* objfiles.c (init_entry_point_info): Handle shared libraries.
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52
53 /* Prototypes for local functions */
54
55 static void objfile_alloc_data (struct objfile *objfile);
56 static void objfile_free_data (struct objfile *objfile);
57
58 /* Externally visible variables that are owned by this module.
59 See declarations in objfile.h for more info. */
60
61 struct objfile *object_files; /* Linked list of all objfiles */
62 struct objfile *current_objfile; /* For symbol file being read in */
63 struct objfile *symfile_objfile; /* Main symbol table loaded from */
64 struct objfile *rt_common_objfile; /* For runtime common symbols */
65
66 /* Locate all mappable sections of a BFD file.
67 objfile_p_char is a char * to get it through
68 bfd_map_over_sections; we cast it back to its proper type. */
69
70 #ifndef TARGET_KEEP_SECTION
71 #define TARGET_KEEP_SECTION(ASECT) 0
72 #endif
73
74 /* Called via bfd_map_over_sections to build up the section table that
75 the objfile references. The objfile contains pointers to the start
76 of the table (objfile->sections) and to the first location after
77 the end of the table (objfile->sections_end). */
78
79 static void
80 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
81 void *objfile_p_char)
82 {
83 struct objfile *objfile = (struct objfile *) objfile_p_char;
84 struct obj_section section;
85 flagword aflag;
86
87 aflag = bfd_get_section_flags (abfd, asect);
88
89 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
90 return;
91
92 if (0 == bfd_section_size (abfd, asect))
93 return;
94 section.offset = 0;
95 section.objfile = objfile;
96 section.the_bfd_section = asect;
97 section.ovly_mapped = 0;
98 section.addr = bfd_section_vma (abfd, asect);
99 section.endaddr = section.addr + bfd_section_size (abfd, asect);
100 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
101 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
102 }
103
104 /* Builds a section table for OBJFILE.
105 Returns 0 if OK, 1 on error (in which case bfd_error contains the
106 error).
107
108 Note that while we are building the table, which goes into the
109 psymbol obstack, we hijack the sections_end pointer to instead hold
110 a count of the number of sections. When bfd_map_over_sections
111 returns, this count is used to compute the pointer to the end of
112 the sections table, which then overwrites the count.
113
114 Also note that the OFFSET and OVLY_MAPPED in each table entry
115 are initialized to zero.
116
117 Also note that if anything else writes to the psymbol obstack while
118 we are building the table, we're pretty much hosed. */
119
120 int
121 build_objfile_section_table (struct objfile *objfile)
122 {
123 /* objfile->sections can be already set when reading a mapped symbol
124 file. I believe that we do need to rebuild the section table in
125 this case (we rebuild other things derived from the bfd), but we
126 can't free the old one (it's in the objfile_obstack). So we just
127 waste some memory. */
128
129 objfile->sections_end = 0;
130 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
131 objfile->sections = (struct obj_section *)
132 obstack_finish (&objfile->objfile_obstack);
133 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
134 return (0);
135 }
136
137 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
138 allocate a new objfile struct, fill it in as best we can, link it
139 into the list of all known objfiles, and return a pointer to the
140 new objfile struct.
141
142 The FLAGS word contains various bits (OBJF_*) that can be taken as
143 requests for specific operations. Other bits like OBJF_SHARED are
144 simply copied through to the new objfile flags member. */
145
146 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
147 by jv-lang.c, to create an artificial objfile used to hold
148 information about dynamically-loaded Java classes. Unfortunately,
149 that branch of this function doesn't get tested very frequently, so
150 it's prone to breakage. (E.g. at one time the name was set to NULL
151 in that situation, which broke a loop over all names in the dynamic
152 library loader.) If you change this function, please try to leave
153 things in a consistent state even if abfd is NULL. */
154
155 struct objfile *
156 allocate_objfile (bfd *abfd, int flags)
157 {
158 struct objfile *objfile = NULL;
159 struct objfile *last_one = NULL;
160
161 /* If we don't support mapped symbol files, didn't ask for the file to be
162 mapped, or failed to open the mapped file for some reason, then revert
163 back to an unmapped objfile. */
164
165 if (objfile == NULL)
166 {
167 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
168 memset (objfile, 0, sizeof (struct objfile));
169 objfile->md = NULL;
170 objfile->psymbol_cache = bcache_xmalloc ();
171 objfile->macro_cache = bcache_xmalloc ();
172 /* We could use obstack_specify_allocation here instead, but
173 gdb_obstack.h specifies the alloc/dealloc functions. */
174 obstack_init (&objfile->objfile_obstack);
175 terminate_minimal_symbol_table (objfile);
176 }
177
178 objfile_alloc_data (objfile);
179
180 /* Update the per-objfile information that comes from the bfd, ensuring
181 that any data that is reference is saved in the per-objfile data
182 region. */
183
184 objfile->obfd = abfd;
185 if (objfile->name != NULL)
186 {
187 xfree (objfile->name);
188 }
189 if (abfd != NULL)
190 {
191 /* Look up the gdbarch associated with the BFD. */
192 objfile->gdbarch = gdbarch_from_bfd (abfd);
193
194 objfile->name = xstrdup (bfd_get_filename (abfd));
195 objfile->mtime = bfd_get_mtime (abfd);
196
197 /* Build section table. */
198
199 if (build_objfile_section_table (objfile))
200 {
201 error (_("Can't find the file sections in `%s': %s"),
202 objfile->name, bfd_errmsg (bfd_get_error ()));
203 }
204 }
205 else
206 {
207 objfile->name = xstrdup ("<<anonymous objfile>>");
208 }
209
210 /* Initialize the section indexes for this objfile, so that we can
211 later detect if they are used w/o being properly assigned to. */
212
213 objfile->sect_index_text = -1;
214 objfile->sect_index_data = -1;
215 objfile->sect_index_bss = -1;
216 objfile->sect_index_rodata = -1;
217
218 /* We don't yet have a C++-specific namespace symtab. */
219
220 objfile->cp_namespace_symtab = NULL;
221
222 /* Add this file onto the tail of the linked list of other such files. */
223
224 objfile->next = NULL;
225 if (object_files == NULL)
226 object_files = objfile;
227 else
228 {
229 for (last_one = object_files;
230 last_one->next;
231 last_one = last_one->next);
232 last_one->next = objfile;
233 }
234
235 /* Save passed in flag bits. */
236 objfile->flags |= flags;
237
238 return (objfile);
239 }
240
241 /* Retrieve the gdbarch associated with OBJFILE. */
242 struct gdbarch *
243 get_objfile_arch (struct objfile *objfile)
244 {
245 return objfile->gdbarch;
246 }
247
248 /* Initialize entry point information for this objfile. */
249
250 void
251 init_entry_point_info (struct objfile *objfile)
252 {
253 /* Save startup file's range of PC addresses to help blockframe.c
254 decide where the bottom of the stack is. */
255
256 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
257 {
258 /* Executable file -- record its entry point so we'll recognize
259 the startup file because it contains the entry point. */
260 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
261 }
262 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
263 && bfd_get_start_address (objfile->obfd) != 0)
264 /* Some shared libraries may have entry points set and be
265 runnable. There's no clear way to indicate this, so just check
266 for values other than zero. */
267 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
268 else
269 {
270 /* Examination of non-executable.o files. Short-circuit this stuff. */
271 objfile->ei.entry_point = INVALID_ENTRY_POINT;
272 }
273 }
274
275 /* Get current entry point address. */
276
277 CORE_ADDR
278 entry_point_address (void)
279 {
280 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
281 }
282
283 /* Create the terminating entry of OBJFILE's minimal symbol table.
284 If OBJFILE->msymbols is zero, allocate a single entry from
285 OBJFILE->objfile_obstack; otherwise, just initialize
286 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
287 void
288 terminate_minimal_symbol_table (struct objfile *objfile)
289 {
290 if (! objfile->msymbols)
291 objfile->msymbols = ((struct minimal_symbol *)
292 obstack_alloc (&objfile->objfile_obstack,
293 sizeof (objfile->msymbols[0])));
294
295 {
296 struct minimal_symbol *m
297 = &objfile->msymbols[objfile->minimal_symbol_count];
298
299 memset (m, 0, sizeof (*m));
300 /* Don't rely on these enumeration values being 0's. */
301 MSYMBOL_TYPE (m) = mst_unknown;
302 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
303 }
304 }
305
306
307 /* Put one object file before a specified on in the global list.
308 This can be used to make sure an object file is destroyed before
309 another when using ALL_OBJFILES_SAFE to free all objfiles. */
310 void
311 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
312 {
313 struct objfile **objp;
314
315 unlink_objfile (objfile);
316
317 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
318 {
319 if (*objp == before_this)
320 {
321 objfile->next = *objp;
322 *objp = objfile;
323 return;
324 }
325 }
326
327 internal_error (__FILE__, __LINE__,
328 _("put_objfile_before: before objfile not in list"));
329 }
330
331 /* Put OBJFILE at the front of the list. */
332
333 void
334 objfile_to_front (struct objfile *objfile)
335 {
336 struct objfile **objp;
337 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
338 {
339 if (*objp == objfile)
340 {
341 /* Unhook it from where it is. */
342 *objp = objfile->next;
343 /* Put it in the front. */
344 objfile->next = object_files;
345 object_files = objfile;
346 break;
347 }
348 }
349 }
350
351 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
352 list.
353
354 It is not a bug, or error, to call this function if OBJFILE is not known
355 to be in the current list. This is done in the case of mapped objfiles,
356 for example, just to ensure that the mapped objfile doesn't appear twice
357 in the list. Since the list is threaded, linking in a mapped objfile
358 twice would create a circular list.
359
360 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
361 unlinking it, just to ensure that we have completely severed any linkages
362 between the OBJFILE and the list. */
363
364 void
365 unlink_objfile (struct objfile *objfile)
366 {
367 struct objfile **objpp;
368
369 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
370 {
371 if (*objpp == objfile)
372 {
373 *objpp = (*objpp)->next;
374 objfile->next = NULL;
375 return;
376 }
377 }
378
379 internal_error (__FILE__, __LINE__,
380 _("unlink_objfile: objfile already unlinked"));
381 }
382
383
384 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
385 that as much as possible is allocated on the objfile_obstack
386 so that the memory can be efficiently freed.
387
388 Things which we do NOT free because they are not in malloc'd memory
389 or not in memory specific to the objfile include:
390
391 objfile -> sf
392
393 FIXME: If the objfile is using reusable symbol information (via mmalloc),
394 then we need to take into account the fact that more than one process
395 may be using the symbol information at the same time (when mmalloc is
396 extended to support cooperative locking). When more than one process
397 is using the mapped symbol info, we need to be more careful about when
398 we free objects in the reusable area. */
399
400 void
401 free_objfile (struct objfile *objfile)
402 {
403 if (objfile->separate_debug_objfile)
404 {
405 free_objfile (objfile->separate_debug_objfile);
406 }
407
408 if (objfile->separate_debug_objfile_backlink)
409 {
410 /* We freed the separate debug file, make sure the base objfile
411 doesn't reference it. */
412 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
413 }
414
415 /* Remove any references to this objfile in the global value
416 lists. */
417 preserve_values (objfile);
418
419 /* First do any symbol file specific actions required when we are
420 finished with a particular symbol file. Note that if the objfile
421 is using reusable symbol information (via mmalloc) then each of
422 these routines is responsible for doing the correct thing, either
423 freeing things which are valid only during this particular gdb
424 execution, or leaving them to be reused during the next one. */
425
426 if (objfile->sf != NULL)
427 {
428 (*objfile->sf->sym_finish) (objfile);
429 }
430
431 /* We always close the bfd. */
432
433 if (objfile->obfd != NULL)
434 {
435 char *name = bfd_get_filename (objfile->obfd);
436 if (!bfd_close (objfile->obfd))
437 warning (_("cannot close \"%s\": %s"),
438 name, bfd_errmsg (bfd_get_error ()));
439 xfree (name);
440 }
441
442 /* Remove it from the chain of all objfiles. */
443
444 unlink_objfile (objfile);
445
446 /* If we are going to free the runtime common objfile, mark it
447 as unallocated. */
448
449 if (objfile == rt_common_objfile)
450 rt_common_objfile = NULL;
451
452 /* Before the symbol table code was redone to make it easier to
453 selectively load and remove information particular to a specific
454 linkage unit, gdb used to do these things whenever the monolithic
455 symbol table was blown away. How much still needs to be done
456 is unknown, but we play it safe for now and keep each action until
457 it is shown to be no longer needed. */
458
459 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
460 for example), so we need to call this here. */
461 clear_pc_function_cache ();
462
463 /* Clear globals which might have pointed into a removed objfile.
464 FIXME: It's not clear which of these are supposed to persist
465 between expressions and which ought to be reset each time. */
466 expression_context_block = NULL;
467 innermost_block = NULL;
468
469 /* Check to see if the current_source_symtab belongs to this objfile,
470 and if so, call clear_current_source_symtab_and_line. */
471
472 {
473 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
474 struct symtab *s;
475
476 ALL_OBJFILE_SYMTABS (objfile, s)
477 {
478 if (s == cursal.symtab)
479 clear_current_source_symtab_and_line ();
480 }
481 }
482
483 /* The last thing we do is free the objfile struct itself. */
484
485 objfile_free_data (objfile);
486 if (objfile->name != NULL)
487 {
488 xfree (objfile->name);
489 }
490 if (objfile->global_psymbols.list)
491 xfree (objfile->global_psymbols.list);
492 if (objfile->static_psymbols.list)
493 xfree (objfile->static_psymbols.list);
494 /* Free the obstacks for non-reusable objfiles */
495 bcache_xfree (objfile->psymbol_cache);
496 bcache_xfree (objfile->macro_cache);
497 if (objfile->demangled_names_hash)
498 htab_delete (objfile->demangled_names_hash);
499 obstack_free (&objfile->objfile_obstack, 0);
500 xfree (objfile);
501 objfile = NULL;
502 }
503
504 static void
505 do_free_objfile_cleanup (void *obj)
506 {
507 free_objfile (obj);
508 }
509
510 struct cleanup *
511 make_cleanup_free_objfile (struct objfile *obj)
512 {
513 return make_cleanup (do_free_objfile_cleanup, obj);
514 }
515
516 /* Free all the object files at once and clean up their users. */
517
518 void
519 free_all_objfiles (void)
520 {
521 struct objfile *objfile, *temp;
522
523 ALL_OBJFILES_SAFE (objfile, temp)
524 {
525 free_objfile (objfile);
526 }
527 clear_symtab_users ();
528 }
529 \f
530 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
531 entries in new_offsets. */
532 void
533 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
534 {
535 struct section_offsets *delta =
536 ((struct section_offsets *)
537 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
538
539 {
540 int i;
541 int something_changed = 0;
542 for (i = 0; i < objfile->num_sections; ++i)
543 {
544 delta->offsets[i] =
545 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
546 if (ANOFFSET (delta, i) != 0)
547 something_changed = 1;
548 }
549 if (!something_changed)
550 return;
551 }
552
553 /* OK, get all the symtabs. */
554 {
555 struct symtab *s;
556
557 ALL_OBJFILE_SYMTABS (objfile, s)
558 {
559 struct linetable *l;
560 struct blockvector *bv;
561 int i;
562
563 /* First the line table. */
564 l = LINETABLE (s);
565 if (l)
566 {
567 for (i = 0; i < l->nitems; ++i)
568 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
569 }
570
571 /* Don't relocate a shared blockvector more than once. */
572 if (!s->primary)
573 continue;
574
575 bv = BLOCKVECTOR (s);
576 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
577 {
578 struct block *b;
579 struct symbol *sym;
580 struct dict_iterator iter;
581
582 b = BLOCKVECTOR_BLOCK (bv, i);
583 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
584 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
585 if (BLOCKVECTOR_MAP (bv))
586 addrmap_relocate (BLOCKVECTOR_MAP (bv),
587 ANOFFSET (delta, s->block_line_section));
588
589 ALL_BLOCK_SYMBOLS (b, iter, sym)
590 {
591 fixup_symbol_section (sym, objfile);
592
593 /* The RS6000 code from which this was taken skipped
594 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
595 But I'm leaving out that test, on the theory that
596 they can't possibly pass the tests below. */
597 if ((SYMBOL_CLASS (sym) == LOC_LABEL
598 || SYMBOL_CLASS (sym) == LOC_STATIC
599 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
600 && SYMBOL_SECTION (sym) >= 0)
601 {
602 SYMBOL_VALUE_ADDRESS (sym) +=
603 ANOFFSET (delta, SYMBOL_SECTION (sym));
604 }
605 }
606 }
607 }
608 }
609
610 {
611 struct partial_symtab *p;
612
613 ALL_OBJFILE_PSYMTABS (objfile, p)
614 {
615 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
616 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
617 }
618 }
619
620 {
621 struct partial_symbol **psym;
622
623 for (psym = objfile->global_psymbols.list;
624 psym < objfile->global_psymbols.next;
625 psym++)
626 {
627 fixup_psymbol_section (*psym, objfile);
628 if (SYMBOL_SECTION (*psym) >= 0)
629 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
630 SYMBOL_SECTION (*psym));
631 }
632 for (psym = objfile->static_psymbols.list;
633 psym < objfile->static_psymbols.next;
634 psym++)
635 {
636 fixup_psymbol_section (*psym, objfile);
637 if (SYMBOL_SECTION (*psym) >= 0)
638 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
639 SYMBOL_SECTION (*psym));
640 }
641 }
642
643 {
644 struct minimal_symbol *msym;
645 ALL_OBJFILE_MSYMBOLS (objfile, msym)
646 if (SYMBOL_SECTION (msym) >= 0)
647 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
648 }
649 /* Relocating different sections by different amounts may cause the symbols
650 to be out of order. */
651 msymbols_sort (objfile);
652
653 {
654 int i;
655 for (i = 0; i < objfile->num_sections; ++i)
656 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
657 }
658
659 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
660 {
661 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
662 only as a fallback. */
663 struct obj_section *s;
664 s = find_pc_section (objfile->ei.entry_point);
665 if (s)
666 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
667 else
668 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
669 }
670
671 {
672 struct obj_section *s;
673 bfd *abfd;
674
675 abfd = objfile->obfd;
676
677 ALL_OBJFILE_OSECTIONS (objfile, s)
678 {
679 int idx = s->the_bfd_section->index;
680
681 s->addr += ANOFFSET (delta, idx);
682 s->endaddr += ANOFFSET (delta, idx);
683 }
684 }
685
686 /* Relocate breakpoints as necessary, after things are relocated. */
687 breakpoint_re_set ();
688 }
689 \f
690 /* Many places in gdb want to test just to see if we have any partial
691 symbols available. This function returns zero if none are currently
692 available, nonzero otherwise. */
693
694 int
695 have_partial_symbols (void)
696 {
697 struct objfile *ofp;
698
699 ALL_OBJFILES (ofp)
700 {
701 if (ofp->psymtabs != NULL)
702 {
703 return 1;
704 }
705 }
706 return 0;
707 }
708
709 /* Many places in gdb want to test just to see if we have any full
710 symbols available. This function returns zero if none are currently
711 available, nonzero otherwise. */
712
713 int
714 have_full_symbols (void)
715 {
716 struct objfile *ofp;
717
718 ALL_OBJFILES (ofp)
719 {
720 if (ofp->symtabs != NULL)
721 {
722 return 1;
723 }
724 }
725 return 0;
726 }
727
728
729 /* This operations deletes all objfile entries that represent solibs that
730 weren't explicitly loaded by the user, via e.g., the add-symbol-file
731 command.
732 */
733 void
734 objfile_purge_solibs (void)
735 {
736 struct objfile *objf;
737 struct objfile *temp;
738
739 ALL_OBJFILES_SAFE (objf, temp)
740 {
741 /* We assume that the solib package has been purged already, or will
742 be soon.
743 */
744 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
745 free_objfile (objf);
746 }
747 }
748
749
750 /* Many places in gdb want to test just to see if we have any minimal
751 symbols available. This function returns zero if none are currently
752 available, nonzero otherwise. */
753
754 int
755 have_minimal_symbols (void)
756 {
757 struct objfile *ofp;
758
759 ALL_OBJFILES (ofp)
760 {
761 if (ofp->minimal_symbol_count > 0)
762 {
763 return 1;
764 }
765 }
766 return 0;
767 }
768
769 /* Returns a section whose range includes PC and SECTION, or NULL if
770 none found. Note the distinction between the return type, struct
771 obj_section (which is defined in gdb), and the input type "struct
772 bfd_section" (which is a bfd-defined data type). The obj_section
773 contains a pointer to the "struct bfd_section". */
774
775 struct obj_section *
776 find_pc_sect_section (CORE_ADDR pc, struct bfd_section *section)
777 {
778 struct obj_section *s;
779 struct objfile *objfile;
780
781 ALL_OBJSECTIONS (objfile, s)
782 if ((section == 0 || section == s->the_bfd_section) &&
783 s->addr <= pc && pc < s->endaddr)
784 return (s);
785
786 return (NULL);
787 }
788
789 /* Returns a section whose range includes PC or NULL if none found.
790 Backward compatibility, no section. */
791
792 struct obj_section *
793 find_pc_section (CORE_ADDR pc)
794 {
795 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
796 }
797
798
799 /* In SVR4, we recognize a trampoline by it's section name.
800 That is, if the pc is in a section named ".plt" then we are in
801 a trampoline. */
802
803 int
804 in_plt_section (CORE_ADDR pc, char *name)
805 {
806 struct obj_section *s;
807 int retval = 0;
808
809 s = find_pc_section (pc);
810
811 retval = (s != NULL
812 && s->the_bfd_section->name != NULL
813 && strcmp (s->the_bfd_section->name, ".plt") == 0);
814 return (retval);
815 }
816 \f
817
818 /* Keep a registry of per-objfile data-pointers required by other GDB
819 modules. */
820
821 struct objfile_data
822 {
823 unsigned index;
824 };
825
826 struct objfile_data_registration
827 {
828 struct objfile_data *data;
829 struct objfile_data_registration *next;
830 };
831
832 struct objfile_data_registry
833 {
834 struct objfile_data_registration *registrations;
835 unsigned num_registrations;
836 };
837
838 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
839
840 const struct objfile_data *
841 register_objfile_data (void)
842 {
843 struct objfile_data_registration **curr;
844
845 /* Append new registration. */
846 for (curr = &objfile_data_registry.registrations;
847 *curr != NULL; curr = &(*curr)->next);
848
849 *curr = XMALLOC (struct objfile_data_registration);
850 (*curr)->next = NULL;
851 (*curr)->data = XMALLOC (struct objfile_data);
852 (*curr)->data->index = objfile_data_registry.num_registrations++;
853
854 return (*curr)->data;
855 }
856
857 static void
858 objfile_alloc_data (struct objfile *objfile)
859 {
860 gdb_assert (objfile->data == NULL);
861 objfile->num_data = objfile_data_registry.num_registrations;
862 objfile->data = XCALLOC (objfile->num_data, void *);
863 }
864
865 static void
866 objfile_free_data (struct objfile *objfile)
867 {
868 gdb_assert (objfile->data != NULL);
869 xfree (objfile->data);
870 objfile->data = NULL;
871 }
872
873 void
874 clear_objfile_data (struct objfile *objfile)
875 {
876 gdb_assert (objfile->data != NULL);
877 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
878 }
879
880 void
881 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
882 void *value)
883 {
884 gdb_assert (data->index < objfile->num_data);
885 objfile->data[data->index] = value;
886 }
887
888 void *
889 objfile_data (struct objfile *objfile, const struct objfile_data *data)
890 {
891 gdb_assert (data->index < objfile->num_data);
892 return objfile->data[data->index];
893 }
This page took 0.050739 seconds and 5 git commands to generate.