2010-05-06 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53 #include "observer.h"
54 #include "complaints.h"
55 #include "psymtab.h"
56 #include "solist.h"
57
58 /* Prototypes for local functions */
59
60 static void objfile_alloc_data (struct objfile *objfile);
61 static void objfile_free_data (struct objfile *objfile);
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile *current_objfile; /* For symbol file being read in */
67 struct objfile *rt_common_objfile; /* For runtime common symbols */
68
69 struct objfile_pspace_info
70 {
71 int objfiles_changed_p;
72 struct obj_section **sections;
73 int num_sections;
74 };
75
76 /* Per-program-space data key. */
77 static const struct program_space_data *objfiles_pspace_data;
78
79 static void
80 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
81 {
82 struct objfile_pspace_info *info;
83
84 info = program_space_data (pspace, objfiles_pspace_data);
85 if (info != NULL)
86 {
87 xfree (info->sections);
88 xfree (info);
89 }
90 }
91
92 /* Get the current svr4 data. If none is found yet, add it now. This
93 function always returns a valid object. */
94
95 static struct objfile_pspace_info *
96 get_objfile_pspace_data (struct program_space *pspace)
97 {
98 struct objfile_pspace_info *info;
99
100 info = program_space_data (pspace, objfiles_pspace_data);
101 if (info == NULL)
102 {
103 info = XZALLOC (struct objfile_pspace_info);
104 set_program_space_data (pspace, objfiles_pspace_data, info);
105 }
106
107 return info;
108 }
109
110 /* Records whether any objfiles appeared or disappeared since we last updated
111 address to obj section map. */
112
113 /* Locate all mappable sections of a BFD file.
114 objfile_p_char is a char * to get it through
115 bfd_map_over_sections; we cast it back to its proper type. */
116
117 /* Called via bfd_map_over_sections to build up the section table that
118 the objfile references. The objfile contains pointers to the start
119 of the table (objfile->sections) and to the first location after
120 the end of the table (objfile->sections_end). */
121
122 static void
123 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
124 void *objfile_p_char)
125 {
126 struct objfile *objfile = (struct objfile *) objfile_p_char;
127 struct obj_section section;
128 flagword aflag;
129
130 aflag = bfd_get_section_flags (abfd, asect);
131
132 if (!(aflag & SEC_ALLOC))
133 return;
134
135 if (0 == bfd_section_size (abfd, asect))
136 return;
137 section.objfile = objfile;
138 section.the_bfd_section = asect;
139 section.ovly_mapped = 0;
140 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
141 objfile->sections_end
142 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
143 }
144
145 /* Builds a section table for OBJFILE.
146 Returns 0 if OK, 1 on error (in which case bfd_error contains the
147 error).
148
149 Note that while we are building the table, which goes into the
150 psymbol obstack, we hijack the sections_end pointer to instead hold
151 a count of the number of sections. When bfd_map_over_sections
152 returns, this count is used to compute the pointer to the end of
153 the sections table, which then overwrites the count.
154
155 Also note that the OFFSET and OVLY_MAPPED in each table entry
156 are initialized to zero.
157
158 Also note that if anything else writes to the psymbol obstack while
159 we are building the table, we're pretty much hosed. */
160
161 int
162 build_objfile_section_table (struct objfile *objfile)
163 {
164 /* objfile->sections can be already set when reading a mapped symbol
165 file. I believe that we do need to rebuild the section table in
166 this case (we rebuild other things derived from the bfd), but we
167 can't free the old one (it's in the objfile_obstack). So we just
168 waste some memory. */
169
170 objfile->sections_end = 0;
171 bfd_map_over_sections (objfile->obfd,
172 add_to_objfile_sections, (void *) objfile);
173 objfile->sections = obstack_finish (&objfile->objfile_obstack);
174 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
175 return (0);
176 }
177
178 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
179 allocate a new objfile struct, fill it in as best we can, link it
180 into the list of all known objfiles, and return a pointer to the
181 new objfile struct.
182
183 The FLAGS word contains various bits (OBJF_*) that can be taken as
184 requests for specific operations. Other bits like OBJF_SHARED are
185 simply copied through to the new objfile flags member. */
186
187 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
188 by jv-lang.c, to create an artificial objfile used to hold
189 information about dynamically-loaded Java classes. Unfortunately,
190 that branch of this function doesn't get tested very frequently, so
191 it's prone to breakage. (E.g. at one time the name was set to NULL
192 in that situation, which broke a loop over all names in the dynamic
193 library loader.) If you change this function, please try to leave
194 things in a consistent state even if abfd is NULL. */
195
196 struct objfile *
197 allocate_objfile (bfd *abfd, int flags)
198 {
199 struct objfile *objfile;
200
201 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
202 objfile->psymbol_cache = bcache_xmalloc ();
203 objfile->macro_cache = bcache_xmalloc ();
204 objfile->filename_cache = bcache_xmalloc ();
205 /* We could use obstack_specify_allocation here instead, but
206 gdb_obstack.h specifies the alloc/dealloc functions. */
207 obstack_init (&objfile->objfile_obstack);
208 terminate_minimal_symbol_table (objfile);
209
210 objfile_alloc_data (objfile);
211
212 /* Update the per-objfile information that comes from the bfd, ensuring
213 that any data that is reference is saved in the per-objfile data
214 region. */
215
216 objfile->obfd = gdb_bfd_ref (abfd);
217 if (objfile->name != NULL)
218 {
219 xfree (objfile->name);
220 }
221 if (abfd != NULL)
222 {
223 /* Look up the gdbarch associated with the BFD. */
224 objfile->gdbarch = gdbarch_from_bfd (abfd);
225
226 objfile->name = xstrdup (bfd_get_filename (abfd));
227 objfile->mtime = bfd_get_mtime (abfd);
228
229 /* Build section table. */
230
231 if (build_objfile_section_table (objfile))
232 {
233 error (_("Can't find the file sections in `%s': %s"),
234 objfile->name, bfd_errmsg (bfd_get_error ()));
235 }
236 }
237 else
238 {
239 objfile->name = xstrdup ("<<anonymous objfile>>");
240 }
241
242 objfile->pspace = current_program_space;
243
244 /* Initialize the section indexes for this objfile, so that we can
245 later detect if they are used w/o being properly assigned to. */
246
247 objfile->sect_index_text = -1;
248 objfile->sect_index_data = -1;
249 objfile->sect_index_bss = -1;
250 objfile->sect_index_rodata = -1;
251
252 /* We don't yet have a C++-specific namespace symtab. */
253
254 objfile->cp_namespace_symtab = NULL;
255
256 /* Add this file onto the tail of the linked list of other such files. */
257
258 objfile->next = NULL;
259 if (object_files == NULL)
260 object_files = objfile;
261 else
262 {
263 struct objfile *last_one;
264
265 for (last_one = object_files;
266 last_one->next;
267 last_one = last_one->next);
268 last_one->next = objfile;
269 }
270
271 /* Save passed in flag bits. */
272 objfile->flags |= flags;
273
274 /* Rebuild section map next time we need it. */
275 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
276
277 return objfile;
278 }
279
280 /* Retrieve the gdbarch associated with OBJFILE. */
281 struct gdbarch *
282 get_objfile_arch (struct objfile *objfile)
283 {
284 return objfile->gdbarch;
285 }
286
287 /* Initialize entry point information for this objfile. */
288
289 void
290 init_entry_point_info (struct objfile *objfile)
291 {
292 /* Save startup file's range of PC addresses to help blockframe.c
293 decide where the bottom of the stack is. */
294
295 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
296 {
297 /* Executable file -- record its entry point so we'll recognize
298 the startup file because it contains the entry point. */
299 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
300 objfile->ei.entry_point_p = 1;
301 }
302 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
303 && bfd_get_start_address (objfile->obfd) != 0)
304 {
305 /* Some shared libraries may have entry points set and be
306 runnable. There's no clear way to indicate this, so just check
307 for values other than zero. */
308 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
309 objfile->ei.entry_point_p = 1;
310 }
311 else
312 {
313 /* Examination of non-executable.o files. Short-circuit this stuff. */
314 objfile->ei.entry_point_p = 0;
315 }
316 }
317
318 /* If there is a valid and known entry point, function fills *ENTRY_P with it
319 and returns non-zero; otherwise it returns zero. */
320
321 int
322 entry_point_address_query (CORE_ADDR *entry_p)
323 {
324 struct gdbarch *gdbarch;
325 CORE_ADDR entry_point;
326
327 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
328 return 0;
329
330 gdbarch = get_objfile_arch (symfile_objfile);
331
332 entry_point = symfile_objfile->ei.entry_point;
333
334 /* Make certain that the address points at real code, and not a
335 function descriptor. */
336 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
337 &current_target);
338
339 /* Remove any ISA markers, so that this matches entries in the
340 symbol table. */
341 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
342
343 *entry_p = entry_point;
344 return 1;
345 }
346
347 /* Get current entry point address. Call error if it is not known. */
348
349 CORE_ADDR
350 entry_point_address (void)
351 {
352 CORE_ADDR retval;
353
354 if (!entry_point_address_query (&retval))
355 error (_("Entry point address is not known."));
356
357 return retval;
358 }
359
360 /* Create the terminating entry of OBJFILE's minimal symbol table.
361 If OBJFILE->msymbols is zero, allocate a single entry from
362 OBJFILE->objfile_obstack; otherwise, just initialize
363 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
364 void
365 terminate_minimal_symbol_table (struct objfile *objfile)
366 {
367 if (! objfile->msymbols)
368 objfile->msymbols = ((struct minimal_symbol *)
369 obstack_alloc (&objfile->objfile_obstack,
370 sizeof (objfile->msymbols[0])));
371
372 {
373 struct minimal_symbol *m
374 = &objfile->msymbols[objfile->minimal_symbol_count];
375
376 memset (m, 0, sizeof (*m));
377 /* Don't rely on these enumeration values being 0's. */
378 MSYMBOL_TYPE (m) = mst_unknown;
379 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
380 }
381 }
382
383 /* Iterator on PARENT and every separate debug objfile of PARENT.
384 The usage pattern is:
385 for (objfile = parent;
386 objfile;
387 objfile = objfile_separate_debug_iterate (parent, objfile))
388 ...
389 */
390
391 struct objfile *
392 objfile_separate_debug_iterate (const struct objfile *parent,
393 const struct objfile *objfile)
394 {
395 struct objfile *res;
396
397 /* If any, return the first child. */
398 res = objfile->separate_debug_objfile;
399 if (res)
400 return res;
401
402 /* Common case where there is no separate debug objfile. */
403 if (objfile == parent)
404 return NULL;
405
406 /* Return the brother if any. Note that we don't iterate on brothers of
407 the parents. */
408 res = objfile->separate_debug_objfile_link;
409 if (res)
410 return res;
411
412 for (res = objfile->separate_debug_objfile_backlink;
413 res != parent;
414 res = res->separate_debug_objfile_backlink)
415 {
416 gdb_assert (res != NULL);
417 if (res->separate_debug_objfile_link)
418 return res->separate_debug_objfile_link;
419 }
420 return NULL;
421 }
422
423 /* Put one object file before a specified on in the global list.
424 This can be used to make sure an object file is destroyed before
425 another when using ALL_OBJFILES_SAFE to free all objfiles. */
426 void
427 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
428 {
429 struct objfile **objp;
430
431 unlink_objfile (objfile);
432
433 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
434 {
435 if (*objp == before_this)
436 {
437 objfile->next = *objp;
438 *objp = objfile;
439 return;
440 }
441 }
442
443 internal_error (__FILE__, __LINE__,
444 _("put_objfile_before: before objfile not in list"));
445 }
446
447 /* Put OBJFILE at the front of the list. */
448
449 void
450 objfile_to_front (struct objfile *objfile)
451 {
452 struct objfile **objp;
453 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
454 {
455 if (*objp == objfile)
456 {
457 /* Unhook it from where it is. */
458 *objp = objfile->next;
459 /* Put it in the front. */
460 objfile->next = object_files;
461 object_files = objfile;
462 break;
463 }
464 }
465 }
466
467 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
468 list.
469
470 It is not a bug, or error, to call this function if OBJFILE is not known
471 to be in the current list. This is done in the case of mapped objfiles,
472 for example, just to ensure that the mapped objfile doesn't appear twice
473 in the list. Since the list is threaded, linking in a mapped objfile
474 twice would create a circular list.
475
476 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
477 unlinking it, just to ensure that we have completely severed any linkages
478 between the OBJFILE and the list. */
479
480 void
481 unlink_objfile (struct objfile *objfile)
482 {
483 struct objfile **objpp;
484
485 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
486 {
487 if (*objpp == objfile)
488 {
489 *objpp = (*objpp)->next;
490 objfile->next = NULL;
491 return;
492 }
493 }
494
495 internal_error (__FILE__, __LINE__,
496 _("unlink_objfile: objfile already unlinked"));
497 }
498
499 /* Add OBJFILE as a separate debug objfile of PARENT. */
500
501 void
502 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
503 {
504 gdb_assert (objfile && parent);
505
506 /* Must not be already in a list. */
507 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
508 gdb_assert (objfile->separate_debug_objfile_link == NULL);
509
510 objfile->separate_debug_objfile_backlink = parent;
511 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
512 parent->separate_debug_objfile = objfile;
513
514 /* Put the separate debug object before the normal one, this is so that
515 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
516 put_objfile_before (objfile, parent);
517 }
518
519 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
520 itself. */
521
522 void
523 free_objfile_separate_debug (struct objfile *objfile)
524 {
525 struct objfile *child;
526
527 for (child = objfile->separate_debug_objfile; child;)
528 {
529 struct objfile *next_child = child->separate_debug_objfile_link;
530 free_objfile (child);
531 child = next_child;
532 }
533 }
534
535 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
536 that as much as possible is allocated on the objfile_obstack
537 so that the memory can be efficiently freed.
538
539 Things which we do NOT free because they are not in malloc'd memory
540 or not in memory specific to the objfile include:
541
542 objfile -> sf
543
544 FIXME: If the objfile is using reusable symbol information (via mmalloc),
545 then we need to take into account the fact that more than one process
546 may be using the symbol information at the same time (when mmalloc is
547 extended to support cooperative locking). When more than one process
548 is using the mapped symbol info, we need to be more careful about when
549 we free objects in the reusable area. */
550
551 void
552 free_objfile (struct objfile *objfile)
553 {
554 /* Free all separate debug objfiles. */
555 free_objfile_separate_debug (objfile);
556
557 if (objfile->separate_debug_objfile_backlink)
558 {
559 /* We freed the separate debug file, make sure the base objfile
560 doesn't reference it. */
561 struct objfile *child;
562
563 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
564
565 if (child == objfile)
566 {
567 /* OBJFILE is the first child. */
568 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
569 objfile->separate_debug_objfile_link;
570 }
571 else
572 {
573 /* Find OBJFILE in the list. */
574 while (1)
575 {
576 if (child->separate_debug_objfile_link == objfile)
577 {
578 child->separate_debug_objfile_link =
579 objfile->separate_debug_objfile_link;
580 break;
581 }
582 child = child->separate_debug_objfile_link;
583 gdb_assert (child);
584 }
585 }
586 }
587
588 /* Remove any references to this objfile in the global value
589 lists. */
590 preserve_values (objfile);
591
592 /* First do any symbol file specific actions required when we are
593 finished with a particular symbol file. Note that if the objfile
594 is using reusable symbol information (via mmalloc) then each of
595 these routines is responsible for doing the correct thing, either
596 freeing things which are valid only during this particular gdb
597 execution, or leaving them to be reused during the next one. */
598
599 if (objfile->sf != NULL)
600 {
601 (*objfile->sf->sym_finish) (objfile);
602 }
603
604 /* Discard any data modules have associated with the objfile. */
605 objfile_free_data (objfile);
606
607 gdb_bfd_unref (objfile->obfd);
608
609 /* Remove it from the chain of all objfiles. */
610
611 unlink_objfile (objfile);
612
613 if (objfile == symfile_objfile)
614 symfile_objfile = NULL;
615
616 if (objfile == rt_common_objfile)
617 rt_common_objfile = NULL;
618
619 /* Before the symbol table code was redone to make it easier to
620 selectively load and remove information particular to a specific
621 linkage unit, gdb used to do these things whenever the monolithic
622 symbol table was blown away. How much still needs to be done
623 is unknown, but we play it safe for now and keep each action until
624 it is shown to be no longer needed. */
625
626 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
627 for example), so we need to call this here. */
628 clear_pc_function_cache ();
629
630 /* Clear globals which might have pointed into a removed objfile.
631 FIXME: It's not clear which of these are supposed to persist
632 between expressions and which ought to be reset each time. */
633 expression_context_block = NULL;
634 innermost_block = NULL;
635
636 /* Check to see if the current_source_symtab belongs to this objfile,
637 and if so, call clear_current_source_symtab_and_line. */
638
639 {
640 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
641 struct symtab *s;
642
643 ALL_OBJFILE_SYMTABS (objfile, s)
644 {
645 if (s == cursal.symtab)
646 clear_current_source_symtab_and_line ();
647 }
648 }
649
650 /* The last thing we do is free the objfile struct itself. */
651
652 if (objfile->name != NULL)
653 {
654 xfree (objfile->name);
655 }
656 if (objfile->global_psymbols.list)
657 xfree (objfile->global_psymbols.list);
658 if (objfile->static_psymbols.list)
659 xfree (objfile->static_psymbols.list);
660 /* Free the obstacks for non-reusable objfiles */
661 bcache_xfree (objfile->psymbol_cache);
662 bcache_xfree (objfile->macro_cache);
663 bcache_xfree (objfile->filename_cache);
664 if (objfile->demangled_names_hash)
665 htab_delete (objfile->demangled_names_hash);
666 obstack_free (&objfile->objfile_obstack, 0);
667
668 /* Rebuild section map next time we need it. */
669 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
670
671 xfree (objfile);
672 }
673
674 static void
675 do_free_objfile_cleanup (void *obj)
676 {
677 free_objfile (obj);
678 }
679
680 struct cleanup *
681 make_cleanup_free_objfile (struct objfile *obj)
682 {
683 return make_cleanup (do_free_objfile_cleanup, obj);
684 }
685
686 /* Free all the object files at once and clean up their users. */
687
688 void
689 free_all_objfiles (void)
690 {
691 struct objfile *objfile, *temp;
692 struct so_list *so;
693
694 /* Any objfile referencewould become stale. */
695 for (so = master_so_list (); so; so = so->next)
696 gdb_assert (so->objfile == NULL);
697
698 ALL_OBJFILES_SAFE (objfile, temp)
699 {
700 free_objfile (objfile);
701 }
702 clear_symtab_users ();
703 }
704 \f
705 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
706 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
707 Return non-zero iff any change happened. */
708
709 static int
710 objfile_relocate1 (struct objfile *objfile, struct section_offsets *new_offsets)
711 {
712 struct obj_section *s;
713 struct section_offsets *delta =
714 ((struct section_offsets *)
715 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
716
717 {
718 int i;
719 int something_changed = 0;
720 for (i = 0; i < objfile->num_sections; ++i)
721 {
722 delta->offsets[i] =
723 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
724 if (ANOFFSET (delta, i) != 0)
725 something_changed = 1;
726 }
727 if (!something_changed)
728 return 0;
729 }
730
731 /* OK, get all the symtabs. */
732 {
733 struct symtab *s;
734
735 ALL_OBJFILE_SYMTABS (objfile, s)
736 {
737 struct linetable *l;
738 struct blockvector *bv;
739 int i;
740
741 /* First the line table. */
742 l = LINETABLE (s);
743 if (l)
744 {
745 for (i = 0; i < l->nitems; ++i)
746 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
747 }
748
749 /* Don't relocate a shared blockvector more than once. */
750 if (!s->primary)
751 continue;
752
753 bv = BLOCKVECTOR (s);
754 if (BLOCKVECTOR_MAP (bv))
755 addrmap_relocate (BLOCKVECTOR_MAP (bv),
756 ANOFFSET (delta, s->block_line_section));
757
758 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
759 {
760 struct block *b;
761 struct symbol *sym;
762 struct dict_iterator iter;
763
764 b = BLOCKVECTOR_BLOCK (bv, i);
765 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
766 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
767
768 ALL_BLOCK_SYMBOLS (b, iter, sym)
769 {
770 fixup_symbol_section (sym, objfile);
771
772 /* The RS6000 code from which this was taken skipped
773 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
774 But I'm leaving out that test, on the theory that
775 they can't possibly pass the tests below. */
776 if ((SYMBOL_CLASS (sym) == LOC_LABEL
777 || SYMBOL_CLASS (sym) == LOC_STATIC)
778 && SYMBOL_SECTION (sym) >= 0)
779 {
780 SYMBOL_VALUE_ADDRESS (sym) +=
781 ANOFFSET (delta, SYMBOL_SECTION (sym));
782 }
783 }
784 }
785 }
786 }
787
788 if (objfile->psymtabs_addrmap)
789 addrmap_relocate (objfile->psymtabs_addrmap,
790 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
791
792 if (objfile->sf)
793 objfile->sf->qf->relocate (objfile, new_offsets, delta);
794
795 {
796 struct minimal_symbol *msym;
797 ALL_OBJFILE_MSYMBOLS (objfile, msym)
798 if (SYMBOL_SECTION (msym) >= 0)
799 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
800 }
801 /* Relocating different sections by different amounts may cause the symbols
802 to be out of order. */
803 msymbols_sort (objfile);
804
805 if (objfile->ei.entry_point_p)
806 {
807 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
808 only as a fallback. */
809 struct obj_section *s;
810 s = find_pc_section (objfile->ei.entry_point);
811 if (s)
812 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
813 else
814 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
815 }
816
817 {
818 int i;
819 for (i = 0; i < objfile->num_sections; ++i)
820 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
821 }
822
823 /* Rebuild section map next time we need it. */
824 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
825
826 /* Update the table in exec_ops, used to read memory. */
827 ALL_OBJFILE_OSECTIONS (objfile, s)
828 {
829 int idx = s->the_bfd_section->index;
830
831 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
832 obj_section_addr (s));
833 }
834
835 /* Data changed. */
836 return 1;
837 }
838
839 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
840 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
841
842 The number and ordering of sections does differ between the two objfiles.
843 Only their names match. Also the file offsets will differ (objfile being
844 possibly prelinked but separate_debug_objfile is probably not prelinked) but
845 the in-memory absolute address as specified by NEW_OFFSETS must match both
846 files. */
847
848 void
849 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
850 {
851 struct objfile *debug_objfile;
852 int changed = 0;
853
854 changed |= objfile_relocate1 (objfile, new_offsets);
855
856 for (debug_objfile = objfile->separate_debug_objfile;
857 debug_objfile;
858 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
859 {
860 struct section_addr_info *objfile_addrs;
861 struct section_offsets *new_debug_offsets;
862 struct cleanup *my_cleanups;
863
864 objfile_addrs = build_section_addr_info_from_objfile (objfile);
865 my_cleanups = make_cleanup (xfree, objfile_addrs);
866
867 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
868 relative ones must be already created according to debug_objfile. */
869
870 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
871
872 gdb_assert (debug_objfile->num_sections
873 == bfd_count_sections (debug_objfile->obfd));
874 new_debug_offsets =
875 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
876 make_cleanup (xfree, new_debug_offsets);
877 relative_addr_info_to_section_offsets (new_debug_offsets,
878 debug_objfile->num_sections,
879 objfile_addrs);
880
881 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
882
883 do_cleanups (my_cleanups);
884 }
885
886 /* Relocate breakpoints as necessary, after things are relocated. */
887 if (changed)
888 breakpoint_re_set ();
889 }
890 \f
891 /* Return non-zero if OBJFILE has partial symbols. */
892
893 int
894 objfile_has_partial_symbols (struct objfile *objfile)
895 {
896 return objfile->sf ? objfile->sf->qf->has_symbols (objfile) : 0;
897 }
898
899 /* Return non-zero if OBJFILE has full symbols. */
900
901 int
902 objfile_has_full_symbols (struct objfile *objfile)
903 {
904 return objfile->symtabs != NULL;
905 }
906
907 /* Return non-zero if OBJFILE has full or partial symbols, either directly
908 or through a separate debug file. */
909
910 int
911 objfile_has_symbols (struct objfile *objfile)
912 {
913 struct objfile *o;
914
915 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
916 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
917 return 1;
918 return 0;
919 }
920
921
922 /* Many places in gdb want to test just to see if we have any partial
923 symbols available. This function returns zero if none are currently
924 available, nonzero otherwise. */
925
926 int
927 have_partial_symbols (void)
928 {
929 struct objfile *ofp;
930
931 ALL_OBJFILES (ofp)
932 {
933 if (objfile_has_partial_symbols (ofp))
934 return 1;
935 }
936 return 0;
937 }
938
939 /* Many places in gdb want to test just to see if we have any full
940 symbols available. This function returns zero if none are currently
941 available, nonzero otherwise. */
942
943 int
944 have_full_symbols (void)
945 {
946 struct objfile *ofp;
947
948 ALL_OBJFILES (ofp)
949 {
950 if (objfile_has_full_symbols (ofp))
951 return 1;
952 }
953 return 0;
954 }
955
956
957 /* This operations deletes all objfile entries that represent solibs that
958 weren't explicitly loaded by the user, via e.g., the add-symbol-file
959 command.
960 */
961 void
962 objfile_purge_solibs (void)
963 {
964 struct objfile *objf;
965 struct objfile *temp;
966
967 ALL_OBJFILES_SAFE (objf, temp)
968 {
969 /* We assume that the solib package has been purged already, or will
970 be soon.
971 */
972 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
973 free_objfile (objf);
974 }
975 }
976
977
978 /* Many places in gdb want to test just to see if we have any minimal
979 symbols available. This function returns zero if none are currently
980 available, nonzero otherwise. */
981
982 int
983 have_minimal_symbols (void)
984 {
985 struct objfile *ofp;
986
987 ALL_OBJFILES (ofp)
988 {
989 if (ofp->minimal_symbol_count > 0)
990 {
991 return 1;
992 }
993 }
994 return 0;
995 }
996
997 /* Qsort comparison function. */
998
999 static int
1000 qsort_cmp (const void *a, const void *b)
1001 {
1002 const struct obj_section *sect1 = *(const struct obj_section **) a;
1003 const struct obj_section *sect2 = *(const struct obj_section **) b;
1004 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1005 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1006
1007 if (sect1_addr < sect2_addr)
1008 return -1;
1009 else if (sect1_addr > sect2_addr)
1010 return 1;
1011 else
1012 {
1013 /* Sections are at the same address. This could happen if
1014 A) we have an objfile and a separate debuginfo.
1015 B) we are confused, and have added sections without proper relocation,
1016 or something like that. */
1017
1018 const struct objfile *const objfile1 = sect1->objfile;
1019 const struct objfile *const objfile2 = sect2->objfile;
1020
1021 if (objfile1->separate_debug_objfile == objfile2
1022 || objfile2->separate_debug_objfile == objfile1)
1023 {
1024 /* Case A. The ordering doesn't matter: separate debuginfo files
1025 will be filtered out later. */
1026
1027 return 0;
1028 }
1029
1030 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1031 triage. This section could be slow (since we iterate over all
1032 objfiles in each call to qsort_cmp), but this shouldn't happen
1033 very often (GDB is already in a confused state; one hopes this
1034 doesn't happen at all). If you discover that significant time is
1035 spent in the loops below, do 'set complaints 100' and examine the
1036 resulting complaints. */
1037
1038 if (objfile1 == objfile2)
1039 {
1040 /* Both sections came from the same objfile. We are really confused.
1041 Sort on sequence order of sections within the objfile. */
1042
1043 const struct obj_section *osect;
1044
1045 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1046 if (osect == sect1)
1047 return -1;
1048 else if (osect == sect2)
1049 return 1;
1050
1051 /* We should have found one of the sections before getting here. */
1052 gdb_assert (0);
1053 }
1054 else
1055 {
1056 /* Sort on sequence number of the objfile in the chain. */
1057
1058 const struct objfile *objfile;
1059
1060 ALL_OBJFILES (objfile)
1061 if (objfile == objfile1)
1062 return -1;
1063 else if (objfile == objfile2)
1064 return 1;
1065
1066 /* We should have found one of the objfiles before getting here. */
1067 gdb_assert (0);
1068 }
1069
1070 }
1071
1072 /* Unreachable. */
1073 gdb_assert (0);
1074 return 0;
1075 }
1076
1077 /* Select "better" obj_section to keep. We prefer the one that came from
1078 the real object, rather than the one from separate debuginfo.
1079 Most of the time the two sections are exactly identical, but with
1080 prelinking the .rel.dyn section in the real object may have different
1081 size. */
1082
1083 static struct obj_section *
1084 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1085 {
1086 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1087 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1088 || (b->objfile->separate_debug_objfile == a->objfile));
1089 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1090 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1091
1092 if (a->objfile->separate_debug_objfile != NULL)
1093 return a;
1094 return b;
1095 }
1096
1097 /* Return 1 if SECTION should be inserted into the section map.
1098 We want to insert only non-overlay and non-TLS section. */
1099
1100 static int
1101 insert_section_p (const struct bfd *abfd,
1102 const struct bfd_section *section)
1103 {
1104 const bfd_vma lma = bfd_section_lma (abfd, section);
1105
1106 if (lma != 0 && lma != bfd_section_vma (abfd, section)
1107 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1108 /* This is an overlay section. IN_MEMORY check is needed to avoid
1109 discarding sections from the "system supplied DSO" (aka vdso)
1110 on some Linux systems (e.g. Fedora 11). */
1111 return 0;
1112 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1113 /* This is a TLS section. */
1114 return 0;
1115
1116 return 1;
1117 }
1118
1119 /* Filter out overlapping sections where one section came from the real
1120 objfile, and the other from a separate debuginfo file.
1121 Return the size of table after redundant sections have been eliminated. */
1122
1123 static int
1124 filter_debuginfo_sections (struct obj_section **map, int map_size)
1125 {
1126 int i, j;
1127
1128 for (i = 0, j = 0; i < map_size - 1; i++)
1129 {
1130 struct obj_section *const sect1 = map[i];
1131 struct obj_section *const sect2 = map[i + 1];
1132 const struct objfile *const objfile1 = sect1->objfile;
1133 const struct objfile *const objfile2 = sect2->objfile;
1134 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1135 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1136
1137 if (sect1_addr == sect2_addr
1138 && (objfile1->separate_debug_objfile == objfile2
1139 || objfile2->separate_debug_objfile == objfile1))
1140 {
1141 map[j++] = preferred_obj_section (sect1, sect2);
1142 ++i;
1143 }
1144 else
1145 map[j++] = sect1;
1146 }
1147
1148 if (i < map_size)
1149 {
1150 gdb_assert (i == map_size - 1);
1151 map[j++] = map[i];
1152 }
1153
1154 /* The map should not have shrunk to less than half the original size. */
1155 gdb_assert (map_size / 2 <= j);
1156
1157 return j;
1158 }
1159
1160 /* Filter out overlapping sections, issuing a warning if any are found.
1161 Overlapping sections could really be overlay sections which we didn't
1162 classify as such in insert_section_p, or we could be dealing with a
1163 corrupt binary. */
1164
1165 static int
1166 filter_overlapping_sections (struct obj_section **map, int map_size)
1167 {
1168 int i, j;
1169
1170 for (i = 0, j = 0; i < map_size - 1; )
1171 {
1172 int k;
1173
1174 map[j++] = map[i];
1175 for (k = i + 1; k < map_size; k++)
1176 {
1177 struct obj_section *const sect1 = map[i];
1178 struct obj_section *const sect2 = map[k];
1179 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1180 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1181 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1182
1183 gdb_assert (sect1_addr <= sect2_addr);
1184
1185 if (sect1_endaddr <= sect2_addr)
1186 break;
1187 else
1188 {
1189 /* We have an overlap. Report it. */
1190
1191 struct objfile *const objf1 = sect1->objfile;
1192 struct objfile *const objf2 = sect2->objfile;
1193
1194 const struct bfd *const abfd1 = objf1->obfd;
1195 const struct bfd *const abfd2 = objf2->obfd;
1196
1197 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1198 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1199
1200 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1201
1202 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1203
1204 complaint (&symfile_complaints,
1205 _("unexpected overlap between:\n"
1206 " (A) section `%s' from `%s' [%s, %s)\n"
1207 " (B) section `%s' from `%s' [%s, %s).\n"
1208 "Will ignore section B"),
1209 bfd_section_name (abfd1, bfds1), objf1->name,
1210 paddress (gdbarch, sect1_addr),
1211 paddress (gdbarch, sect1_endaddr),
1212 bfd_section_name (abfd2, bfds2), objf2->name,
1213 paddress (gdbarch, sect2_addr),
1214 paddress (gdbarch, sect2_endaddr));
1215 }
1216 }
1217 i = k;
1218 }
1219
1220 if (i < map_size)
1221 {
1222 gdb_assert (i == map_size - 1);
1223 map[j++] = map[i];
1224 }
1225
1226 return j;
1227 }
1228
1229
1230 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1231 TLS, overlay and overlapping sections. */
1232
1233 static void
1234 update_section_map (struct program_space *pspace,
1235 struct obj_section ***pmap, int *pmap_size)
1236 {
1237 int alloc_size, map_size, i;
1238 struct obj_section *s, **map;
1239 struct objfile *objfile;
1240
1241 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1242
1243 map = *pmap;
1244 xfree (map);
1245
1246 alloc_size = 0;
1247 ALL_PSPACE_OBJFILES (pspace, objfile)
1248 ALL_OBJFILE_OSECTIONS (objfile, s)
1249 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1250 alloc_size += 1;
1251
1252 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1253 if (alloc_size == 0)
1254 {
1255 *pmap = NULL;
1256 *pmap_size = 0;
1257 return;
1258 }
1259
1260 map = xmalloc (alloc_size * sizeof (*map));
1261
1262 i = 0;
1263 ALL_PSPACE_OBJFILES (pspace, objfile)
1264 ALL_OBJFILE_OSECTIONS (objfile, s)
1265 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1266 map[i++] = s;
1267
1268 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1269 map_size = filter_debuginfo_sections(map, alloc_size);
1270 map_size = filter_overlapping_sections(map, map_size);
1271
1272 if (map_size < alloc_size)
1273 /* Some sections were eliminated. Trim excess space. */
1274 map = xrealloc (map, map_size * sizeof (*map));
1275 else
1276 gdb_assert (alloc_size == map_size);
1277
1278 *pmap = map;
1279 *pmap_size = map_size;
1280 }
1281
1282 /* Bsearch comparison function. */
1283
1284 static int
1285 bsearch_cmp (const void *key, const void *elt)
1286 {
1287 const CORE_ADDR pc = *(CORE_ADDR *) key;
1288 const struct obj_section *section = *(const struct obj_section **) elt;
1289
1290 if (pc < obj_section_addr (section))
1291 return -1;
1292 if (pc < obj_section_endaddr (section))
1293 return 0;
1294 return 1;
1295 }
1296
1297 /* Returns a section whose range includes PC or NULL if none found. */
1298
1299 struct obj_section *
1300 find_pc_section (CORE_ADDR pc)
1301 {
1302 struct objfile_pspace_info *pspace_info;
1303 struct obj_section *s, **sp;
1304
1305 /* Check for mapped overlay section first. */
1306 s = find_pc_mapped_section (pc);
1307 if (s)
1308 return s;
1309
1310 pspace_info = get_objfile_pspace_data (current_program_space);
1311 if (pspace_info->objfiles_changed_p != 0)
1312 {
1313 update_section_map (current_program_space,
1314 &pspace_info->sections,
1315 &pspace_info->num_sections);
1316
1317 /* Don't need updates to section map until objfiles are added,
1318 removed or relocated. */
1319 pspace_info->objfiles_changed_p = 0;
1320 }
1321
1322 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1323 bsearch be non-NULL. */
1324 if (pspace_info->sections == NULL)
1325 {
1326 gdb_assert (pspace_info->num_sections == 0);
1327 return NULL;
1328 }
1329
1330 sp = (struct obj_section **) bsearch (&pc,
1331 pspace_info->sections,
1332 pspace_info->num_sections,
1333 sizeof (*pspace_info->sections),
1334 bsearch_cmp);
1335 if (sp != NULL)
1336 return *sp;
1337 return NULL;
1338 }
1339
1340
1341 /* In SVR4, we recognize a trampoline by it's section name.
1342 That is, if the pc is in a section named ".plt" then we are in
1343 a trampoline. */
1344
1345 int
1346 in_plt_section (CORE_ADDR pc, char *name)
1347 {
1348 struct obj_section *s;
1349 int retval = 0;
1350
1351 s = find_pc_section (pc);
1352
1353 retval = (s != NULL
1354 && s->the_bfd_section->name != NULL
1355 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1356 return (retval);
1357 }
1358 \f
1359
1360 /* Keep a registry of per-objfile data-pointers required by other GDB
1361 modules. */
1362
1363 struct objfile_data
1364 {
1365 unsigned index;
1366 void (*save) (struct objfile *, void *);
1367 void (*free) (struct objfile *, void *);
1368 };
1369
1370 struct objfile_data_registration
1371 {
1372 struct objfile_data *data;
1373 struct objfile_data_registration *next;
1374 };
1375
1376 struct objfile_data_registry
1377 {
1378 struct objfile_data_registration *registrations;
1379 unsigned num_registrations;
1380 };
1381
1382 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1383
1384 const struct objfile_data *
1385 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1386 void (*free) (struct objfile *, void *))
1387 {
1388 struct objfile_data_registration **curr;
1389
1390 /* Append new registration. */
1391 for (curr = &objfile_data_registry.registrations;
1392 *curr != NULL; curr = &(*curr)->next);
1393
1394 *curr = XMALLOC (struct objfile_data_registration);
1395 (*curr)->next = NULL;
1396 (*curr)->data = XMALLOC (struct objfile_data);
1397 (*curr)->data->index = objfile_data_registry.num_registrations++;
1398 (*curr)->data->save = save;
1399 (*curr)->data->free = free;
1400
1401 return (*curr)->data;
1402 }
1403
1404 const struct objfile_data *
1405 register_objfile_data (void)
1406 {
1407 return register_objfile_data_with_cleanup (NULL, NULL);
1408 }
1409
1410 static void
1411 objfile_alloc_data (struct objfile *objfile)
1412 {
1413 gdb_assert (objfile->data == NULL);
1414 objfile->num_data = objfile_data_registry.num_registrations;
1415 objfile->data = XCALLOC (objfile->num_data, void *);
1416 }
1417
1418 static void
1419 objfile_free_data (struct objfile *objfile)
1420 {
1421 gdb_assert (objfile->data != NULL);
1422 clear_objfile_data (objfile);
1423 xfree (objfile->data);
1424 objfile->data = NULL;
1425 }
1426
1427 void
1428 clear_objfile_data (struct objfile *objfile)
1429 {
1430 struct objfile_data_registration *registration;
1431 int i;
1432
1433 gdb_assert (objfile->data != NULL);
1434
1435 /* Process all the save handlers. */
1436
1437 for (registration = objfile_data_registry.registrations, i = 0;
1438 i < objfile->num_data;
1439 registration = registration->next, i++)
1440 if (objfile->data[i] != NULL && registration->data->save != NULL)
1441 registration->data->save (objfile, objfile->data[i]);
1442
1443 /* Now process all the free handlers. */
1444
1445 for (registration = objfile_data_registry.registrations, i = 0;
1446 i < objfile->num_data;
1447 registration = registration->next, i++)
1448 if (objfile->data[i] != NULL && registration->data->free != NULL)
1449 registration->data->free (objfile, objfile->data[i]);
1450
1451 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1452 }
1453
1454 void
1455 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1456 void *value)
1457 {
1458 gdb_assert (data->index < objfile->num_data);
1459 objfile->data[data->index] = value;
1460 }
1461
1462 void *
1463 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1464 {
1465 gdb_assert (data->index < objfile->num_data);
1466 return objfile->data[data->index];
1467 }
1468
1469 /* Set objfiles_changed_p so section map will be rebuilt next time it
1470 is used. Called by reread_symbols. */
1471
1472 void
1473 objfiles_changed (void)
1474 {
1475 /* Rebuild section map next time we need it. */
1476 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1477 }
1478
1479 /* Close ABFD, and warn if that fails. */
1480
1481 int
1482 gdb_bfd_close_or_warn (struct bfd *abfd)
1483 {
1484 int ret;
1485 char *name = bfd_get_filename (abfd);
1486
1487 ret = bfd_close (abfd);
1488
1489 if (!ret)
1490 warning (_("cannot close \"%s\": %s"),
1491 name, bfd_errmsg (bfd_get_error ()));
1492
1493 return ret;
1494 }
1495
1496 /* Add reference to ABFD. Returns ABFD. */
1497 struct bfd *
1498 gdb_bfd_ref (struct bfd *abfd)
1499 {
1500 int *p_refcount;
1501
1502 if (abfd == NULL)
1503 return NULL;
1504
1505 p_refcount = bfd_usrdata (abfd);
1506
1507 if (p_refcount != NULL)
1508 {
1509 *p_refcount += 1;
1510 return abfd;
1511 }
1512
1513 p_refcount = xmalloc (sizeof (*p_refcount));
1514 *p_refcount = 1;
1515 bfd_usrdata (abfd) = p_refcount;
1516
1517 return abfd;
1518 }
1519
1520 /* Unreference and possibly close ABFD. */
1521 void
1522 gdb_bfd_unref (struct bfd *abfd)
1523 {
1524 int *p_refcount;
1525 char *name;
1526
1527 if (abfd == NULL)
1528 return;
1529
1530 p_refcount = bfd_usrdata (abfd);
1531
1532 /* Valid range for p_refcount: a pointer to int counter, which has a
1533 value of 1 (single owner) or 2 (shared). */
1534 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1535
1536 *p_refcount -= 1;
1537 if (*p_refcount > 0)
1538 return;
1539
1540 xfree (p_refcount);
1541 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1542
1543 name = bfd_get_filename (abfd);
1544 gdb_bfd_close_or_warn (abfd);
1545 xfree (name);
1546 }
1547
1548 /* Provide a prototype to silence -Wmissing-prototypes. */
1549 extern initialize_file_ftype _initialize_objfiles;
1550
1551 void
1552 _initialize_objfiles (void)
1553 {
1554 objfiles_pspace_data
1555 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1556 }
This page took 0.078666 seconds and 5 git commands to generate.