509 return NULL;
510
511 /* Return the brother if any. Note that we don't iterate on brothers of
512 the parents. */
513 res = objfile->separate_debug_objfile_link;
514 if (res)
515 return res;
516
517 for (res = objfile->separate_debug_objfile_backlink;
518 res != parent;
519 res = res->separate_debug_objfile_backlink)
520 {
521 gdb_assert (res != NULL);
522 if (res->separate_debug_objfile_link)
523 return res->separate_debug_objfile_link;
524 }
525 return NULL;
526 }
527
528 /* Put one object file before a specified on in the global list.
529 This can be used to make sure an object file is destroyed before
530 another when using ALL_OBJFILES_SAFE to free all objfiles. */
531 void
532 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
533 {
534 struct objfile **objp;
535
536 unlink_objfile (objfile);
537
538 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
539 {
540 if (*objp == before_this)
541 {
542 objfile->next = *objp;
543 *objp = objfile;
544 return;
545 }
546 }
547
548 internal_error (__FILE__, __LINE__,
549 _("put_objfile_before: before objfile not in list"));
550 }
551
552 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
553 list.
554
555 It is not a bug, or error, to call this function if OBJFILE is not known
556 to be in the current list. This is done in the case of mapped objfiles,
557 for example, just to ensure that the mapped objfile doesn't appear twice
558 in the list. Since the list is threaded, linking in a mapped objfile
559 twice would create a circular list.
560
561 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
562 unlinking it, just to ensure that we have completely severed any linkages
563 between the OBJFILE and the list. */
564
565 void
566 unlink_objfile (struct objfile *objfile)
567 {
568 struct objfile **objpp;
569
570 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
571 {
572 if (*objpp == objfile)
573 {
574 *objpp = (*objpp)->next;
575 objfile->next = NULL;
576 return;
577 }
578 }
579
580 internal_error (__FILE__, __LINE__,
581 _("unlink_objfile: objfile already unlinked"));
582 }
583
584 /* Add OBJFILE as a separate debug objfile of PARENT. */
585
586 void
587 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
588 {
589 gdb_assert (objfile && parent);
590
591 /* Must not be already in a list. */
592 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
593 gdb_assert (objfile->separate_debug_objfile_link == NULL);
594 gdb_assert (objfile->separate_debug_objfile == NULL);
595 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
596 gdb_assert (parent->separate_debug_objfile_link == NULL);
597
598 objfile->separate_debug_objfile_backlink = parent;
599 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
600 parent->separate_debug_objfile = objfile;
601
602 /* Put the separate debug object before the normal one, this is so that
603 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
604 put_objfile_before (objfile, parent);
605 }
606
607 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
608 itself. */
609
610 void
611 free_objfile_separate_debug (struct objfile *objfile)
612 {
613 struct objfile *child;
614
615 for (child = objfile->separate_debug_objfile; child;)
616 {
617 struct objfile *next_child = child->separate_debug_objfile_link;
618 free_objfile (child);
619 child = next_child;
620 }
621 }
622
623 /* Destroy an objfile and all the symtabs and psymtabs under it. */
624
625 void
626 free_objfile (struct objfile *objfile)
627 {
628 /* First notify observers that this objfile is about to be freed. */
629 observer_notify_free_objfile (objfile);
630
631 /* Free all separate debug objfiles. */
632 free_objfile_separate_debug (objfile);
633
634 if (objfile->separate_debug_objfile_backlink)
635 {
636 /* We freed the separate debug file, make sure the base objfile
637 doesn't reference it. */
638 struct objfile *child;
639
640 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
641
642 if (child == objfile)
643 {
644 /* OBJFILE is the first child. */
645 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
646 objfile->separate_debug_objfile_link;
647 }
648 else
649 {
650 /* Find OBJFILE in the list. */
651 while (1)
652 {
653 if (child->separate_debug_objfile_link == objfile)
654 {
655 child->separate_debug_objfile_link =
656 objfile->separate_debug_objfile_link;
657 break;
658 }
659 child = child->separate_debug_objfile_link;
660 gdb_assert (child);
661 }
662 }
663 }
664
665 /* Remove any references to this objfile in the global value
666 lists. */
667 preserve_values (objfile);
668
669 /* It still may reference data modules have associated with the objfile and
670 the symbol file data. */
671 forget_cached_source_info_for_objfile (objfile);
672
673 breakpoint_free_objfile (objfile);
674 btrace_free_objfile (objfile);
675
676 /* First do any symbol file specific actions required when we are
677 finished with a particular symbol file. Note that if the objfile
678 is using reusable symbol information (via mmalloc) then each of
679 these routines is responsible for doing the correct thing, either
680 freeing things which are valid only during this particular gdb
681 execution, or leaving them to be reused during the next one. */
682
683 if (objfile->sf != NULL)
684 {
685 (*objfile->sf->sym_finish) (objfile);
686 }
687
688 /* Discard any data modules have associated with the objfile. The function
689 still may reference objfile->obfd. */
690 objfile_free_data (objfile);
691
692 if (objfile->obfd)
693 gdb_bfd_unref (objfile->obfd);
694 else
695 free_objfile_per_bfd_storage (objfile->per_bfd);
696
697 /* Remove it from the chain of all objfiles. */
698
699 unlink_objfile (objfile);
700
701 if (objfile == symfile_objfile)
702 symfile_objfile = NULL;
703
704 /* Before the symbol table code was redone to make it easier to
705 selectively load and remove information particular to a specific
706 linkage unit, gdb used to do these things whenever the monolithic
707 symbol table was blown away. How much still needs to be done
708 is unknown, but we play it safe for now and keep each action until
709 it is shown to be no longer needed. */
710
711 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
712 for example), so we need to call this here. */
713 clear_pc_function_cache ();
714
715 /* Clear globals which might have pointed into a removed objfile.
716 FIXME: It's not clear which of these are supposed to persist
717 between expressions and which ought to be reset each time. */
718 expression_context_block = NULL;
719 innermost_block = NULL;
720
721 /* Check to see if the current_source_symtab belongs to this objfile,
722 and if so, call clear_current_source_symtab_and_line. */
723
724 {
725 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
726
727 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == objfile)
728 clear_current_source_symtab_and_line ();
729 }
730
731 if (objfile->global_psymbols.list)
732 xfree (objfile->global_psymbols.list);
733 if (objfile->static_psymbols.list)
734 xfree (objfile->static_psymbols.list);
735 /* Free the obstacks for non-reusable objfiles. */
736 psymbol_bcache_free (objfile->psymbol_cache);
737 obstack_free (&objfile->objfile_obstack, 0);
738
739 /* Rebuild section map next time we need it. */
740 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
741
742 /* Free the map for static links. There's no need to free static link
743 themselves since they were allocated on the objstack. */
744 if (objfile->static_links != NULL)
745 htab_delete (objfile->static_links);
746
747 /* The last thing we do is free the objfile struct itself. */
748 xfree (objfile);
749 }
750
751 static void
752 do_free_objfile_cleanup (void *obj)
753 {
754 free_objfile (obj);
755 }
756
757 struct cleanup *
758 make_cleanup_free_objfile (struct objfile *obj)
759 {
760 return make_cleanup (do_free_objfile_cleanup, obj);
761 }
762
763 /* Free all the object files at once and clean up their users. */
764
765 void
766 free_all_objfiles (void)
767 {
768 struct objfile *objfile, *temp;
769 struct so_list *so;
770
771 /* Any objfile referencewould become stale. */
772 for (so = master_so_list (); so; so = so->next)
773 gdb_assert (so->objfile == NULL);
774
775 ALL_OBJFILES_SAFE (objfile, temp)
776 {
777 free_objfile (objfile);
778 }
779 clear_symtab_users (0);
780 }
781 \f
782 /* A helper function for objfile_relocate1 that relocates a single
783 symbol. */
784
785 static void
786 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
787 struct section_offsets *delta)
788 {
789 fixup_symbol_section (sym, objfile);
790
791 /* The RS6000 code from which this was taken skipped
792 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
793 But I'm leaving out that test, on the theory that
794 they can't possibly pass the tests below. */
795 if ((SYMBOL_CLASS (sym) == LOC_LABEL
796 || SYMBOL_CLASS (sym) == LOC_STATIC)
797 && SYMBOL_SECTION (sym) >= 0)
798 {
799 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
800 }
801 }
802
803 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
804 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
805 Return non-zero iff any change happened. */
806
807 static int
808 objfile_relocate1 (struct objfile *objfile,
809 const struct section_offsets *new_offsets)
810 {
811 struct obj_section *s;
812 struct section_offsets *delta =
813 ((struct section_offsets *)
814 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
815
816 int i;
817 int something_changed = 0;
818
819 for (i = 0; i < objfile->num_sections; ++i)
820 {
821 delta->offsets[i] =
822 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
823 if (ANOFFSET (delta, i) != 0)
824 something_changed = 1;
825 }
826 if (!something_changed)
827 return 0;
828
829 /* OK, get all the symtabs. */
830 {
831 struct compunit_symtab *cust;
832 struct symtab *s;
833
834 ALL_OBJFILE_FILETABS (objfile, cust, s)
835 {
836 struct linetable *l;
837 int i;
838
839 /* First the line table. */
840 l = SYMTAB_LINETABLE (s);
841 if (l)
842 {
843 for (i = 0; i < l->nitems; ++i)
844 l->item[i].pc += ANOFFSET (delta,
845 COMPUNIT_BLOCK_LINE_SECTION
846 (cust));
847 }
848 }
849
850 ALL_OBJFILE_COMPUNITS (objfile, cust)
851 {
852 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
853 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
854
855 if (BLOCKVECTOR_MAP (bv))
856 addrmap_relocate (BLOCKVECTOR_MAP (bv),
857 ANOFFSET (delta, block_line_section));
858
859 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
860 {
861 struct block *b;
862 struct symbol *sym;
863 struct dict_iterator iter;
864
865 b = BLOCKVECTOR_BLOCK (bv, i);
866 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
867 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
868
869 /* We only want to iterate over the local symbols, not any
870 symbols in included symtabs. */
871 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
872 {
873 relocate_one_symbol (sym, objfile, delta);
874 }
875 }
876 }
877 }
878
879 /* Relocate isolated symbols. */
880 {
881 struct symbol *iter;
882
883 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
884 relocate_one_symbol (iter, objfile, delta);
885 }
886
887 if (objfile->psymtabs_addrmap)
888 addrmap_relocate (objfile->psymtabs_addrmap,
889 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
890
891 if (objfile->sf)
892 objfile->sf->qf->relocate (objfile, new_offsets, delta);
893
894 {
895 int i;
896
897 for (i = 0; i < objfile->num_sections; ++i)
898 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
899 }
900
901 /* Rebuild section map next time we need it. */
902 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
903
904 /* Update the table in exec_ops, used to read memory. */
905 ALL_OBJFILE_OSECTIONS (objfile, s)
906 {
907 int idx = s - objfile->sections;
908
909 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
910 obj_section_addr (s));
911 }
912
913 /* Data changed. */
914 return 1;
915 }
916
917 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
918 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
919
920 The number and ordering of sections does differ between the two objfiles.
921 Only their names match. Also the file offsets will differ (objfile being
922 possibly prelinked but separate_debug_objfile is probably not prelinked) but
923 the in-memory absolute address as specified by NEW_OFFSETS must match both
924 files. */
925
926 void
927 objfile_relocate (struct objfile *objfile,
928 const struct section_offsets *new_offsets)
929 {
930 struct objfile *debug_objfile;
931 int changed = 0;
932
933 changed |= objfile_relocate1 (objfile, new_offsets);
934
935 for (debug_objfile = objfile->separate_debug_objfile;
936 debug_objfile;
937 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
938 {
939 struct section_addr_info *objfile_addrs;
940 struct section_offsets *new_debug_offsets;
941 struct cleanup *my_cleanups;
942
943 objfile_addrs = build_section_addr_info_from_objfile (objfile);
944 my_cleanups = make_cleanup (xfree, objfile_addrs);
945
946 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
947 relative ones must be already created according to debug_objfile. */
948
949 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
950
951 gdb_assert (debug_objfile->num_sections
952 == gdb_bfd_count_sections (debug_objfile->obfd));
953 new_debug_offsets =
954 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
955 make_cleanup (xfree, new_debug_offsets);
956 relative_addr_info_to_section_offsets (new_debug_offsets,
957 debug_objfile->num_sections,
958 objfile_addrs);
959
960 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
961
962 do_cleanups (my_cleanups);
963 }
964
965 /* Relocate breakpoints as necessary, after things are relocated. */
966 if (changed)
967 breakpoint_re_set ();
968 }
969
970 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
971 not touched here.
972 Return non-zero iff any change happened. */
973
974 static int
975 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
976 {
977 struct section_offsets *new_offsets =
978 ((struct section_offsets *)
979 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
980 int i;
981
982 for (i = 0; i < objfile->num_sections; ++i)
983 new_offsets->offsets[i] = slide;
984
985 return objfile_relocate1 (objfile, new_offsets);
986 }
987
988 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
989 SEPARATE_DEBUG_OBJFILEs. */
990
991 void
992 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
993 {
994 struct objfile *debug_objfile;
995 int changed = 0;
996
997 changed |= objfile_rebase1 (objfile, slide);
998
999 for (debug_objfile = objfile->separate_debug_objfile;
1000 debug_objfile;
1001 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
1002 changed |= objfile_rebase1 (debug_objfile, slide);
1003
1004 /* Relocate breakpoints as necessary, after things are relocated. */
1005 if (changed)
1006 breakpoint_re_set ();
1007 }
1008 \f
1009 /* Return non-zero if OBJFILE has partial symbols. */
1010
1011 int
1012 objfile_has_partial_symbols (struct objfile *objfile)
1013 {
1014 if (!objfile->sf)
1015 return 0;
1016
1017 /* If we have not read psymbols, but we have a function capable of reading
1018 them, then that is an indication that they are in fact available. Without
1019 this function the symbols may have been already read in but they also may
1020 not be present in this objfile. */
1021 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
1022 && objfile->sf->sym_read_psymbols != NULL)
1023 return 1;
1024
1025 return objfile->sf->qf->has_symbols (objfile);
1026 }
1027
1028 /* Return non-zero if OBJFILE has full symbols. */
1029
1030 int
1031 objfile_has_full_symbols (struct objfile *objfile)
1032 {
1033 return objfile->compunit_symtabs != NULL;
1034 }
1035
1036 /* Return non-zero if OBJFILE has full or partial symbols, either directly
1037 or through a separate debug file. */
1038
1039 int
1040 objfile_has_symbols (struct objfile *objfile)
1041 {
1042 struct objfile *o;
1043
1044 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
1045 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1046 return 1;
1047 return 0;
1048 }
1049
1050
1051 /* Many places in gdb want to test just to see if we have any partial
1052 symbols available. This function returns zero if none are currently
1053 available, nonzero otherwise. */
1054
1055 int
1056 have_partial_symbols (void)
1057 {
1058 struct objfile *ofp;
1059
1060 ALL_OBJFILES (ofp)
1061 {
1062 if (objfile_has_partial_symbols (ofp))
1063 return 1;
1064 }
1065 return 0;
1066 }
1067
1068 /* Many places in gdb want to test just to see if we have any full
1069 symbols available. This function returns zero if none are currently
1070 available, nonzero otherwise. */
1071
1072 int
1073 have_full_symbols (void)
1074 {
1075 struct objfile *ofp;
1076
1077 ALL_OBJFILES (ofp)
1078 {
1079 if (objfile_has_full_symbols (ofp))
1080 return 1;
1081 }
1082 return 0;
1083 }
1084
1085
1086 /* This operations deletes all objfile entries that represent solibs that
1087 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1088 command. */
1089
1090 void
1091 objfile_purge_solibs (void)
1092 {
1093 struct objfile *objf;
1094 struct objfile *temp;
1095
1096 ALL_OBJFILES_SAFE (objf, temp)
1097 {
1098 /* We assume that the solib package has been purged already, or will
1099 be soon. */
1100
1101 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1102 free_objfile (objf);
1103 }
1104 }
1105
1106
1107 /* Many places in gdb want to test just to see if we have any minimal
1108 symbols available. This function returns zero if none are currently
1109 available, nonzero otherwise. */
1110
1111 int
1112 have_minimal_symbols (void)
1113 {
1114 struct objfile *ofp;
1115
1116 ALL_OBJFILES (ofp)
1117 {
1118 if (ofp->per_bfd->minimal_symbol_count > 0)
1119 {
1120 return 1;
1121 }
1122 }
1123 return 0;
1124 }
1125
1126 /* Qsort comparison function. */
1127
1128 static int
1129 qsort_cmp (const void *a, const void *b)
1130 {
1131 const struct obj_section *sect1 = *(const struct obj_section **) a;
1132 const struct obj_section *sect2 = *(const struct obj_section **) b;
1133 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1134 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1135
1136 if (sect1_addr < sect2_addr)
1137 return -1;
1138 else if (sect1_addr > sect2_addr)
1139 return 1;
1140 else
1141 {
1142 /* Sections are at the same address. This could happen if
1143 A) we have an objfile and a separate debuginfo.
1144 B) we are confused, and have added sections without proper relocation,
1145 or something like that. */
1146
1147 const struct objfile *const objfile1 = sect1->objfile;
1148 const struct objfile *const objfile2 = sect2->objfile;
1149
1150 if (objfile1->separate_debug_objfile == objfile2
1151 || objfile2->separate_debug_objfile == objfile1)
1152 {
1153 /* Case A. The ordering doesn't matter: separate debuginfo files
1154 will be filtered out later. */
1155
1156 return 0;
1157 }
1158
1159 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1160 triage. This section could be slow (since we iterate over all
1161 objfiles in each call to qsort_cmp), but this shouldn't happen
1162 very often (GDB is already in a confused state; one hopes this
1163 doesn't happen at all). If you discover that significant time is
1164 spent in the loops below, do 'set complaints 100' and examine the
1165 resulting complaints. */
1166
1167 if (objfile1 == objfile2)
1168 {
1169 /* Both sections came from the same objfile. We are really confused.
1170 Sort on sequence order of sections within the objfile. */
1171
1172 const struct obj_section *osect;
1173
1174 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1175 if (osect == sect1)
1176 return -1;
1177 else if (osect == sect2)
1178 return 1;
1179
1180 /* We should have found one of the sections before getting here. */
1181 gdb_assert_not_reached ("section not found");
1182 }
1183 else
1184 {
1185 /* Sort on sequence number of the objfile in the chain. */
1186
1187 const struct objfile *objfile;
1188
1189 ALL_OBJFILES (objfile)
1190 if (objfile == objfile1)
1191 return -1;
1192 else if (objfile == objfile2)
1193 return 1;
1194
1195 /* We should have found one of the objfiles before getting here. */
1196 gdb_assert_not_reached ("objfile not found");
1197 }
1198 }
1199
1200 /* Unreachable. */
1201 gdb_assert_not_reached ("unexpected code path");
1202 return 0;
1203 }
1204
1205 /* Select "better" obj_section to keep. We prefer the one that came from
1206 the real object, rather than the one from separate debuginfo.
1207 Most of the time the two sections are exactly identical, but with
1208 prelinking the .rel.dyn section in the real object may have different
1209 size. */
1210
1211 static struct obj_section *
1212 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1213 {
1214 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1215 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1216 || (b->objfile->separate_debug_objfile == a->objfile));
1217 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1218 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1219
1220 if (a->objfile->separate_debug_objfile != NULL)
1221 return a;
1222 return b;
1223 }
1224
1225 /* Return 1 if SECTION should be inserted into the section map.
1226 We want to insert only non-overlay and non-TLS section. */
1227
1228 static int
1229 insert_section_p (const struct bfd *abfd,
1230 const struct bfd_section *section)
1231 {
1232 const bfd_vma lma = bfd_section_lma (abfd, section);
1233
1234 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1235 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1236 /* This is an overlay section. IN_MEMORY check is needed to avoid
1237 discarding sections from the "system supplied DSO" (aka vdso)
1238 on some Linux systems (e.g. Fedora 11). */
1239 return 0;
1240 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1241 /* This is a TLS section. */
1242 return 0;
1243
1244 return 1;
1245 }
1246
1247 /* Filter out overlapping sections where one section came from the real
1248 objfile, and the other from a separate debuginfo file.
1249 Return the size of table after redundant sections have been eliminated. */
1250
1251 static int
1252 filter_debuginfo_sections (struct obj_section **map, int map_size)
1253 {
1254 int i, j;
1255
1256 for (i = 0, j = 0; i < map_size - 1; i++)
1257 {
1258 struct obj_section *const sect1 = map[i];
1259 struct obj_section *const sect2 = map[i + 1];
1260 const struct objfile *const objfile1 = sect1->objfile;
1261 const struct objfile *const objfile2 = sect2->objfile;
1262 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1263 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1264
1265 if (sect1_addr == sect2_addr
1266 && (objfile1->separate_debug_objfile == objfile2
1267 || objfile2->separate_debug_objfile == objfile1))
1268 {
1269 map[j++] = preferred_obj_section (sect1, sect2);
1270 ++i;
1271 }
1272 else
1273 map[j++] = sect1;
1274 }
1275
1276 if (i < map_size)
1277 {
1278 gdb_assert (i == map_size - 1);
1279 map[j++] = map[i];
1280 }
1281
1282 /* The map should not have shrunk to less than half the original size. */
1283 gdb_assert (map_size / 2 <= j);
1284
1285 return j;
1286 }
1287
1288 /* Filter out overlapping sections, issuing a warning if any are found.
1289 Overlapping sections could really be overlay sections which we didn't
1290 classify as such in insert_section_p, or we could be dealing with a
1291 corrupt binary. */
1292
1293 static int
1294 filter_overlapping_sections (struct obj_section **map, int map_size)
1295 {
1296 int i, j;
1297
1298 for (i = 0, j = 0; i < map_size - 1; )
1299 {
1300 int k;
1301
1302 map[j++] = map[i];
1303 for (k = i + 1; k < map_size; k++)
1304 {
1305 struct obj_section *const sect1 = map[i];
1306 struct obj_section *const sect2 = map[k];
1307 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1308 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1309 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1310
1311 gdb_assert (sect1_addr <= sect2_addr);
1312
1313 if (sect1_endaddr <= sect2_addr)
1314 break;
1315 else
1316 {
1317 /* We have an overlap. Report it. */
1318
1319 struct objfile *const objf1 = sect1->objfile;
1320 struct objfile *const objf2 = sect2->objfile;
1321
1322 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1323 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1324
1325 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1326
1327 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1328
1329 complaint (&symfile_complaints,
1330 _("unexpected overlap between:\n"
1331 " (A) section `%s' from `%s' [%s, %s)\n"
1332 " (B) section `%s' from `%s' [%s, %s).\n"
1333 "Will ignore section B"),
1334 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1335 paddress (gdbarch, sect1_addr),
1336 paddress (gdbarch, sect1_endaddr),
1337 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1338 paddress (gdbarch, sect2_addr),
1339 paddress (gdbarch, sect2_endaddr));
1340 }
1341 }
1342 i = k;
1343 }
1344
1345 if (i < map_size)
1346 {
1347 gdb_assert (i == map_size - 1);
1348 map[j++] = map[i];
1349 }
1350
1351 return j;
1352 }
1353
1354
1355 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1356 TLS, overlay and overlapping sections. */
1357
1358 static void
1359 update_section_map (struct program_space *pspace,
1360 struct obj_section ***pmap, int *pmap_size)
1361 {
1362 struct objfile_pspace_info *pspace_info;
1363 int alloc_size, map_size, i;
1364 struct obj_section *s, **map;
1365 struct objfile *objfile;
1366
1367 pspace_info = get_objfile_pspace_data (pspace);
1368 gdb_assert (pspace_info->section_map_dirty != 0
1369 || pspace_info->new_objfiles_available != 0);
1370
1371 map = *pmap;
1372 xfree (map);
1373
1374 alloc_size = 0;
1375 ALL_PSPACE_OBJFILES (pspace, objfile)
1376 ALL_OBJFILE_OSECTIONS (objfile, s)
1377 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1378 alloc_size += 1;
1379
1380 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1381 if (alloc_size == 0)
1382 {
1383 *pmap = NULL;
1384 *pmap_size = 0;
1385 return;
1386 }
1387
1388 map = xmalloc (alloc_size * sizeof (*map));
1389
1390 i = 0;
1391 ALL_PSPACE_OBJFILES (pspace, objfile)
1392 ALL_OBJFILE_OSECTIONS (objfile, s)
1393 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1394 map[i++] = s;
1395
1396 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1397 map_size = filter_debuginfo_sections(map, alloc_size);
1398 map_size = filter_overlapping_sections(map, map_size);
1399
1400 if (map_size < alloc_size)
1401 /* Some sections were eliminated. Trim excess space. */
1402 map = xrealloc (map, map_size * sizeof (*map));
1403 else
1404 gdb_assert (alloc_size == map_size);
1405
1406 *pmap = map;
1407 *pmap_size = map_size;
1408 }
1409
1410 /* Bsearch comparison function. */
1411
1412 static int
1413 bsearch_cmp (const void *key, const void *elt)
1414 {
1415 const CORE_ADDR pc = *(CORE_ADDR *) key;
1416 const struct obj_section *section = *(const struct obj_section **) elt;
1417
1418 if (pc < obj_section_addr (section))
1419 return -1;
1420 if (pc < obj_section_endaddr (section))
1421 return 0;
1422 return 1;
1423 }
1424
1425 /* Returns a section whose range includes PC or NULL if none found. */
1426
1427 struct obj_section *
1428 find_pc_section (CORE_ADDR pc)
1429 {
1430 struct objfile_pspace_info *pspace_info;
1431 struct obj_section *s, **sp;
1432
1433 /* Check for mapped overlay section first. */
1434 s = find_pc_mapped_section (pc);
1435 if (s)
1436 return s;
1437
1438 pspace_info = get_objfile_pspace_data (current_program_space);
1439 if (pspace_info->section_map_dirty
1440 || (pspace_info->new_objfiles_available
1441 && !pspace_info->inhibit_updates))
1442 {
1443 update_section_map (current_program_space,
1444 &pspace_info->sections,
1445 &pspace_info->num_sections);
1446
1447 /* Don't need updates to section map until objfiles are added,
1448 removed or relocated. */
1449 pspace_info->new_objfiles_available = 0;
1450 pspace_info->section_map_dirty = 0;
1451 }
1452
1453 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1454 bsearch be non-NULL. */
1455 if (pspace_info->sections == NULL)
1456 {
1457 gdb_assert (pspace_info->num_sections == 0);
1458 return NULL;
1459 }
1460
1461 sp = (struct obj_section **) bsearch (&pc,
1462 pspace_info->sections,
1463 pspace_info->num_sections,
1464 sizeof (*pspace_info->sections),
1465 bsearch_cmp);
1466 if (sp != NULL)
1467 return *sp;
1468 return NULL;
1469 }
1470
1471
1472 /* Return non-zero if PC is in a section called NAME. */
1473
1474 int
1475 pc_in_section (CORE_ADDR pc, char *name)
1476 {
1477 struct obj_section *s;
1478 int retval = 0;
1479
1480 s = find_pc_section (pc);
1481
1482 retval = (s != NULL
1483 && s->the_bfd_section->name != NULL
1484 && strcmp (s->the_bfd_section->name, name) == 0);
1485 return (retval);
1486 }
1487 \f
1488
1489 /* Set section_map_dirty so section map will be rebuilt next time it
1490 is used. Called by reread_symbols. */
1491
1492 void
1493 objfiles_changed (void)
1494 {
1495 /* Rebuild section map next time we need it. */
1496 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1497 }
1498
1499 /* See comments in objfiles.h. */
1500
1501 void
1502 inhibit_section_map_updates (struct program_space *pspace)
1503 {
1504 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1505 }
1506
1507 /* See comments in objfiles.h. */
1508
1509 void
1510 resume_section_map_updates (struct program_space *pspace)
1511 {
1512 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1513 }
1514
1515 /* See comments in objfiles.h. */
1516
1517 void
1518 resume_section_map_updates_cleanup (void *arg)
1519 {
1520 resume_section_map_updates (arg);
1521 }
1522
1523 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1524 otherwise. */
1525
1526 int
1527 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1528 {
1529 struct obj_section *osect;
1530
1531 if (objfile == NULL)
1532 return 0;
1533
1534 ALL_OBJFILE_OSECTIONS (objfile, osect)
1535 {
1536 if (section_is_overlay (osect) && !section_is_mapped (osect))
1537 continue;
1538
1539 if (obj_section_addr (osect) <= addr
1540 && addr < obj_section_endaddr (osect))
1541 return 1;
1542 }
1543 return 0;
1544 }
1545
1546 int
1547 shared_objfile_contains_address_p (struct program_space *pspace,
1548 CORE_ADDR address)
1549 {
1550 struct objfile *objfile;
1551
1552 ALL_PSPACE_OBJFILES (pspace, objfile)
1553 {
1554 if ((objfile->flags & OBJF_SHARED) != 0
1555 && is_addr_in_objfile (address, objfile))
1556 return 1;
1557 }
1558
1559 return 0;
1560 }
1561
1562 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1563 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1564 searching the objfiles in the order they are stored internally,
1565 ignoring CURRENT_OBJFILE.
1566
1567 On most platorms, it should be close enough to doing the best
1568 we can without some knowledge specific to the architecture. */
1569
1570 void
1571 default_iterate_over_objfiles_in_search_order
1572 (struct gdbarch *gdbarch,
1573 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1574 void *cb_data, struct objfile *current_objfile)
1575 {
1576 int stop = 0;
1577 struct objfile *objfile;
1578
1579 ALL_OBJFILES (objfile)
1580 {
1581 stop = cb (objfile, cb_data);
1582 if (stop)
1583 return;
1584 }
1585 }
1586
1587 /* See objfiles.h. */
1588
1589 const char *
1590 objfile_name (const struct objfile *objfile)
1591 {
1592 if (objfile->obfd != NULL)
1593 return bfd_get_filename (objfile->obfd);
1594
1595 return objfile->original_name;
1596 }
1597
1598 /* See objfiles.h. */
1599
1600 const char *
1601 objfile_filename (const struct objfile *objfile)
1602 {
1603 if (objfile->obfd != NULL)
1604 return bfd_get_filename (objfile->obfd);
1605
1606 return NULL;
1607 }
1608
1609 /* See objfiles.h. */
1610
1611 const char *
1612 objfile_debug_name (const struct objfile *objfile)
1613 {
1614 return lbasename (objfile->original_name);
1615 }
1616
1617 /* Provide a prototype to silence -Wmissing-prototypes. */
1618 extern initialize_file_ftype _initialize_objfiles;
1619
1620 void
1621 _initialize_objfiles (void)
1622 {
1623 objfiles_pspace_data
1624 = register_program_space_data_with_cleanup (NULL,
1625 objfiles_pspace_data_cleanup);
1626
1627 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1628 objfile_bfd_data_free);
1629 }
This page took 0.081385 seconds and 5 git commands to generate.