gdb/
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2004, 2007-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "mdebugread.h"
34 #include "expression.h"
35 #include "parser-defs.h"
36
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48 #include "source.h"
49 #include "addrmap.h"
50 #include "arch-utils.h"
51 #include "exec.h"
52 #include "observer.h"
53 #include "complaints.h"
54 #include "psymtab.h"
55 #include "solist.h"
56 #include "gdb_bfd.h"
57
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile *rt_common_objfile; /* For runtime common symbols */
67
68 struct objfile_pspace_info
69 {
70 int objfiles_changed_p;
71 struct obj_section **sections;
72 int num_sections;
73 };
74
75 /* Per-program-space data key. */
76 static const struct program_space_data *objfiles_pspace_data;
77
78 static void
79 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
80 {
81 struct objfile_pspace_info *info;
82
83 info = program_space_data (pspace, objfiles_pspace_data);
84 if (info != NULL)
85 {
86 xfree (info->sections);
87 xfree (info);
88 }
89 }
90
91 /* Get the current svr4 data. If none is found yet, add it now. This
92 function always returns a valid object. */
93
94 static struct objfile_pspace_info *
95 get_objfile_pspace_data (struct program_space *pspace)
96 {
97 struct objfile_pspace_info *info;
98
99 info = program_space_data (pspace, objfiles_pspace_data);
100 if (info == NULL)
101 {
102 info = XZALLOC (struct objfile_pspace_info);
103 set_program_space_data (pspace, objfiles_pspace_data, info);
104 }
105
106 return info;
107 }
108
109 \f
110
111 /* Per-BFD data key. */
112
113 static const struct bfd_data *objfiles_bfd_data;
114
115 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
116 NULL, and it already has a per-BFD storage object, use that.
117 Otherwise, allocate a new per-BFD storage object. If ABFD is not
118 NULL, the object is allocated on the BFD; otherwise it is allocated
119 on OBJFILE's obstack. Note that it is not safe to call this
120 multiple times for a given OBJFILE -- it can only be called when
121 allocating or re-initializing OBJFILE. */
122
123 static struct objfile_per_bfd_storage *
124 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
125 {
126 struct objfile_per_bfd_storage *storage = NULL;
127
128 if (abfd != NULL)
129 storage = bfd_data (abfd, objfiles_bfd_data);
130
131 if (storage == NULL)
132 {
133 if (abfd != NULL)
134 {
135 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
136 set_bfd_data (abfd, objfiles_bfd_data, storage);
137 }
138 else
139 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
140 struct objfile_per_bfd_storage);
141
142 obstack_init (&storage->storage_obstack);
143 storage->filename_cache = bcache_xmalloc (NULL, NULL);
144 storage->macro_cache = bcache_xmalloc (NULL, NULL);
145 }
146
147 return storage;
148 }
149
150 /* Free STORAGE. */
151
152 static void
153 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
154 {
155 bcache_xfree (storage->filename_cache);
156 bcache_xfree (storage->macro_cache);
157 obstack_free (&storage->storage_obstack, 0);
158 }
159
160 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
161 cleanup function to the BFD registry. */
162
163 static void
164 objfile_bfd_data_free (struct bfd *unused, void *d)
165 {
166 free_objfile_per_bfd_storage (d);
167 }
168
169 /* See objfiles.h. */
170
171 void
172 set_objfile_per_bfd (struct objfile *objfile)
173 {
174 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
175 }
176
177 \f
178
179 /* Called via bfd_map_over_sections to build up the section table that
180 the objfile references. The objfile contains pointers to the start
181 of the table (objfile->sections) and to the first location after
182 the end of the table (objfile->sections_end). */
183
184 static void
185 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
186 void *objfilep)
187 {
188 struct objfile *objfile = (struct objfile *) objfilep;
189 struct obj_section section;
190 flagword aflag;
191
192 aflag = bfd_get_section_flags (abfd, asect);
193 if (!(aflag & SEC_ALLOC))
194 return;
195 if (bfd_section_size (abfd, asect) == 0)
196 return;
197
198 section.objfile = objfile;
199 section.the_bfd_section = asect;
200 section.ovly_mapped = 0;
201 obstack_grow (&objfile->objfile_obstack,
202 (char *) &section, sizeof (section));
203 objfile->sections_end
204 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
205 }
206
207 /* Builds a section table for OBJFILE.
208
209 Note that while we are building the table, which goes into the
210 objfile obstack, we hijack the sections_end pointer to instead hold
211 a count of the number of sections. When bfd_map_over_sections
212 returns, this count is used to compute the pointer to the end of
213 the sections table, which then overwrites the count.
214
215 Also note that the OFFSET and OVLY_MAPPED in each table entry
216 are initialized to zero.
217
218 Also note that if anything else writes to the objfile obstack while
219 we are building the table, we're pretty much hosed. */
220
221 void
222 build_objfile_section_table (struct objfile *objfile)
223 {
224 objfile->sections_end = 0;
225 bfd_map_over_sections (objfile->obfd,
226 add_to_objfile_sections, (void *) objfile);
227 objfile->sections = obstack_finish (&objfile->objfile_obstack);
228 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
229 }
230
231 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
232 allocate a new objfile struct, fill it in as best we can, link it
233 into the list of all known objfiles, and return a pointer to the
234 new objfile struct.
235
236 The FLAGS word contains various bits (OBJF_*) that can be taken as
237 requests for specific operations. Other bits like OBJF_SHARED are
238 simply copied through to the new objfile flags member. */
239
240 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
241 by jv-lang.c, to create an artificial objfile used to hold
242 information about dynamically-loaded Java classes. Unfortunately,
243 that branch of this function doesn't get tested very frequently, so
244 it's prone to breakage. (E.g. at one time the name was set to NULL
245 in that situation, which broke a loop over all names in the dynamic
246 library loader.) If you change this function, please try to leave
247 things in a consistent state even if abfd is NULL. */
248
249 struct objfile *
250 allocate_objfile (bfd *abfd, int flags)
251 {
252 struct objfile *objfile;
253
254 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
255 objfile->psymbol_cache = psymbol_bcache_init ();
256 /* We could use obstack_specify_allocation here instead, but
257 gdb_obstack.h specifies the alloc/dealloc functions. */
258 obstack_init (&objfile->objfile_obstack);
259 terminate_minimal_symbol_table (objfile);
260
261 objfile_alloc_data (objfile);
262
263 /* Update the per-objfile information that comes from the bfd, ensuring
264 that any data that is reference is saved in the per-objfile data
265 region. */
266
267 objfile->obfd = abfd;
268 gdb_bfd_ref (abfd);
269 if (abfd != NULL)
270 {
271 /* Look up the gdbarch associated with the BFD. */
272 objfile->gdbarch = gdbarch_from_bfd (abfd);
273
274 objfile->name = bfd_get_filename (abfd);
275 objfile->mtime = bfd_get_mtime (abfd);
276
277 /* Build section table. */
278 build_objfile_section_table (objfile);
279 }
280 else
281 {
282 objfile->name = "<<anonymous objfile>>";
283 }
284
285 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
286 objfile->pspace = current_program_space;
287
288 /* Initialize the section indexes for this objfile, so that we can
289 later detect if they are used w/o being properly assigned to. */
290
291 objfile->sect_index_text = -1;
292 objfile->sect_index_data = -1;
293 objfile->sect_index_bss = -1;
294 objfile->sect_index_rodata = -1;
295
296 /* Add this file onto the tail of the linked list of other such files. */
297
298 objfile->next = NULL;
299 if (object_files == NULL)
300 object_files = objfile;
301 else
302 {
303 struct objfile *last_one;
304
305 for (last_one = object_files;
306 last_one->next;
307 last_one = last_one->next);
308 last_one->next = objfile;
309 }
310
311 /* Save passed in flag bits. */
312 objfile->flags |= flags;
313
314 /* Rebuild section map next time we need it. */
315 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
316
317 return objfile;
318 }
319
320 /* Retrieve the gdbarch associated with OBJFILE. */
321 struct gdbarch *
322 get_objfile_arch (struct objfile *objfile)
323 {
324 return objfile->gdbarch;
325 }
326
327 /* Initialize entry point information for this objfile. */
328
329 void
330 init_entry_point_info (struct objfile *objfile)
331 {
332 /* Save startup file's range of PC addresses to help blockframe.c
333 decide where the bottom of the stack is. */
334
335 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
336 {
337 /* Executable file -- record its entry point so we'll recognize
338 the startup file because it contains the entry point. */
339 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
340 objfile->ei.entry_point_p = 1;
341 }
342 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
343 && bfd_get_start_address (objfile->obfd) != 0)
344 {
345 /* Some shared libraries may have entry points set and be
346 runnable. There's no clear way to indicate this, so just check
347 for values other than zero. */
348 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
349 objfile->ei.entry_point_p = 1;
350 }
351 else
352 {
353 /* Examination of non-executable.o files. Short-circuit this stuff. */
354 objfile->ei.entry_point_p = 0;
355 }
356
357 if (objfile->ei.entry_point_p)
358 {
359 CORE_ADDR entry_point = objfile->ei.entry_point;
360
361 /* Make certain that the address points at real code, and not a
362 function descriptor. */
363 entry_point
364 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
365 entry_point,
366 &current_target);
367
368 /* Remove any ISA markers, so that this matches entries in the
369 symbol table. */
370 objfile->ei.entry_point
371 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
372 }
373 }
374
375 /* If there is a valid and known entry point, function fills *ENTRY_P with it
376 and returns non-zero; otherwise it returns zero. */
377
378 int
379 entry_point_address_query (CORE_ADDR *entry_p)
380 {
381 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
382 return 0;
383
384 *entry_p = symfile_objfile->ei.entry_point;
385
386 return 1;
387 }
388
389 /* Get current entry point address. Call error if it is not known. */
390
391 CORE_ADDR
392 entry_point_address (void)
393 {
394 CORE_ADDR retval;
395
396 if (!entry_point_address_query (&retval))
397 error (_("Entry point address is not known."));
398
399 return retval;
400 }
401
402 /* Iterator on PARENT and every separate debug objfile of PARENT.
403 The usage pattern is:
404 for (objfile = parent;
405 objfile;
406 objfile = objfile_separate_debug_iterate (parent, objfile))
407 ...
408 */
409
410 struct objfile *
411 objfile_separate_debug_iterate (const struct objfile *parent,
412 const struct objfile *objfile)
413 {
414 struct objfile *res;
415
416 /* If any, return the first child. */
417 res = objfile->separate_debug_objfile;
418 if (res)
419 return res;
420
421 /* Common case where there is no separate debug objfile. */
422 if (objfile == parent)
423 return NULL;
424
425 /* Return the brother if any. Note that we don't iterate on brothers of
426 the parents. */
427 res = objfile->separate_debug_objfile_link;
428 if (res)
429 return res;
430
431 for (res = objfile->separate_debug_objfile_backlink;
432 res != parent;
433 res = res->separate_debug_objfile_backlink)
434 {
435 gdb_assert (res != NULL);
436 if (res->separate_debug_objfile_link)
437 return res->separate_debug_objfile_link;
438 }
439 return NULL;
440 }
441
442 /* Put one object file before a specified on in the global list.
443 This can be used to make sure an object file is destroyed before
444 another when using ALL_OBJFILES_SAFE to free all objfiles. */
445 void
446 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
447 {
448 struct objfile **objp;
449
450 unlink_objfile (objfile);
451
452 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
453 {
454 if (*objp == before_this)
455 {
456 objfile->next = *objp;
457 *objp = objfile;
458 return;
459 }
460 }
461
462 internal_error (__FILE__, __LINE__,
463 _("put_objfile_before: before objfile not in list"));
464 }
465
466 /* Put OBJFILE at the front of the list. */
467
468 void
469 objfile_to_front (struct objfile *objfile)
470 {
471 struct objfile **objp;
472 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
473 {
474 if (*objp == objfile)
475 {
476 /* Unhook it from where it is. */
477 *objp = objfile->next;
478 /* Put it in the front. */
479 objfile->next = object_files;
480 object_files = objfile;
481 break;
482 }
483 }
484 }
485
486 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
487 list.
488
489 It is not a bug, or error, to call this function if OBJFILE is not known
490 to be in the current list. This is done in the case of mapped objfiles,
491 for example, just to ensure that the mapped objfile doesn't appear twice
492 in the list. Since the list is threaded, linking in a mapped objfile
493 twice would create a circular list.
494
495 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
496 unlinking it, just to ensure that we have completely severed any linkages
497 between the OBJFILE and the list. */
498
499 void
500 unlink_objfile (struct objfile *objfile)
501 {
502 struct objfile **objpp;
503
504 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
505 {
506 if (*objpp == objfile)
507 {
508 *objpp = (*objpp)->next;
509 objfile->next = NULL;
510 return;
511 }
512 }
513
514 internal_error (__FILE__, __LINE__,
515 _("unlink_objfile: objfile already unlinked"));
516 }
517
518 /* Add OBJFILE as a separate debug objfile of PARENT. */
519
520 void
521 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
522 {
523 gdb_assert (objfile && parent);
524
525 /* Must not be already in a list. */
526 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
527 gdb_assert (objfile->separate_debug_objfile_link == NULL);
528
529 objfile->separate_debug_objfile_backlink = parent;
530 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
531 parent->separate_debug_objfile = objfile;
532
533 /* Put the separate debug object before the normal one, this is so that
534 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
535 put_objfile_before (objfile, parent);
536 }
537
538 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
539 itself. */
540
541 void
542 free_objfile_separate_debug (struct objfile *objfile)
543 {
544 struct objfile *child;
545
546 for (child = objfile->separate_debug_objfile; child;)
547 {
548 struct objfile *next_child = child->separate_debug_objfile_link;
549 free_objfile (child);
550 child = next_child;
551 }
552 }
553
554 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
555 that as much as possible is allocated on the objfile_obstack
556 so that the memory can be efficiently freed.
557
558 Things which we do NOT free because they are not in malloc'd memory
559 or not in memory specific to the objfile include:
560
561 objfile -> sf
562
563 FIXME: If the objfile is using reusable symbol information (via mmalloc),
564 then we need to take into account the fact that more than one process
565 may be using the symbol information at the same time (when mmalloc is
566 extended to support cooperative locking). When more than one process
567 is using the mapped symbol info, we need to be more careful about when
568 we free objects in the reusable area. */
569
570 void
571 free_objfile (struct objfile *objfile)
572 {
573 /* Free all separate debug objfiles. */
574 free_objfile_separate_debug (objfile);
575
576 if (objfile->separate_debug_objfile_backlink)
577 {
578 /* We freed the separate debug file, make sure the base objfile
579 doesn't reference it. */
580 struct objfile *child;
581
582 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
583
584 if (child == objfile)
585 {
586 /* OBJFILE is the first child. */
587 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
588 objfile->separate_debug_objfile_link;
589 }
590 else
591 {
592 /* Find OBJFILE in the list. */
593 while (1)
594 {
595 if (child->separate_debug_objfile_link == objfile)
596 {
597 child->separate_debug_objfile_link =
598 objfile->separate_debug_objfile_link;
599 break;
600 }
601 child = child->separate_debug_objfile_link;
602 gdb_assert (child);
603 }
604 }
605 }
606
607 /* Remove any references to this objfile in the global value
608 lists. */
609 preserve_values (objfile);
610
611 /* It still may reference data modules have associated with the objfile and
612 the symbol file data. */
613 forget_cached_source_info_for_objfile (objfile);
614
615 /* First do any symbol file specific actions required when we are
616 finished with a particular symbol file. Note that if the objfile
617 is using reusable symbol information (via mmalloc) then each of
618 these routines is responsible for doing the correct thing, either
619 freeing things which are valid only during this particular gdb
620 execution, or leaving them to be reused during the next one. */
621
622 if (objfile->sf != NULL)
623 {
624 (*objfile->sf->sym_finish) (objfile);
625 }
626
627 /* Discard any data modules have associated with the objfile. The function
628 still may reference objfile->obfd. */
629 objfile_free_data (objfile);
630
631 if (objfile->obfd)
632 gdb_bfd_unref (objfile->obfd);
633 else
634 free_objfile_per_bfd_storage (objfile->per_bfd);
635
636 /* Remove it from the chain of all objfiles. */
637
638 unlink_objfile (objfile);
639
640 if (objfile == symfile_objfile)
641 symfile_objfile = NULL;
642
643 if (objfile == rt_common_objfile)
644 rt_common_objfile = NULL;
645
646 /* Before the symbol table code was redone to make it easier to
647 selectively load and remove information particular to a specific
648 linkage unit, gdb used to do these things whenever the monolithic
649 symbol table was blown away. How much still needs to be done
650 is unknown, but we play it safe for now and keep each action until
651 it is shown to be no longer needed. */
652
653 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
654 for example), so we need to call this here. */
655 clear_pc_function_cache ();
656
657 /* Clear globals which might have pointed into a removed objfile.
658 FIXME: It's not clear which of these are supposed to persist
659 between expressions and which ought to be reset each time. */
660 expression_context_block = NULL;
661 innermost_block = NULL;
662
663 /* Check to see if the current_source_symtab belongs to this objfile,
664 and if so, call clear_current_source_symtab_and_line. */
665
666 {
667 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
668
669 if (cursal.symtab && cursal.symtab->objfile == objfile)
670 clear_current_source_symtab_and_line ();
671 }
672
673 /* The last thing we do is free the objfile struct itself. */
674
675 if (objfile->global_psymbols.list)
676 xfree (objfile->global_psymbols.list);
677 if (objfile->static_psymbols.list)
678 xfree (objfile->static_psymbols.list);
679 /* Free the obstacks for non-reusable objfiles. */
680 psymbol_bcache_free (objfile->psymbol_cache);
681 if (objfile->demangled_names_hash)
682 htab_delete (objfile->demangled_names_hash);
683 obstack_free (&objfile->objfile_obstack, 0);
684
685 /* Rebuild section map next time we need it. */
686 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
687
688 xfree (objfile);
689 }
690
691 static void
692 do_free_objfile_cleanup (void *obj)
693 {
694 free_objfile (obj);
695 }
696
697 struct cleanup *
698 make_cleanup_free_objfile (struct objfile *obj)
699 {
700 return make_cleanup (do_free_objfile_cleanup, obj);
701 }
702
703 /* Free all the object files at once and clean up their users. */
704
705 void
706 free_all_objfiles (void)
707 {
708 struct objfile *objfile, *temp;
709 struct so_list *so;
710
711 /* Any objfile referencewould become stale. */
712 for (so = master_so_list (); so; so = so->next)
713 gdb_assert (so->objfile == NULL);
714
715 ALL_OBJFILES_SAFE (objfile, temp)
716 {
717 free_objfile (objfile);
718 }
719 clear_symtab_users (0);
720 }
721 \f
722 /* A helper function for objfile_relocate1 that relocates a single
723 symbol. */
724
725 static void
726 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
727 struct section_offsets *delta)
728 {
729 fixup_symbol_section (sym, objfile);
730
731 /* The RS6000 code from which this was taken skipped
732 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
733 But I'm leaving out that test, on the theory that
734 they can't possibly pass the tests below. */
735 if ((SYMBOL_CLASS (sym) == LOC_LABEL
736 || SYMBOL_CLASS (sym) == LOC_STATIC)
737 && SYMBOL_SECTION (sym) >= 0)
738 {
739 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
740 }
741 }
742
743 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
744 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
745 Return non-zero iff any change happened. */
746
747 static int
748 objfile_relocate1 (struct objfile *objfile,
749 struct section_offsets *new_offsets)
750 {
751 struct obj_section *s;
752 struct section_offsets *delta =
753 ((struct section_offsets *)
754 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
755
756 int i;
757 int something_changed = 0;
758
759 for (i = 0; i < objfile->num_sections; ++i)
760 {
761 delta->offsets[i] =
762 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
763 if (ANOFFSET (delta, i) != 0)
764 something_changed = 1;
765 }
766 if (!something_changed)
767 return 0;
768
769 /* OK, get all the symtabs. */
770 {
771 struct symtab *s;
772
773 ALL_OBJFILE_SYMTABS (objfile, s)
774 {
775 struct linetable *l;
776 struct blockvector *bv;
777 int i;
778
779 /* First the line table. */
780 l = LINETABLE (s);
781 if (l)
782 {
783 for (i = 0; i < l->nitems; ++i)
784 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
785 }
786
787 /* Don't relocate a shared blockvector more than once. */
788 if (!s->primary)
789 continue;
790
791 bv = BLOCKVECTOR (s);
792 if (BLOCKVECTOR_MAP (bv))
793 addrmap_relocate (BLOCKVECTOR_MAP (bv),
794 ANOFFSET (delta, s->block_line_section));
795
796 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
797 {
798 struct block *b;
799 struct symbol *sym;
800 struct dict_iterator iter;
801
802 b = BLOCKVECTOR_BLOCK (bv, i);
803 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
804 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
805
806 /* We only want to iterate over the local symbols, not any
807 symbols in included symtabs. */
808 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
809 {
810 relocate_one_symbol (sym, objfile, delta);
811 }
812 }
813 }
814 }
815
816 /* Relocate isolated symbols. */
817 {
818 struct symbol *iter;
819
820 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
821 relocate_one_symbol (iter, objfile, delta);
822 }
823
824 if (objfile->psymtabs_addrmap)
825 addrmap_relocate (objfile->psymtabs_addrmap,
826 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
827
828 if (objfile->sf)
829 objfile->sf->qf->relocate (objfile, new_offsets, delta);
830
831 {
832 struct minimal_symbol *msym;
833
834 ALL_OBJFILE_MSYMBOLS (objfile, msym)
835 if (SYMBOL_SECTION (msym) >= 0)
836 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
837 }
838 /* Relocating different sections by different amounts may cause the symbols
839 to be out of order. */
840 msymbols_sort (objfile);
841
842 if (objfile->ei.entry_point_p)
843 {
844 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
845 only as a fallback. */
846 struct obj_section *s;
847 s = find_pc_section (objfile->ei.entry_point);
848 if (s)
849 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
850 else
851 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
852 }
853
854 {
855 int i;
856
857 for (i = 0; i < objfile->num_sections; ++i)
858 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
859 }
860
861 /* Rebuild section map next time we need it. */
862 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
863
864 /* Update the table in exec_ops, used to read memory. */
865 ALL_OBJFILE_OSECTIONS (objfile, s)
866 {
867 int idx = s->the_bfd_section->index;
868
869 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
870 obj_section_addr (s));
871 }
872
873 /* Relocating probes. */
874 if (objfile->sf && objfile->sf->sym_probe_fns)
875 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
876 new_offsets, delta);
877
878 /* Data changed. */
879 return 1;
880 }
881
882 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
883 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
884
885 The number and ordering of sections does differ between the two objfiles.
886 Only their names match. Also the file offsets will differ (objfile being
887 possibly prelinked but separate_debug_objfile is probably not prelinked) but
888 the in-memory absolute address as specified by NEW_OFFSETS must match both
889 files. */
890
891 void
892 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
893 {
894 struct objfile *debug_objfile;
895 int changed = 0;
896
897 changed |= objfile_relocate1 (objfile, new_offsets);
898
899 for (debug_objfile = objfile->separate_debug_objfile;
900 debug_objfile;
901 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
902 {
903 struct section_addr_info *objfile_addrs;
904 struct section_offsets *new_debug_offsets;
905 struct cleanup *my_cleanups;
906
907 objfile_addrs = build_section_addr_info_from_objfile (objfile);
908 my_cleanups = make_cleanup (xfree, objfile_addrs);
909
910 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
911 relative ones must be already created according to debug_objfile. */
912
913 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
914
915 gdb_assert (debug_objfile->num_sections
916 == bfd_count_sections (debug_objfile->obfd));
917 new_debug_offsets =
918 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
919 make_cleanup (xfree, new_debug_offsets);
920 relative_addr_info_to_section_offsets (new_debug_offsets,
921 debug_objfile->num_sections,
922 objfile_addrs);
923
924 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
925
926 do_cleanups (my_cleanups);
927 }
928
929 /* Relocate breakpoints as necessary, after things are relocated. */
930 if (changed)
931 breakpoint_re_set ();
932 }
933 \f
934 /* Return non-zero if OBJFILE has partial symbols. */
935
936 int
937 objfile_has_partial_symbols (struct objfile *objfile)
938 {
939 if (!objfile->sf)
940 return 0;
941
942 /* If we have not read psymbols, but we have a function capable of reading
943 them, then that is an indication that they are in fact available. Without
944 this function the symbols may have been already read in but they also may
945 not be present in this objfile. */
946 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
947 && objfile->sf->sym_read_psymbols != NULL)
948 return 1;
949
950 return objfile->sf->qf->has_symbols (objfile);
951 }
952
953 /* Return non-zero if OBJFILE has full symbols. */
954
955 int
956 objfile_has_full_symbols (struct objfile *objfile)
957 {
958 return objfile->symtabs != NULL;
959 }
960
961 /* Return non-zero if OBJFILE has full or partial symbols, either directly
962 or through a separate debug file. */
963
964 int
965 objfile_has_symbols (struct objfile *objfile)
966 {
967 struct objfile *o;
968
969 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
970 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
971 return 1;
972 return 0;
973 }
974
975
976 /* Many places in gdb want to test just to see if we have any partial
977 symbols available. This function returns zero if none are currently
978 available, nonzero otherwise. */
979
980 int
981 have_partial_symbols (void)
982 {
983 struct objfile *ofp;
984
985 ALL_OBJFILES (ofp)
986 {
987 if (objfile_has_partial_symbols (ofp))
988 return 1;
989 }
990 return 0;
991 }
992
993 /* Many places in gdb want to test just to see if we have any full
994 symbols available. This function returns zero if none are currently
995 available, nonzero otherwise. */
996
997 int
998 have_full_symbols (void)
999 {
1000 struct objfile *ofp;
1001
1002 ALL_OBJFILES (ofp)
1003 {
1004 if (objfile_has_full_symbols (ofp))
1005 return 1;
1006 }
1007 return 0;
1008 }
1009
1010
1011 /* This operations deletes all objfile entries that represent solibs that
1012 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1013 command. */
1014
1015 void
1016 objfile_purge_solibs (void)
1017 {
1018 struct objfile *objf;
1019 struct objfile *temp;
1020
1021 ALL_OBJFILES_SAFE (objf, temp)
1022 {
1023 /* We assume that the solib package has been purged already, or will
1024 be soon. */
1025
1026 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1027 free_objfile (objf);
1028 }
1029 }
1030
1031
1032 /* Many places in gdb want to test just to see if we have any minimal
1033 symbols available. This function returns zero if none are currently
1034 available, nonzero otherwise. */
1035
1036 int
1037 have_minimal_symbols (void)
1038 {
1039 struct objfile *ofp;
1040
1041 ALL_OBJFILES (ofp)
1042 {
1043 if (ofp->minimal_symbol_count > 0)
1044 {
1045 return 1;
1046 }
1047 }
1048 return 0;
1049 }
1050
1051 /* Qsort comparison function. */
1052
1053 static int
1054 qsort_cmp (const void *a, const void *b)
1055 {
1056 const struct obj_section *sect1 = *(const struct obj_section **) a;
1057 const struct obj_section *sect2 = *(const struct obj_section **) b;
1058 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1059 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1060
1061 if (sect1_addr < sect2_addr)
1062 return -1;
1063 else if (sect1_addr > sect2_addr)
1064 return 1;
1065 else
1066 {
1067 /* Sections are at the same address. This could happen if
1068 A) we have an objfile and a separate debuginfo.
1069 B) we are confused, and have added sections without proper relocation,
1070 or something like that. */
1071
1072 const struct objfile *const objfile1 = sect1->objfile;
1073 const struct objfile *const objfile2 = sect2->objfile;
1074
1075 if (objfile1->separate_debug_objfile == objfile2
1076 || objfile2->separate_debug_objfile == objfile1)
1077 {
1078 /* Case A. The ordering doesn't matter: separate debuginfo files
1079 will be filtered out later. */
1080
1081 return 0;
1082 }
1083
1084 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1085 triage. This section could be slow (since we iterate over all
1086 objfiles in each call to qsort_cmp), but this shouldn't happen
1087 very often (GDB is already in a confused state; one hopes this
1088 doesn't happen at all). If you discover that significant time is
1089 spent in the loops below, do 'set complaints 100' and examine the
1090 resulting complaints. */
1091
1092 if (objfile1 == objfile2)
1093 {
1094 /* Both sections came from the same objfile. We are really confused.
1095 Sort on sequence order of sections within the objfile. */
1096
1097 const struct obj_section *osect;
1098
1099 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1100 if (osect == sect1)
1101 return -1;
1102 else if (osect == sect2)
1103 return 1;
1104
1105 /* We should have found one of the sections before getting here. */
1106 gdb_assert_not_reached ("section not found");
1107 }
1108 else
1109 {
1110 /* Sort on sequence number of the objfile in the chain. */
1111
1112 const struct objfile *objfile;
1113
1114 ALL_OBJFILES (objfile)
1115 if (objfile == objfile1)
1116 return -1;
1117 else if (objfile == objfile2)
1118 return 1;
1119
1120 /* We should have found one of the objfiles before getting here. */
1121 gdb_assert_not_reached ("objfile not found");
1122 }
1123 }
1124
1125 /* Unreachable. */
1126 gdb_assert_not_reached ("unexpected code path");
1127 return 0;
1128 }
1129
1130 /* Select "better" obj_section to keep. We prefer the one that came from
1131 the real object, rather than the one from separate debuginfo.
1132 Most of the time the two sections are exactly identical, but with
1133 prelinking the .rel.dyn section in the real object may have different
1134 size. */
1135
1136 static struct obj_section *
1137 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1138 {
1139 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1140 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1141 || (b->objfile->separate_debug_objfile == a->objfile));
1142 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1143 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1144
1145 if (a->objfile->separate_debug_objfile != NULL)
1146 return a;
1147 return b;
1148 }
1149
1150 /* Return 1 if SECTION should be inserted into the section map.
1151 We want to insert only non-overlay and non-TLS section. */
1152
1153 static int
1154 insert_section_p (const struct bfd *abfd,
1155 const struct bfd_section *section)
1156 {
1157 const bfd_vma lma = bfd_section_lma (abfd, section);
1158
1159 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1160 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1161 /* This is an overlay section. IN_MEMORY check is needed to avoid
1162 discarding sections from the "system supplied DSO" (aka vdso)
1163 on some Linux systems (e.g. Fedora 11). */
1164 return 0;
1165 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1166 /* This is a TLS section. */
1167 return 0;
1168
1169 return 1;
1170 }
1171
1172 /* Filter out overlapping sections where one section came from the real
1173 objfile, and the other from a separate debuginfo file.
1174 Return the size of table after redundant sections have been eliminated. */
1175
1176 static int
1177 filter_debuginfo_sections (struct obj_section **map, int map_size)
1178 {
1179 int i, j;
1180
1181 for (i = 0, j = 0; i < map_size - 1; i++)
1182 {
1183 struct obj_section *const sect1 = map[i];
1184 struct obj_section *const sect2 = map[i + 1];
1185 const struct objfile *const objfile1 = sect1->objfile;
1186 const struct objfile *const objfile2 = sect2->objfile;
1187 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1188 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1189
1190 if (sect1_addr == sect2_addr
1191 && (objfile1->separate_debug_objfile == objfile2
1192 || objfile2->separate_debug_objfile == objfile1))
1193 {
1194 map[j++] = preferred_obj_section (sect1, sect2);
1195 ++i;
1196 }
1197 else
1198 map[j++] = sect1;
1199 }
1200
1201 if (i < map_size)
1202 {
1203 gdb_assert (i == map_size - 1);
1204 map[j++] = map[i];
1205 }
1206
1207 /* The map should not have shrunk to less than half the original size. */
1208 gdb_assert (map_size / 2 <= j);
1209
1210 return j;
1211 }
1212
1213 /* Filter out overlapping sections, issuing a warning if any are found.
1214 Overlapping sections could really be overlay sections which we didn't
1215 classify as such in insert_section_p, or we could be dealing with a
1216 corrupt binary. */
1217
1218 static int
1219 filter_overlapping_sections (struct obj_section **map, int map_size)
1220 {
1221 int i, j;
1222
1223 for (i = 0, j = 0; i < map_size - 1; )
1224 {
1225 int k;
1226
1227 map[j++] = map[i];
1228 for (k = i + 1; k < map_size; k++)
1229 {
1230 struct obj_section *const sect1 = map[i];
1231 struct obj_section *const sect2 = map[k];
1232 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1233 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1234 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1235
1236 gdb_assert (sect1_addr <= sect2_addr);
1237
1238 if (sect1_endaddr <= sect2_addr)
1239 break;
1240 else
1241 {
1242 /* We have an overlap. Report it. */
1243
1244 struct objfile *const objf1 = sect1->objfile;
1245 struct objfile *const objf2 = sect2->objfile;
1246
1247 const struct bfd *const abfd1 = objf1->obfd;
1248 const struct bfd *const abfd2 = objf2->obfd;
1249
1250 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1251 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1252
1253 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1254
1255 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1256
1257 complaint (&symfile_complaints,
1258 _("unexpected overlap between:\n"
1259 " (A) section `%s' from `%s' [%s, %s)\n"
1260 " (B) section `%s' from `%s' [%s, %s).\n"
1261 "Will ignore section B"),
1262 bfd_section_name (abfd1, bfds1), objf1->name,
1263 paddress (gdbarch, sect1_addr),
1264 paddress (gdbarch, sect1_endaddr),
1265 bfd_section_name (abfd2, bfds2), objf2->name,
1266 paddress (gdbarch, sect2_addr),
1267 paddress (gdbarch, sect2_endaddr));
1268 }
1269 }
1270 i = k;
1271 }
1272
1273 if (i < map_size)
1274 {
1275 gdb_assert (i == map_size - 1);
1276 map[j++] = map[i];
1277 }
1278
1279 return j;
1280 }
1281
1282
1283 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1284 TLS, overlay and overlapping sections. */
1285
1286 static void
1287 update_section_map (struct program_space *pspace,
1288 struct obj_section ***pmap, int *pmap_size)
1289 {
1290 int alloc_size, map_size, i;
1291 struct obj_section *s, **map;
1292 struct objfile *objfile;
1293
1294 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1295
1296 map = *pmap;
1297 xfree (map);
1298
1299 alloc_size = 0;
1300 ALL_PSPACE_OBJFILES (pspace, objfile)
1301 ALL_OBJFILE_OSECTIONS (objfile, s)
1302 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1303 alloc_size += 1;
1304
1305 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1306 if (alloc_size == 0)
1307 {
1308 *pmap = NULL;
1309 *pmap_size = 0;
1310 return;
1311 }
1312
1313 map = xmalloc (alloc_size * sizeof (*map));
1314
1315 i = 0;
1316 ALL_PSPACE_OBJFILES (pspace, objfile)
1317 ALL_OBJFILE_OSECTIONS (objfile, s)
1318 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1319 map[i++] = s;
1320
1321 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1322 map_size = filter_debuginfo_sections(map, alloc_size);
1323 map_size = filter_overlapping_sections(map, map_size);
1324
1325 if (map_size < alloc_size)
1326 /* Some sections were eliminated. Trim excess space. */
1327 map = xrealloc (map, map_size * sizeof (*map));
1328 else
1329 gdb_assert (alloc_size == map_size);
1330
1331 *pmap = map;
1332 *pmap_size = map_size;
1333 }
1334
1335 /* Bsearch comparison function. */
1336
1337 static int
1338 bsearch_cmp (const void *key, const void *elt)
1339 {
1340 const CORE_ADDR pc = *(CORE_ADDR *) key;
1341 const struct obj_section *section = *(const struct obj_section **) elt;
1342
1343 if (pc < obj_section_addr (section))
1344 return -1;
1345 if (pc < obj_section_endaddr (section))
1346 return 0;
1347 return 1;
1348 }
1349
1350 /* Returns a section whose range includes PC or NULL if none found. */
1351
1352 struct obj_section *
1353 find_pc_section (CORE_ADDR pc)
1354 {
1355 struct objfile_pspace_info *pspace_info;
1356 struct obj_section *s, **sp;
1357
1358 /* Check for mapped overlay section first. */
1359 s = find_pc_mapped_section (pc);
1360 if (s)
1361 return s;
1362
1363 pspace_info = get_objfile_pspace_data (current_program_space);
1364 if (pspace_info->objfiles_changed_p != 0)
1365 {
1366 update_section_map (current_program_space,
1367 &pspace_info->sections,
1368 &pspace_info->num_sections);
1369
1370 /* Don't need updates to section map until objfiles are added,
1371 removed or relocated. */
1372 pspace_info->objfiles_changed_p = 0;
1373 }
1374
1375 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1376 bsearch be non-NULL. */
1377 if (pspace_info->sections == NULL)
1378 {
1379 gdb_assert (pspace_info->num_sections == 0);
1380 return NULL;
1381 }
1382
1383 sp = (struct obj_section **) bsearch (&pc,
1384 pspace_info->sections,
1385 pspace_info->num_sections,
1386 sizeof (*pspace_info->sections),
1387 bsearch_cmp);
1388 if (sp != NULL)
1389 return *sp;
1390 return NULL;
1391 }
1392
1393
1394 /* In SVR4, we recognize a trampoline by it's section name.
1395 That is, if the pc is in a section named ".plt" then we are in
1396 a trampoline. */
1397
1398 int
1399 in_plt_section (CORE_ADDR pc, char *name)
1400 {
1401 struct obj_section *s;
1402 int retval = 0;
1403
1404 s = find_pc_section (pc);
1405
1406 retval = (s != NULL
1407 && s->the_bfd_section->name != NULL
1408 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1409 return (retval);
1410 }
1411 \f
1412
1413 /* Set objfiles_changed_p so section map will be rebuilt next time it
1414 is used. Called by reread_symbols. */
1415
1416 void
1417 objfiles_changed (void)
1418 {
1419 /* Rebuild section map next time we need it. */
1420 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1421 }
1422
1423 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1424 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1425 searching the objfiles in the order they are stored internally,
1426 ignoring CURRENT_OBJFILE.
1427
1428 On most platorms, it should be close enough to doing the best
1429 we can without some knowledge specific to the architecture. */
1430
1431 void
1432 default_iterate_over_objfiles_in_search_order
1433 (struct gdbarch *gdbarch,
1434 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1435 void *cb_data, struct objfile *current_objfile)
1436 {
1437 int stop = 0;
1438 struct objfile *objfile;
1439
1440 ALL_OBJFILES (objfile)
1441 {
1442 stop = cb (objfile, cb_data);
1443 if (stop)
1444 return;
1445 }
1446 }
1447
1448 /* Provide a prototype to silence -Wmissing-prototypes. */
1449 extern initialize_file_ftype _initialize_objfiles;
1450
1451 void
1452 _initialize_objfiles (void)
1453 {
1454 objfiles_pspace_data
1455 = register_program_space_data_with_cleanup (NULL,
1456 objfiles_pspace_data_cleanup);
1457
1458 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1459 objfile_bfd_data_free);
1460 }
This page took 0.077735 seconds and 5 git commands to generate.