Update years in copyright notice for the GDB files.
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "mdebugread.h"
34 #include "expression.h"
35 #include "parser-defs.h"
36
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48 #include "source.h"
49 #include "addrmap.h"
50 #include "arch-utils.h"
51 #include "exec.h"
52 #include "observer.h"
53 #include "complaints.h"
54 #include "psymtab.h"
55 #include "solist.h"
56 #include "gdb_bfd.h"
57
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile *rt_common_objfile; /* For runtime common symbols */
67
68 struct objfile_pspace_info
69 {
70 int objfiles_changed_p;
71 struct obj_section **sections;
72 int num_sections;
73 };
74
75 /* Per-program-space data key. */
76 static const struct program_space_data *objfiles_pspace_data;
77
78 static void
79 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
80 {
81 struct objfile_pspace_info *info;
82
83 info = program_space_data (pspace, objfiles_pspace_data);
84 if (info != NULL)
85 {
86 xfree (info->sections);
87 xfree (info);
88 }
89 }
90
91 /* Get the current svr4 data. If none is found yet, add it now. This
92 function always returns a valid object. */
93
94 static struct objfile_pspace_info *
95 get_objfile_pspace_data (struct program_space *pspace)
96 {
97 struct objfile_pspace_info *info;
98
99 info = program_space_data (pspace, objfiles_pspace_data);
100 if (info == NULL)
101 {
102 info = XZALLOC (struct objfile_pspace_info);
103 set_program_space_data (pspace, objfiles_pspace_data, info);
104 }
105
106 return info;
107 }
108
109 \f
110
111 /* Per-BFD data key. */
112
113 static const struct bfd_data *objfiles_bfd_data;
114
115 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
116 NULL, and it already has a per-BFD storage object, use that.
117 Otherwise, allocate a new per-BFD storage object. If ABFD is not
118 NULL, the object is allocated on the BFD; otherwise it is allocated
119 on OBJFILE's obstack. Note that it is not safe to call this
120 multiple times for a given OBJFILE -- it can only be called when
121 allocating or re-initializing OBJFILE. */
122
123 static struct objfile_per_bfd_storage *
124 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
125 {
126 struct objfile_per_bfd_storage *storage = NULL;
127
128 if (abfd != NULL)
129 storage = bfd_data (abfd, objfiles_bfd_data);
130
131 if (storage == NULL)
132 {
133 if (abfd != NULL)
134 {
135 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
136 set_bfd_data (abfd, objfiles_bfd_data, storage);
137 }
138 else
139 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
140 struct objfile_per_bfd_storage);
141
142 obstack_init (&storage->storage_obstack);
143 storage->filename_cache = bcache_xmalloc (NULL, NULL);
144 storage->macro_cache = bcache_xmalloc (NULL, NULL);
145 }
146
147 return storage;
148 }
149
150 /* Free STORAGE. */
151
152 static void
153 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
154 {
155 bcache_xfree (storage->filename_cache);
156 bcache_xfree (storage->macro_cache);
157 obstack_free (&storage->storage_obstack, 0);
158 }
159
160 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
161 cleanup function to the BFD registry. */
162
163 static void
164 objfile_bfd_data_free (struct bfd *unused, void *d)
165 {
166 free_objfile_per_bfd_storage (d);
167 }
168
169 /* See objfiles.h. */
170
171 void
172 set_objfile_per_bfd (struct objfile *objfile)
173 {
174 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
175 }
176
177 \f
178
179 /* Called via bfd_map_over_sections to build up the section table that
180 the objfile references. The objfile contains pointers to the start
181 of the table (objfile->sections) and to the first location after
182 the end of the table (objfile->sections_end). */
183
184 static void
185 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
186 void *objfilep)
187 {
188 struct objfile *objfile = (struct objfile *) objfilep;
189 struct obj_section section;
190 flagword aflag;
191
192 aflag = bfd_get_section_flags (abfd, asect);
193 if (!(aflag & SEC_ALLOC))
194 return;
195 if (bfd_section_size (abfd, asect) == 0)
196 return;
197
198 section.objfile = objfile;
199 section.the_bfd_section = asect;
200 section.ovly_mapped = 0;
201 obstack_grow (&objfile->objfile_obstack,
202 (char *) &section, sizeof (section));
203 objfile->sections_end
204 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
205 }
206
207 /* Builds a section table for OBJFILE.
208
209 Note that while we are building the table, which goes into the
210 objfile obstack, we hijack the sections_end pointer to instead hold
211 a count of the number of sections. When bfd_map_over_sections
212 returns, this count is used to compute the pointer to the end of
213 the sections table, which then overwrites the count.
214
215 Also note that the OFFSET and OVLY_MAPPED in each table entry
216 are initialized to zero.
217
218 Also note that if anything else writes to the objfile obstack while
219 we are building the table, we're pretty much hosed. */
220
221 void
222 build_objfile_section_table (struct objfile *objfile)
223 {
224 objfile->sections_end = 0;
225 bfd_map_over_sections (objfile->obfd,
226 add_to_objfile_sections, (void *) objfile);
227 objfile->sections = obstack_finish (&objfile->objfile_obstack);
228 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
229 }
230
231 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
232 allocate a new objfile struct, fill it in as best we can, link it
233 into the list of all known objfiles, and return a pointer to the
234 new objfile struct.
235
236 The FLAGS word contains various bits (OBJF_*) that can be taken as
237 requests for specific operations. Other bits like OBJF_SHARED are
238 simply copied through to the new objfile flags member. */
239
240 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
241 by jv-lang.c, to create an artificial objfile used to hold
242 information about dynamically-loaded Java classes. Unfortunately,
243 that branch of this function doesn't get tested very frequently, so
244 it's prone to breakage. (E.g. at one time the name was set to NULL
245 in that situation, which broke a loop over all names in the dynamic
246 library loader.) If you change this function, please try to leave
247 things in a consistent state even if abfd is NULL. */
248
249 struct objfile *
250 allocate_objfile (bfd *abfd, int flags)
251 {
252 struct objfile *objfile;
253
254 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
255 objfile->psymbol_cache = psymbol_bcache_init ();
256 /* We could use obstack_specify_allocation here instead, but
257 gdb_obstack.h specifies the alloc/dealloc functions. */
258 obstack_init (&objfile->objfile_obstack);
259 terminate_minimal_symbol_table (objfile);
260
261 objfile_alloc_data (objfile);
262
263 /* Update the per-objfile information that comes from the bfd, ensuring
264 that any data that is reference is saved in the per-objfile data
265 region. */
266
267 objfile->obfd = abfd;
268 gdb_bfd_ref (abfd);
269 if (abfd != NULL)
270 {
271 /* Look up the gdbarch associated with the BFD. */
272 objfile->gdbarch = gdbarch_from_bfd (abfd);
273
274 objfile->name = bfd_get_filename (abfd);
275 objfile->mtime = bfd_get_mtime (abfd);
276
277 /* Build section table. */
278 build_objfile_section_table (objfile);
279 }
280 else
281 {
282 objfile->name = "<<anonymous objfile>>";
283 }
284
285 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
286 objfile->pspace = current_program_space;
287
288 /* Initialize the section indexes for this objfile, so that we can
289 later detect if they are used w/o being properly assigned to. */
290
291 objfile->sect_index_text = -1;
292 objfile->sect_index_data = -1;
293 objfile->sect_index_bss = -1;
294 objfile->sect_index_rodata = -1;
295
296 /* Add this file onto the tail of the linked list of other such files. */
297
298 objfile->next = NULL;
299 if (object_files == NULL)
300 object_files = objfile;
301 else
302 {
303 struct objfile *last_one;
304
305 for (last_one = object_files;
306 last_one->next;
307 last_one = last_one->next);
308 last_one->next = objfile;
309 }
310
311 /* Save passed in flag bits. */
312 objfile->flags |= flags;
313
314 /* Rebuild section map next time we need it. */
315 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
316
317 return objfile;
318 }
319
320 /* Retrieve the gdbarch associated with OBJFILE. */
321 struct gdbarch *
322 get_objfile_arch (struct objfile *objfile)
323 {
324 return objfile->gdbarch;
325 }
326
327 /* If there is a valid and known entry point, function fills *ENTRY_P with it
328 and returns non-zero; otherwise it returns zero. */
329
330 int
331 entry_point_address_query (CORE_ADDR *entry_p)
332 {
333 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
334 return 0;
335
336 *entry_p = symfile_objfile->ei.entry_point;
337
338 return 1;
339 }
340
341 /* Get current entry point address. Call error if it is not known. */
342
343 CORE_ADDR
344 entry_point_address (void)
345 {
346 CORE_ADDR retval;
347
348 if (!entry_point_address_query (&retval))
349 error (_("Entry point address is not known."));
350
351 return retval;
352 }
353
354 /* Iterator on PARENT and every separate debug objfile of PARENT.
355 The usage pattern is:
356 for (objfile = parent;
357 objfile;
358 objfile = objfile_separate_debug_iterate (parent, objfile))
359 ...
360 */
361
362 struct objfile *
363 objfile_separate_debug_iterate (const struct objfile *parent,
364 const struct objfile *objfile)
365 {
366 struct objfile *res;
367
368 /* If any, return the first child. */
369 res = objfile->separate_debug_objfile;
370 if (res)
371 return res;
372
373 /* Common case where there is no separate debug objfile. */
374 if (objfile == parent)
375 return NULL;
376
377 /* Return the brother if any. Note that we don't iterate on brothers of
378 the parents. */
379 res = objfile->separate_debug_objfile_link;
380 if (res)
381 return res;
382
383 for (res = objfile->separate_debug_objfile_backlink;
384 res != parent;
385 res = res->separate_debug_objfile_backlink)
386 {
387 gdb_assert (res != NULL);
388 if (res->separate_debug_objfile_link)
389 return res->separate_debug_objfile_link;
390 }
391 return NULL;
392 }
393
394 /* Put one object file before a specified on in the global list.
395 This can be used to make sure an object file is destroyed before
396 another when using ALL_OBJFILES_SAFE to free all objfiles. */
397 void
398 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
399 {
400 struct objfile **objp;
401
402 unlink_objfile (objfile);
403
404 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
405 {
406 if (*objp == before_this)
407 {
408 objfile->next = *objp;
409 *objp = objfile;
410 return;
411 }
412 }
413
414 internal_error (__FILE__, __LINE__,
415 _("put_objfile_before: before objfile not in list"));
416 }
417
418 /* Put OBJFILE at the front of the list. */
419
420 void
421 objfile_to_front (struct objfile *objfile)
422 {
423 struct objfile **objp;
424 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
425 {
426 if (*objp == objfile)
427 {
428 /* Unhook it from where it is. */
429 *objp = objfile->next;
430 /* Put it in the front. */
431 objfile->next = object_files;
432 object_files = objfile;
433 break;
434 }
435 }
436 }
437
438 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
439 list.
440
441 It is not a bug, or error, to call this function if OBJFILE is not known
442 to be in the current list. This is done in the case of mapped objfiles,
443 for example, just to ensure that the mapped objfile doesn't appear twice
444 in the list. Since the list is threaded, linking in a mapped objfile
445 twice would create a circular list.
446
447 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
448 unlinking it, just to ensure that we have completely severed any linkages
449 between the OBJFILE and the list. */
450
451 void
452 unlink_objfile (struct objfile *objfile)
453 {
454 struct objfile **objpp;
455
456 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
457 {
458 if (*objpp == objfile)
459 {
460 *objpp = (*objpp)->next;
461 objfile->next = NULL;
462 return;
463 }
464 }
465
466 internal_error (__FILE__, __LINE__,
467 _("unlink_objfile: objfile already unlinked"));
468 }
469
470 /* Add OBJFILE as a separate debug objfile of PARENT. */
471
472 void
473 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
474 {
475 gdb_assert (objfile && parent);
476
477 /* Must not be already in a list. */
478 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
479 gdb_assert (objfile->separate_debug_objfile_link == NULL);
480
481 objfile->separate_debug_objfile_backlink = parent;
482 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
483 parent->separate_debug_objfile = objfile;
484
485 /* Put the separate debug object before the normal one, this is so that
486 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
487 put_objfile_before (objfile, parent);
488 }
489
490 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
491 itself. */
492
493 void
494 free_objfile_separate_debug (struct objfile *objfile)
495 {
496 struct objfile *child;
497
498 for (child = objfile->separate_debug_objfile; child;)
499 {
500 struct objfile *next_child = child->separate_debug_objfile_link;
501 free_objfile (child);
502 child = next_child;
503 }
504 }
505
506 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
507 that as much as possible is allocated on the objfile_obstack
508 so that the memory can be efficiently freed.
509
510 Things which we do NOT free because they are not in malloc'd memory
511 or not in memory specific to the objfile include:
512
513 objfile -> sf
514
515 FIXME: If the objfile is using reusable symbol information (via mmalloc),
516 then we need to take into account the fact that more than one process
517 may be using the symbol information at the same time (when mmalloc is
518 extended to support cooperative locking). When more than one process
519 is using the mapped symbol info, we need to be more careful about when
520 we free objects in the reusable area. */
521
522 void
523 free_objfile (struct objfile *objfile)
524 {
525 /* Free all separate debug objfiles. */
526 free_objfile_separate_debug (objfile);
527
528 if (objfile->separate_debug_objfile_backlink)
529 {
530 /* We freed the separate debug file, make sure the base objfile
531 doesn't reference it. */
532 struct objfile *child;
533
534 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
535
536 if (child == objfile)
537 {
538 /* OBJFILE is the first child. */
539 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
540 objfile->separate_debug_objfile_link;
541 }
542 else
543 {
544 /* Find OBJFILE in the list. */
545 while (1)
546 {
547 if (child->separate_debug_objfile_link == objfile)
548 {
549 child->separate_debug_objfile_link =
550 objfile->separate_debug_objfile_link;
551 break;
552 }
553 child = child->separate_debug_objfile_link;
554 gdb_assert (child);
555 }
556 }
557 }
558
559 /* Remove any references to this objfile in the global value
560 lists. */
561 preserve_values (objfile);
562
563 /* It still may reference data modules have associated with the objfile and
564 the symbol file data. */
565 forget_cached_source_info_for_objfile (objfile);
566
567 /* First do any symbol file specific actions required when we are
568 finished with a particular symbol file. Note that if the objfile
569 is using reusable symbol information (via mmalloc) then each of
570 these routines is responsible for doing the correct thing, either
571 freeing things which are valid only during this particular gdb
572 execution, or leaving them to be reused during the next one. */
573
574 if (objfile->sf != NULL)
575 {
576 (*objfile->sf->sym_finish) (objfile);
577 }
578
579 /* Discard any data modules have associated with the objfile. The function
580 still may reference objfile->obfd. */
581 objfile_free_data (objfile);
582
583 if (objfile->obfd)
584 gdb_bfd_unref (objfile->obfd);
585 else
586 free_objfile_per_bfd_storage (objfile->per_bfd);
587
588 /* Remove it from the chain of all objfiles. */
589
590 unlink_objfile (objfile);
591
592 if (objfile == symfile_objfile)
593 symfile_objfile = NULL;
594
595 if (objfile == rt_common_objfile)
596 rt_common_objfile = NULL;
597
598 /* Before the symbol table code was redone to make it easier to
599 selectively load and remove information particular to a specific
600 linkage unit, gdb used to do these things whenever the monolithic
601 symbol table was blown away. How much still needs to be done
602 is unknown, but we play it safe for now and keep each action until
603 it is shown to be no longer needed. */
604
605 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
606 for example), so we need to call this here. */
607 clear_pc_function_cache ();
608
609 /* Clear globals which might have pointed into a removed objfile.
610 FIXME: It's not clear which of these are supposed to persist
611 between expressions and which ought to be reset each time. */
612 expression_context_block = NULL;
613 innermost_block = NULL;
614
615 /* Check to see if the current_source_symtab belongs to this objfile,
616 and if so, call clear_current_source_symtab_and_line. */
617
618 {
619 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
620
621 if (cursal.symtab && cursal.symtab->objfile == objfile)
622 clear_current_source_symtab_and_line ();
623 }
624
625 /* The last thing we do is free the objfile struct itself. */
626
627 if (objfile->global_psymbols.list)
628 xfree (objfile->global_psymbols.list);
629 if (objfile->static_psymbols.list)
630 xfree (objfile->static_psymbols.list);
631 /* Free the obstacks for non-reusable objfiles. */
632 psymbol_bcache_free (objfile->psymbol_cache);
633 if (objfile->demangled_names_hash)
634 htab_delete (objfile->demangled_names_hash);
635 obstack_free (&objfile->objfile_obstack, 0);
636
637 /* Rebuild section map next time we need it. */
638 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
639
640 xfree (objfile);
641 }
642
643 static void
644 do_free_objfile_cleanup (void *obj)
645 {
646 free_objfile (obj);
647 }
648
649 struct cleanup *
650 make_cleanup_free_objfile (struct objfile *obj)
651 {
652 return make_cleanup (do_free_objfile_cleanup, obj);
653 }
654
655 /* Free all the object files at once and clean up their users. */
656
657 void
658 free_all_objfiles (void)
659 {
660 struct objfile *objfile, *temp;
661 struct so_list *so;
662
663 /* Any objfile referencewould become stale. */
664 for (so = master_so_list (); so; so = so->next)
665 gdb_assert (so->objfile == NULL);
666
667 ALL_OBJFILES_SAFE (objfile, temp)
668 {
669 free_objfile (objfile);
670 }
671 clear_symtab_users (0);
672 }
673 \f
674 /* A helper function for objfile_relocate1 that relocates a single
675 symbol. */
676
677 static void
678 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
679 struct section_offsets *delta)
680 {
681 fixup_symbol_section (sym, objfile);
682
683 /* The RS6000 code from which this was taken skipped
684 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
685 But I'm leaving out that test, on the theory that
686 they can't possibly pass the tests below. */
687 if ((SYMBOL_CLASS (sym) == LOC_LABEL
688 || SYMBOL_CLASS (sym) == LOC_STATIC)
689 && SYMBOL_SECTION (sym) >= 0)
690 {
691 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
692 }
693 }
694
695 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
696 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
697 Return non-zero iff any change happened. */
698
699 static int
700 objfile_relocate1 (struct objfile *objfile,
701 struct section_offsets *new_offsets)
702 {
703 struct obj_section *s;
704 struct section_offsets *delta =
705 ((struct section_offsets *)
706 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
707
708 int i;
709 int something_changed = 0;
710
711 for (i = 0; i < objfile->num_sections; ++i)
712 {
713 delta->offsets[i] =
714 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
715 if (ANOFFSET (delta, i) != 0)
716 something_changed = 1;
717 }
718 if (!something_changed)
719 return 0;
720
721 /* OK, get all the symtabs. */
722 {
723 struct symtab *s;
724
725 ALL_OBJFILE_SYMTABS (objfile, s)
726 {
727 struct linetable *l;
728 struct blockvector *bv;
729 int i;
730
731 /* First the line table. */
732 l = LINETABLE (s);
733 if (l)
734 {
735 for (i = 0; i < l->nitems; ++i)
736 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
737 }
738
739 /* Don't relocate a shared blockvector more than once. */
740 if (!s->primary)
741 continue;
742
743 bv = BLOCKVECTOR (s);
744 if (BLOCKVECTOR_MAP (bv))
745 addrmap_relocate (BLOCKVECTOR_MAP (bv),
746 ANOFFSET (delta, s->block_line_section));
747
748 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
749 {
750 struct block *b;
751 struct symbol *sym;
752 struct dict_iterator iter;
753
754 b = BLOCKVECTOR_BLOCK (bv, i);
755 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
756 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
757
758 /* We only want to iterate over the local symbols, not any
759 symbols in included symtabs. */
760 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
761 {
762 relocate_one_symbol (sym, objfile, delta);
763 }
764 }
765 }
766 }
767
768 /* Relocate isolated symbols. */
769 {
770 struct symbol *iter;
771
772 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
773 relocate_one_symbol (iter, objfile, delta);
774 }
775
776 if (objfile->psymtabs_addrmap)
777 addrmap_relocate (objfile->psymtabs_addrmap,
778 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
779
780 if (objfile->sf)
781 objfile->sf->qf->relocate (objfile, new_offsets, delta);
782
783 {
784 struct minimal_symbol *msym;
785
786 ALL_OBJFILE_MSYMBOLS (objfile, msym)
787 if (SYMBOL_SECTION (msym) >= 0)
788 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
789 }
790 /* Relocating different sections by different amounts may cause the symbols
791 to be out of order. */
792 msymbols_sort (objfile);
793
794 if (objfile->ei.entry_point_p)
795 {
796 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
797 only as a fallback. */
798 struct obj_section *s;
799 s = find_pc_section (objfile->ei.entry_point);
800 if (s)
801 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
802 else
803 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
804 }
805
806 {
807 int i;
808
809 for (i = 0; i < objfile->num_sections; ++i)
810 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
811 }
812
813 /* Rebuild section map next time we need it. */
814 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
815
816 /* Update the table in exec_ops, used to read memory. */
817 ALL_OBJFILE_OSECTIONS (objfile, s)
818 {
819 int idx = s->the_bfd_section->index;
820
821 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
822 obj_section_addr (s));
823 }
824
825 /* Relocating probes. */
826 if (objfile->sf && objfile->sf->sym_probe_fns)
827 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
828 new_offsets, delta);
829
830 /* Data changed. */
831 return 1;
832 }
833
834 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
835 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
836
837 The number and ordering of sections does differ between the two objfiles.
838 Only their names match. Also the file offsets will differ (objfile being
839 possibly prelinked but separate_debug_objfile is probably not prelinked) but
840 the in-memory absolute address as specified by NEW_OFFSETS must match both
841 files. */
842
843 void
844 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
845 {
846 struct objfile *debug_objfile;
847 int changed = 0;
848
849 changed |= objfile_relocate1 (objfile, new_offsets);
850
851 for (debug_objfile = objfile->separate_debug_objfile;
852 debug_objfile;
853 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
854 {
855 struct section_addr_info *objfile_addrs;
856 struct section_offsets *new_debug_offsets;
857 struct cleanup *my_cleanups;
858
859 objfile_addrs = build_section_addr_info_from_objfile (objfile);
860 my_cleanups = make_cleanup (xfree, objfile_addrs);
861
862 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
863 relative ones must be already created according to debug_objfile. */
864
865 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
866
867 gdb_assert (debug_objfile->num_sections
868 == bfd_count_sections (debug_objfile->obfd));
869 new_debug_offsets =
870 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
871 make_cleanup (xfree, new_debug_offsets);
872 relative_addr_info_to_section_offsets (new_debug_offsets,
873 debug_objfile->num_sections,
874 objfile_addrs);
875
876 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
877
878 do_cleanups (my_cleanups);
879 }
880
881 /* Relocate breakpoints as necessary, after things are relocated. */
882 if (changed)
883 breakpoint_re_set ();
884 }
885
886 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
887 not touched here.
888 Return non-zero iff any change happened. */
889
890 static int
891 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
892 {
893 struct section_offsets *new_offsets =
894 ((struct section_offsets *)
895 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
896 int i;
897
898 for (i = 0; i < objfile->num_sections; ++i)
899 new_offsets->offsets[i] = slide;
900
901 return objfile_relocate1 (objfile, new_offsets);
902 }
903
904 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
905 SEPARATE_DEBUG_OBJFILEs. */
906
907 void
908 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
909 {
910 struct objfile *debug_objfile;
911 int changed = 0;
912
913 changed |= objfile_rebase1 (objfile, slide);
914
915 for (debug_objfile = objfile->separate_debug_objfile;
916 debug_objfile;
917 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
918 changed |= objfile_rebase1 (debug_objfile, slide);
919
920 /* Relocate breakpoints as necessary, after things are relocated. */
921 if (changed)
922 breakpoint_re_set ();
923 }
924 \f
925 /* Return non-zero if OBJFILE has partial symbols. */
926
927 int
928 objfile_has_partial_symbols (struct objfile *objfile)
929 {
930 if (!objfile->sf)
931 return 0;
932
933 /* If we have not read psymbols, but we have a function capable of reading
934 them, then that is an indication that they are in fact available. Without
935 this function the symbols may have been already read in but they also may
936 not be present in this objfile. */
937 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
938 && objfile->sf->sym_read_psymbols != NULL)
939 return 1;
940
941 return objfile->sf->qf->has_symbols (objfile);
942 }
943
944 /* Return non-zero if OBJFILE has full symbols. */
945
946 int
947 objfile_has_full_symbols (struct objfile *objfile)
948 {
949 return objfile->symtabs != NULL;
950 }
951
952 /* Return non-zero if OBJFILE has full or partial symbols, either directly
953 or through a separate debug file. */
954
955 int
956 objfile_has_symbols (struct objfile *objfile)
957 {
958 struct objfile *o;
959
960 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
961 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
962 return 1;
963 return 0;
964 }
965
966
967 /* Many places in gdb want to test just to see if we have any partial
968 symbols available. This function returns zero if none are currently
969 available, nonzero otherwise. */
970
971 int
972 have_partial_symbols (void)
973 {
974 struct objfile *ofp;
975
976 ALL_OBJFILES (ofp)
977 {
978 if (objfile_has_partial_symbols (ofp))
979 return 1;
980 }
981 return 0;
982 }
983
984 /* Many places in gdb want to test just to see if we have any full
985 symbols available. This function returns zero if none are currently
986 available, nonzero otherwise. */
987
988 int
989 have_full_symbols (void)
990 {
991 struct objfile *ofp;
992
993 ALL_OBJFILES (ofp)
994 {
995 if (objfile_has_full_symbols (ofp))
996 return 1;
997 }
998 return 0;
999 }
1000
1001
1002 /* This operations deletes all objfile entries that represent solibs that
1003 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1004 command. */
1005
1006 void
1007 objfile_purge_solibs (void)
1008 {
1009 struct objfile *objf;
1010 struct objfile *temp;
1011
1012 ALL_OBJFILES_SAFE (objf, temp)
1013 {
1014 /* We assume that the solib package has been purged already, or will
1015 be soon. */
1016
1017 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1018 free_objfile (objf);
1019 }
1020 }
1021
1022
1023 /* Many places in gdb want to test just to see if we have any minimal
1024 symbols available. This function returns zero if none are currently
1025 available, nonzero otherwise. */
1026
1027 int
1028 have_minimal_symbols (void)
1029 {
1030 struct objfile *ofp;
1031
1032 ALL_OBJFILES (ofp)
1033 {
1034 if (ofp->minimal_symbol_count > 0)
1035 {
1036 return 1;
1037 }
1038 }
1039 return 0;
1040 }
1041
1042 /* Qsort comparison function. */
1043
1044 static int
1045 qsort_cmp (const void *a, const void *b)
1046 {
1047 const struct obj_section *sect1 = *(const struct obj_section **) a;
1048 const struct obj_section *sect2 = *(const struct obj_section **) b;
1049 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1050 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1051
1052 if (sect1_addr < sect2_addr)
1053 return -1;
1054 else if (sect1_addr > sect2_addr)
1055 return 1;
1056 else
1057 {
1058 /* Sections are at the same address. This could happen if
1059 A) we have an objfile and a separate debuginfo.
1060 B) we are confused, and have added sections without proper relocation,
1061 or something like that. */
1062
1063 const struct objfile *const objfile1 = sect1->objfile;
1064 const struct objfile *const objfile2 = sect2->objfile;
1065
1066 if (objfile1->separate_debug_objfile == objfile2
1067 || objfile2->separate_debug_objfile == objfile1)
1068 {
1069 /* Case A. The ordering doesn't matter: separate debuginfo files
1070 will be filtered out later. */
1071
1072 return 0;
1073 }
1074
1075 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1076 triage. This section could be slow (since we iterate over all
1077 objfiles in each call to qsort_cmp), but this shouldn't happen
1078 very often (GDB is already in a confused state; one hopes this
1079 doesn't happen at all). If you discover that significant time is
1080 spent in the loops below, do 'set complaints 100' and examine the
1081 resulting complaints. */
1082
1083 if (objfile1 == objfile2)
1084 {
1085 /* Both sections came from the same objfile. We are really confused.
1086 Sort on sequence order of sections within the objfile. */
1087
1088 const struct obj_section *osect;
1089
1090 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1091 if (osect == sect1)
1092 return -1;
1093 else if (osect == sect2)
1094 return 1;
1095
1096 /* We should have found one of the sections before getting here. */
1097 gdb_assert_not_reached ("section not found");
1098 }
1099 else
1100 {
1101 /* Sort on sequence number of the objfile in the chain. */
1102
1103 const struct objfile *objfile;
1104
1105 ALL_OBJFILES (objfile)
1106 if (objfile == objfile1)
1107 return -1;
1108 else if (objfile == objfile2)
1109 return 1;
1110
1111 /* We should have found one of the objfiles before getting here. */
1112 gdb_assert_not_reached ("objfile not found");
1113 }
1114 }
1115
1116 /* Unreachable. */
1117 gdb_assert_not_reached ("unexpected code path");
1118 return 0;
1119 }
1120
1121 /* Select "better" obj_section to keep. We prefer the one that came from
1122 the real object, rather than the one from separate debuginfo.
1123 Most of the time the two sections are exactly identical, but with
1124 prelinking the .rel.dyn section in the real object may have different
1125 size. */
1126
1127 static struct obj_section *
1128 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1129 {
1130 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1131 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1132 || (b->objfile->separate_debug_objfile == a->objfile));
1133 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1134 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1135
1136 if (a->objfile->separate_debug_objfile != NULL)
1137 return a;
1138 return b;
1139 }
1140
1141 /* Return 1 if SECTION should be inserted into the section map.
1142 We want to insert only non-overlay and non-TLS section. */
1143
1144 static int
1145 insert_section_p (const struct bfd *abfd,
1146 const struct bfd_section *section)
1147 {
1148 const bfd_vma lma = bfd_section_lma (abfd, section);
1149
1150 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1151 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1152 /* This is an overlay section. IN_MEMORY check is needed to avoid
1153 discarding sections from the "system supplied DSO" (aka vdso)
1154 on some Linux systems (e.g. Fedora 11). */
1155 return 0;
1156 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1157 /* This is a TLS section. */
1158 return 0;
1159
1160 return 1;
1161 }
1162
1163 /* Filter out overlapping sections where one section came from the real
1164 objfile, and the other from a separate debuginfo file.
1165 Return the size of table after redundant sections have been eliminated. */
1166
1167 static int
1168 filter_debuginfo_sections (struct obj_section **map, int map_size)
1169 {
1170 int i, j;
1171
1172 for (i = 0, j = 0; i < map_size - 1; i++)
1173 {
1174 struct obj_section *const sect1 = map[i];
1175 struct obj_section *const sect2 = map[i + 1];
1176 const struct objfile *const objfile1 = sect1->objfile;
1177 const struct objfile *const objfile2 = sect2->objfile;
1178 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1179 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1180
1181 if (sect1_addr == sect2_addr
1182 && (objfile1->separate_debug_objfile == objfile2
1183 || objfile2->separate_debug_objfile == objfile1))
1184 {
1185 map[j++] = preferred_obj_section (sect1, sect2);
1186 ++i;
1187 }
1188 else
1189 map[j++] = sect1;
1190 }
1191
1192 if (i < map_size)
1193 {
1194 gdb_assert (i == map_size - 1);
1195 map[j++] = map[i];
1196 }
1197
1198 /* The map should not have shrunk to less than half the original size. */
1199 gdb_assert (map_size / 2 <= j);
1200
1201 return j;
1202 }
1203
1204 /* Filter out overlapping sections, issuing a warning if any are found.
1205 Overlapping sections could really be overlay sections which we didn't
1206 classify as such in insert_section_p, or we could be dealing with a
1207 corrupt binary. */
1208
1209 static int
1210 filter_overlapping_sections (struct obj_section **map, int map_size)
1211 {
1212 int i, j;
1213
1214 for (i = 0, j = 0; i < map_size - 1; )
1215 {
1216 int k;
1217
1218 map[j++] = map[i];
1219 for (k = i + 1; k < map_size; k++)
1220 {
1221 struct obj_section *const sect1 = map[i];
1222 struct obj_section *const sect2 = map[k];
1223 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1224 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1225 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1226
1227 gdb_assert (sect1_addr <= sect2_addr);
1228
1229 if (sect1_endaddr <= sect2_addr)
1230 break;
1231 else
1232 {
1233 /* We have an overlap. Report it. */
1234
1235 struct objfile *const objf1 = sect1->objfile;
1236 struct objfile *const objf2 = sect2->objfile;
1237
1238 const struct bfd *const abfd1 = objf1->obfd;
1239 const struct bfd *const abfd2 = objf2->obfd;
1240
1241 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1242 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1243
1244 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1245
1246 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1247
1248 complaint (&symfile_complaints,
1249 _("unexpected overlap between:\n"
1250 " (A) section `%s' from `%s' [%s, %s)\n"
1251 " (B) section `%s' from `%s' [%s, %s).\n"
1252 "Will ignore section B"),
1253 bfd_section_name (abfd1, bfds1), objf1->name,
1254 paddress (gdbarch, sect1_addr),
1255 paddress (gdbarch, sect1_endaddr),
1256 bfd_section_name (abfd2, bfds2), objf2->name,
1257 paddress (gdbarch, sect2_addr),
1258 paddress (gdbarch, sect2_endaddr));
1259 }
1260 }
1261 i = k;
1262 }
1263
1264 if (i < map_size)
1265 {
1266 gdb_assert (i == map_size - 1);
1267 map[j++] = map[i];
1268 }
1269
1270 return j;
1271 }
1272
1273
1274 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1275 TLS, overlay and overlapping sections. */
1276
1277 static void
1278 update_section_map (struct program_space *pspace,
1279 struct obj_section ***pmap, int *pmap_size)
1280 {
1281 int alloc_size, map_size, i;
1282 struct obj_section *s, **map;
1283 struct objfile *objfile;
1284
1285 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1286
1287 map = *pmap;
1288 xfree (map);
1289
1290 alloc_size = 0;
1291 ALL_PSPACE_OBJFILES (pspace, objfile)
1292 ALL_OBJFILE_OSECTIONS (objfile, s)
1293 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1294 alloc_size += 1;
1295
1296 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1297 if (alloc_size == 0)
1298 {
1299 *pmap = NULL;
1300 *pmap_size = 0;
1301 return;
1302 }
1303
1304 map = xmalloc (alloc_size * sizeof (*map));
1305
1306 i = 0;
1307 ALL_PSPACE_OBJFILES (pspace, objfile)
1308 ALL_OBJFILE_OSECTIONS (objfile, s)
1309 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1310 map[i++] = s;
1311
1312 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1313 map_size = filter_debuginfo_sections(map, alloc_size);
1314 map_size = filter_overlapping_sections(map, map_size);
1315
1316 if (map_size < alloc_size)
1317 /* Some sections were eliminated. Trim excess space. */
1318 map = xrealloc (map, map_size * sizeof (*map));
1319 else
1320 gdb_assert (alloc_size == map_size);
1321
1322 *pmap = map;
1323 *pmap_size = map_size;
1324 }
1325
1326 /* Bsearch comparison function. */
1327
1328 static int
1329 bsearch_cmp (const void *key, const void *elt)
1330 {
1331 const CORE_ADDR pc = *(CORE_ADDR *) key;
1332 const struct obj_section *section = *(const struct obj_section **) elt;
1333
1334 if (pc < obj_section_addr (section))
1335 return -1;
1336 if (pc < obj_section_endaddr (section))
1337 return 0;
1338 return 1;
1339 }
1340
1341 /* Returns a section whose range includes PC or NULL if none found. */
1342
1343 struct obj_section *
1344 find_pc_section (CORE_ADDR pc)
1345 {
1346 struct objfile_pspace_info *pspace_info;
1347 struct obj_section *s, **sp;
1348
1349 /* Check for mapped overlay section first. */
1350 s = find_pc_mapped_section (pc);
1351 if (s)
1352 return s;
1353
1354 pspace_info = get_objfile_pspace_data (current_program_space);
1355 if (pspace_info->objfiles_changed_p != 0)
1356 {
1357 update_section_map (current_program_space,
1358 &pspace_info->sections,
1359 &pspace_info->num_sections);
1360
1361 /* Don't need updates to section map until objfiles are added,
1362 removed or relocated. */
1363 pspace_info->objfiles_changed_p = 0;
1364 }
1365
1366 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1367 bsearch be non-NULL. */
1368 if (pspace_info->sections == NULL)
1369 {
1370 gdb_assert (pspace_info->num_sections == 0);
1371 return NULL;
1372 }
1373
1374 sp = (struct obj_section **) bsearch (&pc,
1375 pspace_info->sections,
1376 pspace_info->num_sections,
1377 sizeof (*pspace_info->sections),
1378 bsearch_cmp);
1379 if (sp != NULL)
1380 return *sp;
1381 return NULL;
1382 }
1383
1384
1385 /* In SVR4, we recognize a trampoline by it's section name.
1386 That is, if the pc is in a section named ".plt" then we are in
1387 a trampoline. */
1388
1389 int
1390 in_plt_section (CORE_ADDR pc, char *name)
1391 {
1392 struct obj_section *s;
1393 int retval = 0;
1394
1395 s = find_pc_section (pc);
1396
1397 retval = (s != NULL
1398 && s->the_bfd_section->name != NULL
1399 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1400 return (retval);
1401 }
1402 \f
1403
1404 /* Set objfiles_changed_p so section map will be rebuilt next time it
1405 is used. Called by reread_symbols. */
1406
1407 void
1408 objfiles_changed (void)
1409 {
1410 /* Rebuild section map next time we need it. */
1411 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1412 }
1413
1414 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1415 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1416 searching the objfiles in the order they are stored internally,
1417 ignoring CURRENT_OBJFILE.
1418
1419 On most platorms, it should be close enough to doing the best
1420 we can without some knowledge specific to the architecture. */
1421
1422 void
1423 default_iterate_over_objfiles_in_search_order
1424 (struct gdbarch *gdbarch,
1425 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1426 void *cb_data, struct objfile *current_objfile)
1427 {
1428 int stop = 0;
1429 struct objfile *objfile;
1430
1431 ALL_OBJFILES (objfile)
1432 {
1433 stop = cb (objfile, cb_data);
1434 if (stop)
1435 return;
1436 }
1437 }
1438
1439 /* Provide a prototype to silence -Wmissing-prototypes. */
1440 extern initialize_file_ftype _initialize_objfiles;
1441
1442 void
1443 _initialize_objfiles (void)
1444 {
1445 objfiles_pspace_data
1446 = register_program_space_data_with_cleanup (NULL,
1447 objfiles_pspace_data_cleanup);
1448
1449 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1450 objfile_bfd_data_free);
1451 }
This page took 0.064686 seconds and 5 git commands to generate.