* elfread.c (elf_symtab_read): Update.
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2004, 2007-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "mdebugread.h"
34 #include "expression.h"
35 #include "parser-defs.h"
36
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48 #include "source.h"
49 #include "addrmap.h"
50 #include "arch-utils.h"
51 #include "exec.h"
52 #include "observer.h"
53 #include "complaints.h"
54 #include "psymtab.h"
55 #include "solist.h"
56 #include "gdb_bfd.h"
57
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile *rt_common_objfile; /* For runtime common symbols */
67
68 struct objfile_pspace_info
69 {
70 int objfiles_changed_p;
71 struct obj_section **sections;
72 int num_sections;
73 };
74
75 /* Per-program-space data key. */
76 static const struct program_space_data *objfiles_pspace_data;
77
78 static void
79 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
80 {
81 struct objfile_pspace_info *info;
82
83 info = program_space_data (pspace, objfiles_pspace_data);
84 if (info != NULL)
85 {
86 xfree (info->sections);
87 xfree (info);
88 }
89 }
90
91 /* Get the current svr4 data. If none is found yet, add it now. This
92 function always returns a valid object. */
93
94 static struct objfile_pspace_info *
95 get_objfile_pspace_data (struct program_space *pspace)
96 {
97 struct objfile_pspace_info *info;
98
99 info = program_space_data (pspace, objfiles_pspace_data);
100 if (info == NULL)
101 {
102 info = XZALLOC (struct objfile_pspace_info);
103 set_program_space_data (pspace, objfiles_pspace_data, info);
104 }
105
106 return info;
107 }
108
109 \f
110
111 /* Per-BFD data key. */
112
113 static const struct bfd_data *objfiles_bfd_data;
114
115 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
116 NULL, and it already has a per-BFD storage object, use that.
117 Otherwise, allocate a new per-BFD storage object. If ABFD is not
118 NULL, the object is allocated on the BFD; otherwise it is allocated
119 on OBJFILE's obstack. Note that it is not safe to call this
120 multiple times for a given OBJFILE -- it can only be called when
121 allocating or re-initializing OBJFILE. */
122
123 static struct objfile_per_bfd_storage *
124 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
125 {
126 struct objfile_per_bfd_storage *storage = NULL;
127
128 if (abfd != NULL)
129 storage = bfd_data (abfd, objfiles_bfd_data);
130
131 if (storage == NULL)
132 {
133 if (abfd != NULL)
134 {
135 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
136 set_bfd_data (abfd, objfiles_bfd_data, storage);
137 }
138 else
139 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
140 struct objfile_per_bfd_storage);
141
142 obstack_init (&storage->storage_obstack);
143 storage->filename_cache = bcache_xmalloc (NULL, NULL);
144 }
145
146 return storage;
147 }
148
149 /* Free STORAGE. */
150
151 static void
152 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
153 {
154 bcache_xfree (storage->filename_cache);
155 obstack_free (&storage->storage_obstack, 0);
156 }
157
158 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
159 cleanup function to the BFD registry. */
160
161 static void
162 objfile_bfd_data_free (struct bfd *unused, void *d)
163 {
164 free_objfile_per_bfd_storage (d);
165 }
166
167 /* See objfiles.h. */
168
169 void
170 set_objfile_per_bfd (struct objfile *objfile)
171 {
172 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
173 }
174
175 \f
176
177 /* Called via bfd_map_over_sections to build up the section table that
178 the objfile references. The objfile contains pointers to the start
179 of the table (objfile->sections) and to the first location after
180 the end of the table (objfile->sections_end). */
181
182 static void
183 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
184 void *objfilep)
185 {
186 struct objfile *objfile = (struct objfile *) objfilep;
187 struct obj_section section;
188 flagword aflag;
189
190 aflag = bfd_get_section_flags (abfd, asect);
191 if (!(aflag & SEC_ALLOC))
192 return;
193 if (bfd_section_size (abfd, asect) == 0)
194 return;
195
196 section.objfile = objfile;
197 section.the_bfd_section = asect;
198 section.ovly_mapped = 0;
199 obstack_grow (&objfile->objfile_obstack,
200 (char *) &section, sizeof (section));
201 objfile->sections_end
202 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
203 }
204
205 /* Builds a section table for OBJFILE.
206
207 Note that while we are building the table, which goes into the
208 objfile obstack, we hijack the sections_end pointer to instead hold
209 a count of the number of sections. When bfd_map_over_sections
210 returns, this count is used to compute the pointer to the end of
211 the sections table, which then overwrites the count.
212
213 Also note that the OFFSET and OVLY_MAPPED in each table entry
214 are initialized to zero.
215
216 Also note that if anything else writes to the objfile obstack while
217 we are building the table, we're pretty much hosed. */
218
219 void
220 build_objfile_section_table (struct objfile *objfile)
221 {
222 objfile->sections_end = 0;
223 bfd_map_over_sections (objfile->obfd,
224 add_to_objfile_sections, (void *) objfile);
225 objfile->sections = obstack_finish (&objfile->objfile_obstack);
226 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
227 }
228
229 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
230 allocate a new objfile struct, fill it in as best we can, link it
231 into the list of all known objfiles, and return a pointer to the
232 new objfile struct.
233
234 The FLAGS word contains various bits (OBJF_*) that can be taken as
235 requests for specific operations. Other bits like OBJF_SHARED are
236 simply copied through to the new objfile flags member. */
237
238 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
239 by jv-lang.c, to create an artificial objfile used to hold
240 information about dynamically-loaded Java classes. Unfortunately,
241 that branch of this function doesn't get tested very frequently, so
242 it's prone to breakage. (E.g. at one time the name was set to NULL
243 in that situation, which broke a loop over all names in the dynamic
244 library loader.) If you change this function, please try to leave
245 things in a consistent state even if abfd is NULL. */
246
247 struct objfile *
248 allocate_objfile (bfd *abfd, int flags)
249 {
250 struct objfile *objfile;
251
252 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
253 objfile->psymbol_cache = psymbol_bcache_init ();
254 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
255 /* We could use obstack_specify_allocation here instead, but
256 gdb_obstack.h specifies the alloc/dealloc functions. */
257 obstack_init (&objfile->objfile_obstack);
258 terminate_minimal_symbol_table (objfile);
259
260 objfile_alloc_data (objfile);
261
262 /* Update the per-objfile information that comes from the bfd, ensuring
263 that any data that is reference is saved in the per-objfile data
264 region. */
265
266 objfile->obfd = abfd;
267 gdb_bfd_ref (abfd);
268 if (abfd != NULL)
269 {
270 /* Look up the gdbarch associated with the BFD. */
271 objfile->gdbarch = gdbarch_from_bfd (abfd);
272
273 objfile->name = xstrdup (bfd_get_filename (abfd));
274 objfile->mtime = bfd_get_mtime (abfd);
275
276 /* Build section table. */
277 build_objfile_section_table (objfile);
278 }
279 else
280 {
281 objfile->name = xstrdup ("<<anonymous objfile>>");
282 }
283
284 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
285 objfile->pspace = current_program_space;
286
287 /* Initialize the section indexes for this objfile, so that we can
288 later detect if they are used w/o being properly assigned to. */
289
290 objfile->sect_index_text = -1;
291 objfile->sect_index_data = -1;
292 objfile->sect_index_bss = -1;
293 objfile->sect_index_rodata = -1;
294
295 /* Add this file onto the tail of the linked list of other such files. */
296
297 objfile->next = NULL;
298 if (object_files == NULL)
299 object_files = objfile;
300 else
301 {
302 struct objfile *last_one;
303
304 for (last_one = object_files;
305 last_one->next;
306 last_one = last_one->next);
307 last_one->next = objfile;
308 }
309
310 /* Save passed in flag bits. */
311 objfile->flags |= flags;
312
313 /* Rebuild section map next time we need it. */
314 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
315
316 return objfile;
317 }
318
319 /* Retrieve the gdbarch associated with OBJFILE. */
320 struct gdbarch *
321 get_objfile_arch (struct objfile *objfile)
322 {
323 return objfile->gdbarch;
324 }
325
326 /* Initialize entry point information for this objfile. */
327
328 void
329 init_entry_point_info (struct objfile *objfile)
330 {
331 /* Save startup file's range of PC addresses to help blockframe.c
332 decide where the bottom of the stack is. */
333
334 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
335 {
336 /* Executable file -- record its entry point so we'll recognize
337 the startup file because it contains the entry point. */
338 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
339 objfile->ei.entry_point_p = 1;
340 }
341 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
342 && bfd_get_start_address (objfile->obfd) != 0)
343 {
344 /* Some shared libraries may have entry points set and be
345 runnable. There's no clear way to indicate this, so just check
346 for values other than zero. */
347 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
348 objfile->ei.entry_point_p = 1;
349 }
350 else
351 {
352 /* Examination of non-executable.o files. Short-circuit this stuff. */
353 objfile->ei.entry_point_p = 0;
354 }
355 }
356
357 /* If there is a valid and known entry point, function fills *ENTRY_P with it
358 and returns non-zero; otherwise it returns zero. */
359
360 int
361 entry_point_address_query (CORE_ADDR *entry_p)
362 {
363 struct gdbarch *gdbarch;
364 CORE_ADDR entry_point;
365
366 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
367 return 0;
368
369 gdbarch = get_objfile_arch (symfile_objfile);
370
371 entry_point = symfile_objfile->ei.entry_point;
372
373 /* Make certain that the address points at real code, and not a
374 function descriptor. */
375 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
376 &current_target);
377
378 /* Remove any ISA markers, so that this matches entries in the
379 symbol table. */
380 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
381
382 *entry_p = entry_point;
383 return 1;
384 }
385
386 /* Get current entry point address. Call error if it is not known. */
387
388 CORE_ADDR
389 entry_point_address (void)
390 {
391 CORE_ADDR retval;
392
393 if (!entry_point_address_query (&retval))
394 error (_("Entry point address is not known."));
395
396 return retval;
397 }
398
399 /* Iterator on PARENT and every separate debug objfile of PARENT.
400 The usage pattern is:
401 for (objfile = parent;
402 objfile;
403 objfile = objfile_separate_debug_iterate (parent, objfile))
404 ...
405 */
406
407 struct objfile *
408 objfile_separate_debug_iterate (const struct objfile *parent,
409 const struct objfile *objfile)
410 {
411 struct objfile *res;
412
413 /* If any, return the first child. */
414 res = objfile->separate_debug_objfile;
415 if (res)
416 return res;
417
418 /* Common case where there is no separate debug objfile. */
419 if (objfile == parent)
420 return NULL;
421
422 /* Return the brother if any. Note that we don't iterate on brothers of
423 the parents. */
424 res = objfile->separate_debug_objfile_link;
425 if (res)
426 return res;
427
428 for (res = objfile->separate_debug_objfile_backlink;
429 res != parent;
430 res = res->separate_debug_objfile_backlink)
431 {
432 gdb_assert (res != NULL);
433 if (res->separate_debug_objfile_link)
434 return res->separate_debug_objfile_link;
435 }
436 return NULL;
437 }
438
439 /* Put one object file before a specified on in the global list.
440 This can be used to make sure an object file is destroyed before
441 another when using ALL_OBJFILES_SAFE to free all objfiles. */
442 void
443 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
444 {
445 struct objfile **objp;
446
447 unlink_objfile (objfile);
448
449 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
450 {
451 if (*objp == before_this)
452 {
453 objfile->next = *objp;
454 *objp = objfile;
455 return;
456 }
457 }
458
459 internal_error (__FILE__, __LINE__,
460 _("put_objfile_before: before objfile not in list"));
461 }
462
463 /* Put OBJFILE at the front of the list. */
464
465 void
466 objfile_to_front (struct objfile *objfile)
467 {
468 struct objfile **objp;
469 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
470 {
471 if (*objp == objfile)
472 {
473 /* Unhook it from where it is. */
474 *objp = objfile->next;
475 /* Put it in the front. */
476 objfile->next = object_files;
477 object_files = objfile;
478 break;
479 }
480 }
481 }
482
483 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
484 list.
485
486 It is not a bug, or error, to call this function if OBJFILE is not known
487 to be in the current list. This is done in the case of mapped objfiles,
488 for example, just to ensure that the mapped objfile doesn't appear twice
489 in the list. Since the list is threaded, linking in a mapped objfile
490 twice would create a circular list.
491
492 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
493 unlinking it, just to ensure that we have completely severed any linkages
494 between the OBJFILE and the list. */
495
496 void
497 unlink_objfile (struct objfile *objfile)
498 {
499 struct objfile **objpp;
500
501 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
502 {
503 if (*objpp == objfile)
504 {
505 *objpp = (*objpp)->next;
506 objfile->next = NULL;
507 return;
508 }
509 }
510
511 internal_error (__FILE__, __LINE__,
512 _("unlink_objfile: objfile already unlinked"));
513 }
514
515 /* Add OBJFILE as a separate debug objfile of PARENT. */
516
517 void
518 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
519 {
520 gdb_assert (objfile && parent);
521
522 /* Must not be already in a list. */
523 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
524 gdb_assert (objfile->separate_debug_objfile_link == NULL);
525
526 objfile->separate_debug_objfile_backlink = parent;
527 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
528 parent->separate_debug_objfile = objfile;
529
530 /* Put the separate debug object before the normal one, this is so that
531 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
532 put_objfile_before (objfile, parent);
533 }
534
535 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
536 itself. */
537
538 void
539 free_objfile_separate_debug (struct objfile *objfile)
540 {
541 struct objfile *child;
542
543 for (child = objfile->separate_debug_objfile; child;)
544 {
545 struct objfile *next_child = child->separate_debug_objfile_link;
546 free_objfile (child);
547 child = next_child;
548 }
549 }
550
551 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
552 that as much as possible is allocated on the objfile_obstack
553 so that the memory can be efficiently freed.
554
555 Things which we do NOT free because they are not in malloc'd memory
556 or not in memory specific to the objfile include:
557
558 objfile -> sf
559
560 FIXME: If the objfile is using reusable symbol information (via mmalloc),
561 then we need to take into account the fact that more than one process
562 may be using the symbol information at the same time (when mmalloc is
563 extended to support cooperative locking). When more than one process
564 is using the mapped symbol info, we need to be more careful about when
565 we free objects in the reusable area. */
566
567 void
568 free_objfile (struct objfile *objfile)
569 {
570 /* Free all separate debug objfiles. */
571 free_objfile_separate_debug (objfile);
572
573 if (objfile->separate_debug_objfile_backlink)
574 {
575 /* We freed the separate debug file, make sure the base objfile
576 doesn't reference it. */
577 struct objfile *child;
578
579 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
580
581 if (child == objfile)
582 {
583 /* OBJFILE is the first child. */
584 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
585 objfile->separate_debug_objfile_link;
586 }
587 else
588 {
589 /* Find OBJFILE in the list. */
590 while (1)
591 {
592 if (child->separate_debug_objfile_link == objfile)
593 {
594 child->separate_debug_objfile_link =
595 objfile->separate_debug_objfile_link;
596 break;
597 }
598 child = child->separate_debug_objfile_link;
599 gdb_assert (child);
600 }
601 }
602 }
603
604 /* Remove any references to this objfile in the global value
605 lists. */
606 preserve_values (objfile);
607
608 /* It still may reference data modules have associated with the objfile and
609 the symbol file data. */
610 forget_cached_source_info_for_objfile (objfile);
611
612 /* First do any symbol file specific actions required when we are
613 finished with a particular symbol file. Note that if the objfile
614 is using reusable symbol information (via mmalloc) then each of
615 these routines is responsible for doing the correct thing, either
616 freeing things which are valid only during this particular gdb
617 execution, or leaving them to be reused during the next one. */
618
619 if (objfile->sf != NULL)
620 {
621 (*objfile->sf->sym_finish) (objfile);
622 }
623
624 /* Discard any data modules have associated with the objfile. The function
625 still may reference objfile->obfd. */
626 objfile_free_data (objfile);
627
628 if (objfile->obfd)
629 gdb_bfd_unref (objfile->obfd);
630 else
631 free_objfile_per_bfd_storage (objfile->per_bfd);
632
633 /* Remove it from the chain of all objfiles. */
634
635 unlink_objfile (objfile);
636
637 if (objfile == symfile_objfile)
638 symfile_objfile = NULL;
639
640 if (objfile == rt_common_objfile)
641 rt_common_objfile = NULL;
642
643 /* Before the symbol table code was redone to make it easier to
644 selectively load and remove information particular to a specific
645 linkage unit, gdb used to do these things whenever the monolithic
646 symbol table was blown away. How much still needs to be done
647 is unknown, but we play it safe for now and keep each action until
648 it is shown to be no longer needed. */
649
650 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
651 for example), so we need to call this here. */
652 clear_pc_function_cache ();
653
654 /* Clear globals which might have pointed into a removed objfile.
655 FIXME: It's not clear which of these are supposed to persist
656 between expressions and which ought to be reset each time. */
657 expression_context_block = NULL;
658 innermost_block = NULL;
659
660 /* Check to see if the current_source_symtab belongs to this objfile,
661 and if so, call clear_current_source_symtab_and_line. */
662
663 {
664 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
665
666 if (cursal.symtab && cursal.symtab->objfile == objfile)
667 clear_current_source_symtab_and_line ();
668 }
669
670 /* The last thing we do is free the objfile struct itself. */
671
672 xfree (objfile->name);
673 if (objfile->global_psymbols.list)
674 xfree (objfile->global_psymbols.list);
675 if (objfile->static_psymbols.list)
676 xfree (objfile->static_psymbols.list);
677 /* Free the obstacks for non-reusable objfiles. */
678 psymbol_bcache_free (objfile->psymbol_cache);
679 bcache_xfree (objfile->macro_cache);
680 if (objfile->demangled_names_hash)
681 htab_delete (objfile->demangled_names_hash);
682 obstack_free (&objfile->objfile_obstack, 0);
683
684 /* Rebuild section map next time we need it. */
685 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
686
687 xfree (objfile);
688 }
689
690 static void
691 do_free_objfile_cleanup (void *obj)
692 {
693 free_objfile (obj);
694 }
695
696 struct cleanup *
697 make_cleanup_free_objfile (struct objfile *obj)
698 {
699 return make_cleanup (do_free_objfile_cleanup, obj);
700 }
701
702 /* Free all the object files at once and clean up their users. */
703
704 void
705 free_all_objfiles (void)
706 {
707 struct objfile *objfile, *temp;
708 struct so_list *so;
709
710 /* Any objfile referencewould become stale. */
711 for (so = master_so_list (); so; so = so->next)
712 gdb_assert (so->objfile == NULL);
713
714 ALL_OBJFILES_SAFE (objfile, temp)
715 {
716 free_objfile (objfile);
717 }
718 clear_symtab_users (0);
719 }
720 \f
721 /* A helper function for objfile_relocate1 that relocates a single
722 symbol. */
723
724 static void
725 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
726 struct section_offsets *delta)
727 {
728 fixup_symbol_section (sym, objfile);
729
730 /* The RS6000 code from which this was taken skipped
731 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
732 But I'm leaving out that test, on the theory that
733 they can't possibly pass the tests below. */
734 if ((SYMBOL_CLASS (sym) == LOC_LABEL
735 || SYMBOL_CLASS (sym) == LOC_STATIC)
736 && SYMBOL_SECTION (sym) >= 0)
737 {
738 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
739 }
740 }
741
742 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
743 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
744 Return non-zero iff any change happened. */
745
746 static int
747 objfile_relocate1 (struct objfile *objfile,
748 struct section_offsets *new_offsets)
749 {
750 struct obj_section *s;
751 struct section_offsets *delta =
752 ((struct section_offsets *)
753 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
754
755 int i;
756 int something_changed = 0;
757
758 for (i = 0; i < objfile->num_sections; ++i)
759 {
760 delta->offsets[i] =
761 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
762 if (ANOFFSET (delta, i) != 0)
763 something_changed = 1;
764 }
765 if (!something_changed)
766 return 0;
767
768 /* OK, get all the symtabs. */
769 {
770 struct symtab *s;
771
772 ALL_OBJFILE_SYMTABS (objfile, s)
773 {
774 struct linetable *l;
775 struct blockvector *bv;
776 int i;
777
778 /* First the line table. */
779 l = LINETABLE (s);
780 if (l)
781 {
782 for (i = 0; i < l->nitems; ++i)
783 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
784 }
785
786 /* Don't relocate a shared blockvector more than once. */
787 if (!s->primary)
788 continue;
789
790 bv = BLOCKVECTOR (s);
791 if (BLOCKVECTOR_MAP (bv))
792 addrmap_relocate (BLOCKVECTOR_MAP (bv),
793 ANOFFSET (delta, s->block_line_section));
794
795 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
796 {
797 struct block *b;
798 struct symbol *sym;
799 struct dict_iterator iter;
800
801 b = BLOCKVECTOR_BLOCK (bv, i);
802 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
803 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
804
805 /* We only want to iterate over the local symbols, not any
806 symbols in included symtabs. */
807 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
808 {
809 relocate_one_symbol (sym, objfile, delta);
810 }
811 }
812 }
813 }
814
815 /* Relocate isolated symbols. */
816 {
817 struct symbol *iter;
818
819 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
820 relocate_one_symbol (iter, objfile, delta);
821 }
822
823 if (objfile->psymtabs_addrmap)
824 addrmap_relocate (objfile->psymtabs_addrmap,
825 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
826
827 if (objfile->sf)
828 objfile->sf->qf->relocate (objfile, new_offsets, delta);
829
830 {
831 struct minimal_symbol *msym;
832
833 ALL_OBJFILE_MSYMBOLS (objfile, msym)
834 if (SYMBOL_SECTION (msym) >= 0)
835 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
836 }
837 /* Relocating different sections by different amounts may cause the symbols
838 to be out of order. */
839 msymbols_sort (objfile);
840
841 if (objfile->ei.entry_point_p)
842 {
843 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
844 only as a fallback. */
845 struct obj_section *s;
846 s = find_pc_section (objfile->ei.entry_point);
847 if (s)
848 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
849 else
850 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
851 }
852
853 {
854 int i;
855
856 for (i = 0; i < objfile->num_sections; ++i)
857 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
858 }
859
860 /* Rebuild section map next time we need it. */
861 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
862
863 /* Update the table in exec_ops, used to read memory. */
864 ALL_OBJFILE_OSECTIONS (objfile, s)
865 {
866 int idx = s->the_bfd_section->index;
867
868 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
869 obj_section_addr (s));
870 }
871
872 /* Relocating probes. */
873 if (objfile->sf && objfile->sf->sym_probe_fns)
874 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
875 new_offsets, delta);
876
877 /* Data changed. */
878 return 1;
879 }
880
881 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
882 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
883
884 The number and ordering of sections does differ between the two objfiles.
885 Only their names match. Also the file offsets will differ (objfile being
886 possibly prelinked but separate_debug_objfile is probably not prelinked) but
887 the in-memory absolute address as specified by NEW_OFFSETS must match both
888 files. */
889
890 void
891 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
892 {
893 struct objfile *debug_objfile;
894 int changed = 0;
895
896 changed |= objfile_relocate1 (objfile, new_offsets);
897
898 for (debug_objfile = objfile->separate_debug_objfile;
899 debug_objfile;
900 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
901 {
902 struct section_addr_info *objfile_addrs;
903 struct section_offsets *new_debug_offsets;
904 struct cleanup *my_cleanups;
905
906 objfile_addrs = build_section_addr_info_from_objfile (objfile);
907 my_cleanups = make_cleanup (xfree, objfile_addrs);
908
909 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
910 relative ones must be already created according to debug_objfile. */
911
912 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
913
914 gdb_assert (debug_objfile->num_sections
915 == bfd_count_sections (debug_objfile->obfd));
916 new_debug_offsets =
917 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
918 make_cleanup (xfree, new_debug_offsets);
919 relative_addr_info_to_section_offsets (new_debug_offsets,
920 debug_objfile->num_sections,
921 objfile_addrs);
922
923 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
924
925 do_cleanups (my_cleanups);
926 }
927
928 /* Relocate breakpoints as necessary, after things are relocated. */
929 if (changed)
930 breakpoint_re_set ();
931 }
932 \f
933 /* Return non-zero if OBJFILE has partial symbols. */
934
935 int
936 objfile_has_partial_symbols (struct objfile *objfile)
937 {
938 if (!objfile->sf)
939 return 0;
940
941 /* If we have not read psymbols, but we have a function capable of reading
942 them, then that is an indication that they are in fact available. Without
943 this function the symbols may have been already read in but they also may
944 not be present in this objfile. */
945 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
946 && objfile->sf->sym_read_psymbols != NULL)
947 return 1;
948
949 return objfile->sf->qf->has_symbols (objfile);
950 }
951
952 /* Return non-zero if OBJFILE has full symbols. */
953
954 int
955 objfile_has_full_symbols (struct objfile *objfile)
956 {
957 return objfile->symtabs != NULL;
958 }
959
960 /* Return non-zero if OBJFILE has full or partial symbols, either directly
961 or through a separate debug file. */
962
963 int
964 objfile_has_symbols (struct objfile *objfile)
965 {
966 struct objfile *o;
967
968 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
969 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
970 return 1;
971 return 0;
972 }
973
974
975 /* Many places in gdb want to test just to see if we have any partial
976 symbols available. This function returns zero if none are currently
977 available, nonzero otherwise. */
978
979 int
980 have_partial_symbols (void)
981 {
982 struct objfile *ofp;
983
984 ALL_OBJFILES (ofp)
985 {
986 if (objfile_has_partial_symbols (ofp))
987 return 1;
988 }
989 return 0;
990 }
991
992 /* Many places in gdb want to test just to see if we have any full
993 symbols available. This function returns zero if none are currently
994 available, nonzero otherwise. */
995
996 int
997 have_full_symbols (void)
998 {
999 struct objfile *ofp;
1000
1001 ALL_OBJFILES (ofp)
1002 {
1003 if (objfile_has_full_symbols (ofp))
1004 return 1;
1005 }
1006 return 0;
1007 }
1008
1009
1010 /* This operations deletes all objfile entries that represent solibs that
1011 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1012 command. */
1013
1014 void
1015 objfile_purge_solibs (void)
1016 {
1017 struct objfile *objf;
1018 struct objfile *temp;
1019
1020 ALL_OBJFILES_SAFE (objf, temp)
1021 {
1022 /* We assume that the solib package has been purged already, or will
1023 be soon. */
1024
1025 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1026 free_objfile (objf);
1027 }
1028 }
1029
1030
1031 /* Many places in gdb want to test just to see if we have any minimal
1032 symbols available. This function returns zero if none are currently
1033 available, nonzero otherwise. */
1034
1035 int
1036 have_minimal_symbols (void)
1037 {
1038 struct objfile *ofp;
1039
1040 ALL_OBJFILES (ofp)
1041 {
1042 if (ofp->minimal_symbol_count > 0)
1043 {
1044 return 1;
1045 }
1046 }
1047 return 0;
1048 }
1049
1050 /* Qsort comparison function. */
1051
1052 static int
1053 qsort_cmp (const void *a, const void *b)
1054 {
1055 const struct obj_section *sect1 = *(const struct obj_section **) a;
1056 const struct obj_section *sect2 = *(const struct obj_section **) b;
1057 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1058 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1059
1060 if (sect1_addr < sect2_addr)
1061 return -1;
1062 else if (sect1_addr > sect2_addr)
1063 return 1;
1064 else
1065 {
1066 /* Sections are at the same address. This could happen if
1067 A) we have an objfile and a separate debuginfo.
1068 B) we are confused, and have added sections without proper relocation,
1069 or something like that. */
1070
1071 const struct objfile *const objfile1 = sect1->objfile;
1072 const struct objfile *const objfile2 = sect2->objfile;
1073
1074 if (objfile1->separate_debug_objfile == objfile2
1075 || objfile2->separate_debug_objfile == objfile1)
1076 {
1077 /* Case A. The ordering doesn't matter: separate debuginfo files
1078 will be filtered out later. */
1079
1080 return 0;
1081 }
1082
1083 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1084 triage. This section could be slow (since we iterate over all
1085 objfiles in each call to qsort_cmp), but this shouldn't happen
1086 very often (GDB is already in a confused state; one hopes this
1087 doesn't happen at all). If you discover that significant time is
1088 spent in the loops below, do 'set complaints 100' and examine the
1089 resulting complaints. */
1090
1091 if (objfile1 == objfile2)
1092 {
1093 /* Both sections came from the same objfile. We are really confused.
1094 Sort on sequence order of sections within the objfile. */
1095
1096 const struct obj_section *osect;
1097
1098 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1099 if (osect == sect1)
1100 return -1;
1101 else if (osect == sect2)
1102 return 1;
1103
1104 /* We should have found one of the sections before getting here. */
1105 gdb_assert_not_reached ("section not found");
1106 }
1107 else
1108 {
1109 /* Sort on sequence number of the objfile in the chain. */
1110
1111 const struct objfile *objfile;
1112
1113 ALL_OBJFILES (objfile)
1114 if (objfile == objfile1)
1115 return -1;
1116 else if (objfile == objfile2)
1117 return 1;
1118
1119 /* We should have found one of the objfiles before getting here. */
1120 gdb_assert_not_reached ("objfile not found");
1121 }
1122 }
1123
1124 /* Unreachable. */
1125 gdb_assert_not_reached ("unexpected code path");
1126 return 0;
1127 }
1128
1129 /* Select "better" obj_section to keep. We prefer the one that came from
1130 the real object, rather than the one from separate debuginfo.
1131 Most of the time the two sections are exactly identical, but with
1132 prelinking the .rel.dyn section in the real object may have different
1133 size. */
1134
1135 static struct obj_section *
1136 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1137 {
1138 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1139 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1140 || (b->objfile->separate_debug_objfile == a->objfile));
1141 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1142 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1143
1144 if (a->objfile->separate_debug_objfile != NULL)
1145 return a;
1146 return b;
1147 }
1148
1149 /* Return 1 if SECTION should be inserted into the section map.
1150 We want to insert only non-overlay and non-TLS section. */
1151
1152 static int
1153 insert_section_p (const struct bfd *abfd,
1154 const struct bfd_section *section)
1155 {
1156 const bfd_vma lma = bfd_section_lma (abfd, section);
1157
1158 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1159 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1160 /* This is an overlay section. IN_MEMORY check is needed to avoid
1161 discarding sections from the "system supplied DSO" (aka vdso)
1162 on some Linux systems (e.g. Fedora 11). */
1163 return 0;
1164 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1165 /* This is a TLS section. */
1166 return 0;
1167
1168 return 1;
1169 }
1170
1171 /* Filter out overlapping sections where one section came from the real
1172 objfile, and the other from a separate debuginfo file.
1173 Return the size of table after redundant sections have been eliminated. */
1174
1175 static int
1176 filter_debuginfo_sections (struct obj_section **map, int map_size)
1177 {
1178 int i, j;
1179
1180 for (i = 0, j = 0; i < map_size - 1; i++)
1181 {
1182 struct obj_section *const sect1 = map[i];
1183 struct obj_section *const sect2 = map[i + 1];
1184 const struct objfile *const objfile1 = sect1->objfile;
1185 const struct objfile *const objfile2 = sect2->objfile;
1186 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1187 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1188
1189 if (sect1_addr == sect2_addr
1190 && (objfile1->separate_debug_objfile == objfile2
1191 || objfile2->separate_debug_objfile == objfile1))
1192 {
1193 map[j++] = preferred_obj_section (sect1, sect2);
1194 ++i;
1195 }
1196 else
1197 map[j++] = sect1;
1198 }
1199
1200 if (i < map_size)
1201 {
1202 gdb_assert (i == map_size - 1);
1203 map[j++] = map[i];
1204 }
1205
1206 /* The map should not have shrunk to less than half the original size. */
1207 gdb_assert (map_size / 2 <= j);
1208
1209 return j;
1210 }
1211
1212 /* Filter out overlapping sections, issuing a warning if any are found.
1213 Overlapping sections could really be overlay sections which we didn't
1214 classify as such in insert_section_p, or we could be dealing with a
1215 corrupt binary. */
1216
1217 static int
1218 filter_overlapping_sections (struct obj_section **map, int map_size)
1219 {
1220 int i, j;
1221
1222 for (i = 0, j = 0; i < map_size - 1; )
1223 {
1224 int k;
1225
1226 map[j++] = map[i];
1227 for (k = i + 1; k < map_size; k++)
1228 {
1229 struct obj_section *const sect1 = map[i];
1230 struct obj_section *const sect2 = map[k];
1231 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1232 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1233 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1234
1235 gdb_assert (sect1_addr <= sect2_addr);
1236
1237 if (sect1_endaddr <= sect2_addr)
1238 break;
1239 else
1240 {
1241 /* We have an overlap. Report it. */
1242
1243 struct objfile *const objf1 = sect1->objfile;
1244 struct objfile *const objf2 = sect2->objfile;
1245
1246 const struct bfd *const abfd1 = objf1->obfd;
1247 const struct bfd *const abfd2 = objf2->obfd;
1248
1249 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1250 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1251
1252 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1253
1254 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1255
1256 complaint (&symfile_complaints,
1257 _("unexpected overlap between:\n"
1258 " (A) section `%s' from `%s' [%s, %s)\n"
1259 " (B) section `%s' from `%s' [%s, %s).\n"
1260 "Will ignore section B"),
1261 bfd_section_name (abfd1, bfds1), objf1->name,
1262 paddress (gdbarch, sect1_addr),
1263 paddress (gdbarch, sect1_endaddr),
1264 bfd_section_name (abfd2, bfds2), objf2->name,
1265 paddress (gdbarch, sect2_addr),
1266 paddress (gdbarch, sect2_endaddr));
1267 }
1268 }
1269 i = k;
1270 }
1271
1272 if (i < map_size)
1273 {
1274 gdb_assert (i == map_size - 1);
1275 map[j++] = map[i];
1276 }
1277
1278 return j;
1279 }
1280
1281
1282 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1283 TLS, overlay and overlapping sections. */
1284
1285 static void
1286 update_section_map (struct program_space *pspace,
1287 struct obj_section ***pmap, int *pmap_size)
1288 {
1289 int alloc_size, map_size, i;
1290 struct obj_section *s, **map;
1291 struct objfile *objfile;
1292
1293 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1294
1295 map = *pmap;
1296 xfree (map);
1297
1298 alloc_size = 0;
1299 ALL_PSPACE_OBJFILES (pspace, objfile)
1300 ALL_OBJFILE_OSECTIONS (objfile, s)
1301 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1302 alloc_size += 1;
1303
1304 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1305 if (alloc_size == 0)
1306 {
1307 *pmap = NULL;
1308 *pmap_size = 0;
1309 return;
1310 }
1311
1312 map = xmalloc (alloc_size * sizeof (*map));
1313
1314 i = 0;
1315 ALL_PSPACE_OBJFILES (pspace, objfile)
1316 ALL_OBJFILE_OSECTIONS (objfile, s)
1317 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1318 map[i++] = s;
1319
1320 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1321 map_size = filter_debuginfo_sections(map, alloc_size);
1322 map_size = filter_overlapping_sections(map, map_size);
1323
1324 if (map_size < alloc_size)
1325 /* Some sections were eliminated. Trim excess space. */
1326 map = xrealloc (map, map_size * sizeof (*map));
1327 else
1328 gdb_assert (alloc_size == map_size);
1329
1330 *pmap = map;
1331 *pmap_size = map_size;
1332 }
1333
1334 /* Bsearch comparison function. */
1335
1336 static int
1337 bsearch_cmp (const void *key, const void *elt)
1338 {
1339 const CORE_ADDR pc = *(CORE_ADDR *) key;
1340 const struct obj_section *section = *(const struct obj_section **) elt;
1341
1342 if (pc < obj_section_addr (section))
1343 return -1;
1344 if (pc < obj_section_endaddr (section))
1345 return 0;
1346 return 1;
1347 }
1348
1349 /* Returns a section whose range includes PC or NULL if none found. */
1350
1351 struct obj_section *
1352 find_pc_section (CORE_ADDR pc)
1353 {
1354 struct objfile_pspace_info *pspace_info;
1355 struct obj_section *s, **sp;
1356
1357 /* Check for mapped overlay section first. */
1358 s = find_pc_mapped_section (pc);
1359 if (s)
1360 return s;
1361
1362 pspace_info = get_objfile_pspace_data (current_program_space);
1363 if (pspace_info->objfiles_changed_p != 0)
1364 {
1365 update_section_map (current_program_space,
1366 &pspace_info->sections,
1367 &pspace_info->num_sections);
1368
1369 /* Don't need updates to section map until objfiles are added,
1370 removed or relocated. */
1371 pspace_info->objfiles_changed_p = 0;
1372 }
1373
1374 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1375 bsearch be non-NULL. */
1376 if (pspace_info->sections == NULL)
1377 {
1378 gdb_assert (pspace_info->num_sections == 0);
1379 return NULL;
1380 }
1381
1382 sp = (struct obj_section **) bsearch (&pc,
1383 pspace_info->sections,
1384 pspace_info->num_sections,
1385 sizeof (*pspace_info->sections),
1386 bsearch_cmp);
1387 if (sp != NULL)
1388 return *sp;
1389 return NULL;
1390 }
1391
1392
1393 /* In SVR4, we recognize a trampoline by it's section name.
1394 That is, if the pc is in a section named ".plt" then we are in
1395 a trampoline. */
1396
1397 int
1398 in_plt_section (CORE_ADDR pc, char *name)
1399 {
1400 struct obj_section *s;
1401 int retval = 0;
1402
1403 s = find_pc_section (pc);
1404
1405 retval = (s != NULL
1406 && s->the_bfd_section->name != NULL
1407 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1408 return (retval);
1409 }
1410 \f
1411
1412 /* Set objfiles_changed_p so section map will be rebuilt next time it
1413 is used. Called by reread_symbols. */
1414
1415 void
1416 objfiles_changed (void)
1417 {
1418 /* Rebuild section map next time we need it. */
1419 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1420 }
1421
1422 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1423 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1424 searching the objfiles in the order they are stored internally,
1425 ignoring CURRENT_OBJFILE.
1426
1427 On most platorms, it should be close enough to doing the best
1428 we can without some knowledge specific to the architecture. */
1429
1430 void
1431 default_iterate_over_objfiles_in_search_order
1432 (struct gdbarch *gdbarch,
1433 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1434 void *cb_data, struct objfile *current_objfile)
1435 {
1436 int stop = 0;
1437 struct objfile *objfile;
1438
1439 ALL_OBJFILES (objfile)
1440 {
1441 stop = cb (objfile, cb_data);
1442 if (stop)
1443 return;
1444 }
1445 }
1446
1447 /* Provide a prototype to silence -Wmissing-prototypes. */
1448 extern initialize_file_ftype _initialize_objfiles;
1449
1450 void
1451 _initialize_objfiles (void)
1452 {
1453 objfiles_pspace_data
1454 = register_program_space_data_with_cleanup (NULL,
1455 objfiles_pspace_data_cleanup);
1456
1457 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1458 objfile_bfd_data_free);
1459 }
This page took 0.064043 seconds and 5 git commands to generate.