2009-07-22 Hui Zhu <teawater@gmail.com>
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53 #include "observer.h"
54
55 /* Prototypes for local functions */
56
57 static void objfile_alloc_data (struct objfile *objfile);
58 static void objfile_free_data (struct objfile *objfile);
59
60 /* Externally visible variables that are owned by this module.
61 See declarations in objfile.h for more info. */
62
63 struct objfile *object_files; /* Linked list of all objfiles */
64 struct objfile *current_objfile; /* For symbol file being read in */
65 struct objfile *symfile_objfile; /* Main symbol table loaded from */
66 struct objfile *rt_common_objfile; /* For runtime common symbols */
67
68 /* Records whether any objfiles appeared or disappeared since we last updated
69 address to obj section map. */
70
71 static int objfiles_updated_p;
72
73 /* Locate all mappable sections of a BFD file.
74 objfile_p_char is a char * to get it through
75 bfd_map_over_sections; we cast it back to its proper type. */
76
77 /* Called via bfd_map_over_sections to build up the section table that
78 the objfile references. The objfile contains pointers to the start
79 of the table (objfile->sections) and to the first location after
80 the end of the table (objfile->sections_end). */
81
82 static void
83 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
84 void *objfile_p_char)
85 {
86 struct objfile *objfile = (struct objfile *) objfile_p_char;
87 struct obj_section section;
88 flagword aflag;
89
90 aflag = bfd_get_section_flags (abfd, asect);
91
92 if (!(aflag & SEC_ALLOC))
93 return;
94
95 if (0 == bfd_section_size (abfd, asect))
96 return;
97 section.objfile = objfile;
98 section.the_bfd_section = asect;
99 section.ovly_mapped = 0;
100 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
101 objfile->sections_end
102 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
103 }
104
105 /* Builds a section table for OBJFILE.
106 Returns 0 if OK, 1 on error (in which case bfd_error contains the
107 error).
108
109 Note that while we are building the table, which goes into the
110 psymbol obstack, we hijack the sections_end pointer to instead hold
111 a count of the number of sections. When bfd_map_over_sections
112 returns, this count is used to compute the pointer to the end of
113 the sections table, which then overwrites the count.
114
115 Also note that the OFFSET and OVLY_MAPPED in each table entry
116 are initialized to zero.
117
118 Also note that if anything else writes to the psymbol obstack while
119 we are building the table, we're pretty much hosed. */
120
121 int
122 build_objfile_section_table (struct objfile *objfile)
123 {
124 /* objfile->sections can be already set when reading a mapped symbol
125 file. I believe that we do need to rebuild the section table in
126 this case (we rebuild other things derived from the bfd), but we
127 can't free the old one (it's in the objfile_obstack). So we just
128 waste some memory. */
129
130 objfile->sections_end = 0;
131 bfd_map_over_sections (objfile->obfd,
132 add_to_objfile_sections, (void *) objfile);
133 objfile->sections = obstack_finish (&objfile->objfile_obstack);
134 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
135 return (0);
136 }
137
138 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
139 allocate a new objfile struct, fill it in as best we can, link it
140 into the list of all known objfiles, and return a pointer to the
141 new objfile struct.
142
143 The FLAGS word contains various bits (OBJF_*) that can be taken as
144 requests for specific operations. Other bits like OBJF_SHARED are
145 simply copied through to the new objfile flags member. */
146
147 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
148 by jv-lang.c, to create an artificial objfile used to hold
149 information about dynamically-loaded Java classes. Unfortunately,
150 that branch of this function doesn't get tested very frequently, so
151 it's prone to breakage. (E.g. at one time the name was set to NULL
152 in that situation, which broke a loop over all names in the dynamic
153 library loader.) If you change this function, please try to leave
154 things in a consistent state even if abfd is NULL. */
155
156 struct objfile *
157 allocate_objfile (bfd *abfd, int flags)
158 {
159 struct objfile *objfile = NULL;
160 struct objfile *last_one = NULL;
161
162 /* If we don't support mapped symbol files, didn't ask for the file to be
163 mapped, or failed to open the mapped file for some reason, then revert
164 back to an unmapped objfile. */
165
166 if (objfile == NULL)
167 {
168 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
169 memset (objfile, 0, sizeof (struct objfile));
170 objfile->psymbol_cache = bcache_xmalloc ();
171 objfile->macro_cache = bcache_xmalloc ();
172 /* We could use obstack_specify_allocation here instead, but
173 gdb_obstack.h specifies the alloc/dealloc functions. */
174 obstack_init (&objfile->objfile_obstack);
175 terminate_minimal_symbol_table (objfile);
176 }
177
178 objfile_alloc_data (objfile);
179
180 /* Update the per-objfile information that comes from the bfd, ensuring
181 that any data that is reference is saved in the per-objfile data
182 region. */
183
184 objfile->obfd = abfd;
185 if (objfile->name != NULL)
186 {
187 xfree (objfile->name);
188 }
189 if (abfd != NULL)
190 {
191 /* Look up the gdbarch associated with the BFD. */
192 objfile->gdbarch = gdbarch_from_bfd (abfd);
193
194 objfile->name = xstrdup (bfd_get_filename (abfd));
195 objfile->mtime = bfd_get_mtime (abfd);
196
197 /* Build section table. */
198
199 if (build_objfile_section_table (objfile))
200 {
201 error (_("Can't find the file sections in `%s': %s"),
202 objfile->name, bfd_errmsg (bfd_get_error ()));
203 }
204 }
205 else
206 {
207 objfile->name = xstrdup ("<<anonymous objfile>>");
208 }
209
210 /* Initialize the section indexes for this objfile, so that we can
211 later detect if they are used w/o being properly assigned to. */
212
213 objfile->sect_index_text = -1;
214 objfile->sect_index_data = -1;
215 objfile->sect_index_bss = -1;
216 objfile->sect_index_rodata = -1;
217
218 /* We don't yet have a C++-specific namespace symtab. */
219
220 objfile->cp_namespace_symtab = NULL;
221
222 /* Add this file onto the tail of the linked list of other such files. */
223
224 objfile->next = NULL;
225 if (object_files == NULL)
226 object_files = objfile;
227 else
228 {
229 for (last_one = object_files;
230 last_one->next;
231 last_one = last_one->next);
232 last_one->next = objfile;
233 }
234
235 /* Save passed in flag bits. */
236 objfile->flags |= flags;
237
238 return (objfile);
239 }
240
241 /* Retrieve the gdbarch associated with OBJFILE. */
242 struct gdbarch *
243 get_objfile_arch (struct objfile *objfile)
244 {
245 return objfile->gdbarch;
246 }
247
248 /* Initialize entry point information for this objfile. */
249
250 void
251 init_entry_point_info (struct objfile *objfile)
252 {
253 /* Save startup file's range of PC addresses to help blockframe.c
254 decide where the bottom of the stack is. */
255
256 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
257 {
258 /* Executable file -- record its entry point so we'll recognize
259 the startup file because it contains the entry point. */
260 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
261 }
262 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
263 && bfd_get_start_address (objfile->obfd) != 0)
264 /* Some shared libraries may have entry points set and be
265 runnable. There's no clear way to indicate this, so just check
266 for values other than zero. */
267 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
268 else
269 {
270 /* Examination of non-executable.o files. Short-circuit this stuff. */
271 objfile->ei.entry_point = INVALID_ENTRY_POINT;
272 }
273 }
274
275 /* Get current entry point address. */
276
277 CORE_ADDR
278 entry_point_address (void)
279 {
280 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
281 }
282
283 /* Create the terminating entry of OBJFILE's minimal symbol table.
284 If OBJFILE->msymbols is zero, allocate a single entry from
285 OBJFILE->objfile_obstack; otherwise, just initialize
286 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
287 void
288 terminate_minimal_symbol_table (struct objfile *objfile)
289 {
290 if (! objfile->msymbols)
291 objfile->msymbols = ((struct minimal_symbol *)
292 obstack_alloc (&objfile->objfile_obstack,
293 sizeof (objfile->msymbols[0])));
294
295 {
296 struct minimal_symbol *m
297 = &objfile->msymbols[objfile->minimal_symbol_count];
298
299 memset (m, 0, sizeof (*m));
300 /* Don't rely on these enumeration values being 0's. */
301 MSYMBOL_TYPE (m) = mst_unknown;
302 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
303 }
304 }
305
306
307 /* Put one object file before a specified on in the global list.
308 This can be used to make sure an object file is destroyed before
309 another when using ALL_OBJFILES_SAFE to free all objfiles. */
310 void
311 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
312 {
313 struct objfile **objp;
314
315 unlink_objfile (objfile);
316
317 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
318 {
319 if (*objp == before_this)
320 {
321 objfile->next = *objp;
322 *objp = objfile;
323 return;
324 }
325 }
326
327 internal_error (__FILE__, __LINE__,
328 _("put_objfile_before: before objfile not in list"));
329 }
330
331 /* Put OBJFILE at the front of the list. */
332
333 void
334 objfile_to_front (struct objfile *objfile)
335 {
336 struct objfile **objp;
337 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
338 {
339 if (*objp == objfile)
340 {
341 /* Unhook it from where it is. */
342 *objp = objfile->next;
343 /* Put it in the front. */
344 objfile->next = object_files;
345 object_files = objfile;
346 break;
347 }
348 }
349 }
350
351 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
352 list.
353
354 It is not a bug, or error, to call this function if OBJFILE is not known
355 to be in the current list. This is done in the case of mapped objfiles,
356 for example, just to ensure that the mapped objfile doesn't appear twice
357 in the list. Since the list is threaded, linking in a mapped objfile
358 twice would create a circular list.
359
360 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
361 unlinking it, just to ensure that we have completely severed any linkages
362 between the OBJFILE and the list. */
363
364 void
365 unlink_objfile (struct objfile *objfile)
366 {
367 struct objfile **objpp;
368
369 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
370 {
371 if (*objpp == objfile)
372 {
373 *objpp = (*objpp)->next;
374 objfile->next = NULL;
375 return;
376 }
377 }
378
379 internal_error (__FILE__, __LINE__,
380 _("unlink_objfile: objfile already unlinked"));
381 }
382
383
384 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
385 that as much as possible is allocated on the objfile_obstack
386 so that the memory can be efficiently freed.
387
388 Things which we do NOT free because they are not in malloc'd memory
389 or not in memory specific to the objfile include:
390
391 objfile -> sf
392
393 FIXME: If the objfile is using reusable symbol information (via mmalloc),
394 then we need to take into account the fact that more than one process
395 may be using the symbol information at the same time (when mmalloc is
396 extended to support cooperative locking). When more than one process
397 is using the mapped symbol info, we need to be more careful about when
398 we free objects in the reusable area. */
399
400 void
401 free_objfile (struct objfile *objfile)
402 {
403 if (objfile->separate_debug_objfile)
404 {
405 free_objfile (objfile->separate_debug_objfile);
406 }
407
408 if (objfile->separate_debug_objfile_backlink)
409 {
410 /* We freed the separate debug file, make sure the base objfile
411 doesn't reference it. */
412 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
413 }
414
415 /* Remove any references to this objfile in the global value
416 lists. */
417 preserve_values (objfile);
418
419 /* First do any symbol file specific actions required when we are
420 finished with a particular symbol file. Note that if the objfile
421 is using reusable symbol information (via mmalloc) then each of
422 these routines is responsible for doing the correct thing, either
423 freeing things which are valid only during this particular gdb
424 execution, or leaving them to be reused during the next one. */
425
426 if (objfile->sf != NULL)
427 {
428 (*objfile->sf->sym_finish) (objfile);
429 }
430
431 /* Discard any data modules have associated with the objfile. */
432 objfile_free_data (objfile);
433
434 /* We always close the bfd, unless the OBJF_KEEPBFD flag is set. */
435
436 if (objfile->obfd != NULL && !(objfile->flags & OBJF_KEEPBFD))
437 {
438 char *name = bfd_get_filename (objfile->obfd);
439 if (!bfd_close (objfile->obfd))
440 warning (_("cannot close \"%s\": %s"),
441 name, bfd_errmsg (bfd_get_error ()));
442 xfree (name);
443 }
444
445 /* Remove it from the chain of all objfiles. */
446
447 unlink_objfile (objfile);
448
449 /* If we are going to free the runtime common objfile, mark it
450 as unallocated. */
451
452 if (objfile == rt_common_objfile)
453 rt_common_objfile = NULL;
454
455 /* Before the symbol table code was redone to make it easier to
456 selectively load and remove information particular to a specific
457 linkage unit, gdb used to do these things whenever the monolithic
458 symbol table was blown away. How much still needs to be done
459 is unknown, but we play it safe for now and keep each action until
460 it is shown to be no longer needed. */
461
462 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
463 for example), so we need to call this here. */
464 clear_pc_function_cache ();
465
466 /* Clear globals which might have pointed into a removed objfile.
467 FIXME: It's not clear which of these are supposed to persist
468 between expressions and which ought to be reset each time. */
469 expression_context_block = NULL;
470 innermost_block = NULL;
471
472 /* Check to see if the current_source_symtab belongs to this objfile,
473 and if so, call clear_current_source_symtab_and_line. */
474
475 {
476 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
477 struct symtab *s;
478
479 ALL_OBJFILE_SYMTABS (objfile, s)
480 {
481 if (s == cursal.symtab)
482 clear_current_source_symtab_and_line ();
483 }
484 }
485
486 /* The last thing we do is free the objfile struct itself. */
487
488 if (objfile->name != NULL)
489 {
490 xfree (objfile->name);
491 }
492 if (objfile->global_psymbols.list)
493 xfree (objfile->global_psymbols.list);
494 if (objfile->static_psymbols.list)
495 xfree (objfile->static_psymbols.list);
496 /* Free the obstacks for non-reusable objfiles */
497 bcache_xfree (objfile->psymbol_cache);
498 bcache_xfree (objfile->macro_cache);
499 if (objfile->demangled_names_hash)
500 htab_delete (objfile->demangled_names_hash);
501 obstack_free (&objfile->objfile_obstack, 0);
502 xfree (objfile);
503 objfile = NULL;
504 }
505
506 static void
507 do_free_objfile_cleanup (void *obj)
508 {
509 free_objfile (obj);
510 }
511
512 struct cleanup *
513 make_cleanup_free_objfile (struct objfile *obj)
514 {
515 return make_cleanup (do_free_objfile_cleanup, obj);
516 }
517
518 /* Free all the object files at once and clean up their users. */
519
520 void
521 free_all_objfiles (void)
522 {
523 struct objfile *objfile, *temp;
524
525 ALL_OBJFILES_SAFE (objfile, temp)
526 {
527 free_objfile (objfile);
528 }
529 clear_symtab_users ();
530 }
531 \f
532 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
533 entries in new_offsets. */
534 void
535 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
536 {
537 struct obj_section *s;
538 struct section_offsets *delta =
539 ((struct section_offsets *)
540 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
541
542 {
543 int i;
544 int something_changed = 0;
545 for (i = 0; i < objfile->num_sections; ++i)
546 {
547 delta->offsets[i] =
548 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
549 if (ANOFFSET (delta, i) != 0)
550 something_changed = 1;
551 }
552 if (!something_changed)
553 return;
554 }
555
556 /* OK, get all the symtabs. */
557 {
558 struct symtab *s;
559
560 ALL_OBJFILE_SYMTABS (objfile, s)
561 {
562 struct linetable *l;
563 struct blockvector *bv;
564 int i;
565
566 /* First the line table. */
567 l = LINETABLE (s);
568 if (l)
569 {
570 for (i = 0; i < l->nitems; ++i)
571 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
572 }
573
574 /* Don't relocate a shared blockvector more than once. */
575 if (!s->primary)
576 continue;
577
578 bv = BLOCKVECTOR (s);
579 if (BLOCKVECTOR_MAP (bv))
580 addrmap_relocate (BLOCKVECTOR_MAP (bv),
581 ANOFFSET (delta, s->block_line_section));
582
583 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
584 {
585 struct block *b;
586 struct symbol *sym;
587 struct dict_iterator iter;
588
589 b = BLOCKVECTOR_BLOCK (bv, i);
590 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
591 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
592
593 ALL_BLOCK_SYMBOLS (b, iter, sym)
594 {
595 fixup_symbol_section (sym, objfile);
596
597 /* The RS6000 code from which this was taken skipped
598 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
599 But I'm leaving out that test, on the theory that
600 they can't possibly pass the tests below. */
601 if ((SYMBOL_CLASS (sym) == LOC_LABEL
602 || SYMBOL_CLASS (sym) == LOC_STATIC)
603 && SYMBOL_SECTION (sym) >= 0)
604 {
605 SYMBOL_VALUE_ADDRESS (sym) +=
606 ANOFFSET (delta, SYMBOL_SECTION (sym));
607 }
608 }
609 }
610 }
611 }
612
613 {
614 struct partial_symtab *p;
615
616 ALL_OBJFILE_PSYMTABS (objfile, p)
617 {
618 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
619 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
620 }
621 }
622
623 {
624 struct partial_symbol **psym;
625
626 for (psym = objfile->global_psymbols.list;
627 psym < objfile->global_psymbols.next;
628 psym++)
629 {
630 fixup_psymbol_section (*psym, objfile);
631 if (SYMBOL_SECTION (*psym) >= 0)
632 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
633 SYMBOL_SECTION (*psym));
634 }
635 for (psym = objfile->static_psymbols.list;
636 psym < objfile->static_psymbols.next;
637 psym++)
638 {
639 fixup_psymbol_section (*psym, objfile);
640 if (SYMBOL_SECTION (*psym) >= 0)
641 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
642 SYMBOL_SECTION (*psym));
643 }
644 }
645
646 {
647 struct minimal_symbol *msym;
648 ALL_OBJFILE_MSYMBOLS (objfile, msym)
649 if (SYMBOL_SECTION (msym) >= 0)
650 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
651 }
652 /* Relocating different sections by different amounts may cause the symbols
653 to be out of order. */
654 msymbols_sort (objfile);
655
656 {
657 int i;
658 for (i = 0; i < objfile->num_sections; ++i)
659 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
660 }
661
662 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
663 {
664 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
665 only as a fallback. */
666 struct obj_section *s;
667 s = find_pc_section (objfile->ei.entry_point);
668 if (s)
669 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
670 else
671 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
672 }
673
674 /* Update the table in exec_ops, used to read memory. */
675 ALL_OBJFILE_OSECTIONS (objfile, s)
676 {
677 int idx = s->the_bfd_section->index;
678
679 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
680 obj_section_addr (s));
681 }
682
683 /* Relocate breakpoints as necessary, after things are relocated. */
684 breakpoint_re_set ();
685 }
686 \f
687 /* Many places in gdb want to test just to see if we have any partial
688 symbols available. This function returns zero if none are currently
689 available, nonzero otherwise. */
690
691 int
692 have_partial_symbols (void)
693 {
694 struct objfile *ofp;
695
696 ALL_OBJFILES (ofp)
697 {
698 if (ofp->psymtabs != NULL)
699 {
700 return 1;
701 }
702 }
703 return 0;
704 }
705
706 /* Many places in gdb want to test just to see if we have any full
707 symbols available. This function returns zero if none are currently
708 available, nonzero otherwise. */
709
710 int
711 have_full_symbols (void)
712 {
713 struct objfile *ofp;
714
715 ALL_OBJFILES (ofp)
716 {
717 if (ofp->symtabs != NULL)
718 {
719 return 1;
720 }
721 }
722 return 0;
723 }
724
725
726 /* This operations deletes all objfile entries that represent solibs that
727 weren't explicitly loaded by the user, via e.g., the add-symbol-file
728 command.
729 */
730 void
731 objfile_purge_solibs (void)
732 {
733 struct objfile *objf;
734 struct objfile *temp;
735
736 ALL_OBJFILES_SAFE (objf, temp)
737 {
738 /* We assume that the solib package has been purged already, or will
739 be soon.
740 */
741 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
742 free_objfile (objf);
743 }
744 }
745
746
747 /* Many places in gdb want to test just to see if we have any minimal
748 symbols available. This function returns zero if none are currently
749 available, nonzero otherwise. */
750
751 int
752 have_minimal_symbols (void)
753 {
754 struct objfile *ofp;
755
756 ALL_OBJFILES (ofp)
757 {
758 if (ofp->minimal_symbol_count > 0)
759 {
760 return 1;
761 }
762 }
763 return 0;
764 }
765
766 /* Qsort comparison function. */
767
768 static int
769 qsort_cmp (const void *a, const void *b)
770 {
771 const struct obj_section *sect1 = *(const struct obj_section **) a;
772 const struct obj_section *sect2 = *(const struct obj_section **) b;
773 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
774 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
775
776 if (sect1_addr < sect2_addr)
777 {
778 gdb_assert (obj_section_endaddr (sect1) <= sect2_addr);
779 return -1;
780 }
781 else if (sect1_addr > sect2_addr)
782 {
783 gdb_assert (sect1_addr >= obj_section_endaddr (sect2));
784 return 1;
785 }
786 /* This can happen for separate debug-info files. */
787 gdb_assert (obj_section_endaddr (sect1) == obj_section_endaddr (sect2));
788
789 return 0;
790 }
791
792 /* Update PMAP, PMAP_SIZE with non-TLS sections from all objfiles. */
793
794 static void
795 update_section_map (struct obj_section ***pmap, int *pmap_size)
796 {
797 int map_size, idx;
798 struct obj_section *s, **map;
799 struct objfile *objfile;
800
801 gdb_assert (objfiles_updated_p != 0);
802
803 map = *pmap;
804 xfree (map);
805
806 #define insert_p(objf, sec) \
807 ((bfd_get_section_flags ((objf)->obfd, (sec)->the_bfd_section) \
808 & SEC_THREAD_LOCAL) == 0)
809
810 map_size = 0;
811 ALL_OBJSECTIONS (objfile, s)
812 if (insert_p (objfile, s))
813 map_size += 1;
814
815 map = xmalloc (map_size * sizeof (*map));
816
817 idx = 0;
818 ALL_OBJSECTIONS (objfile, s)
819 if (insert_p (objfile, s))
820 map[idx++] = s;
821
822 #undef insert_p
823
824 qsort (map, map_size, sizeof (*map), qsort_cmp);
825
826 *pmap = map;
827 *pmap_size = map_size;
828 }
829
830 /* Bsearch comparison function. */
831
832 static int
833 bsearch_cmp (const void *key, const void *elt)
834 {
835 const CORE_ADDR pc = *(CORE_ADDR *) key;
836 const struct obj_section *section = *(const struct obj_section **) elt;
837
838 if (pc < obj_section_addr (section))
839 return -1;
840 if (pc < obj_section_endaddr (section))
841 return 0;
842 return 1;
843 }
844
845 /* Returns a section whose range includes PC or NULL if none found. */
846
847 struct obj_section *
848 find_pc_section (CORE_ADDR pc)
849 {
850 static struct obj_section **sections;
851 static int num_sections;
852
853 struct obj_section *s, **sp;
854
855 /* Check for mapped overlay section first. */
856 s = find_pc_mapped_section (pc);
857 if (s)
858 return s;
859
860 if (objfiles_updated_p != 0)
861 {
862 update_section_map (&sections, &num_sections);
863
864 /* Don't need updates to section map until objfiles are added
865 or removed. */
866 objfiles_updated_p = 0;
867 }
868
869 sp = (struct obj_section **) bsearch (&pc, sections, num_sections,
870 sizeof (*sections), bsearch_cmp);
871 if (sp != NULL)
872 return *sp;
873 return NULL;
874 }
875
876
877 /* In SVR4, we recognize a trampoline by it's section name.
878 That is, if the pc is in a section named ".plt" then we are in
879 a trampoline. */
880
881 int
882 in_plt_section (CORE_ADDR pc, char *name)
883 {
884 struct obj_section *s;
885 int retval = 0;
886
887 s = find_pc_section (pc);
888
889 retval = (s != NULL
890 && s->the_bfd_section->name != NULL
891 && strcmp (s->the_bfd_section->name, ".plt") == 0);
892 return (retval);
893 }
894 \f
895
896 /* Keep a registry of per-objfile data-pointers required by other GDB
897 modules. */
898
899 struct objfile_data
900 {
901 unsigned index;
902 void (*cleanup) (struct objfile *, void *);
903 };
904
905 struct objfile_data_registration
906 {
907 struct objfile_data *data;
908 struct objfile_data_registration *next;
909 };
910
911 struct objfile_data_registry
912 {
913 struct objfile_data_registration *registrations;
914 unsigned num_registrations;
915 };
916
917 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
918
919 const struct objfile_data *
920 register_objfile_data_with_cleanup (void (*cleanup) (struct objfile *, void *))
921 {
922 struct objfile_data_registration **curr;
923
924 /* Append new registration. */
925 for (curr = &objfile_data_registry.registrations;
926 *curr != NULL; curr = &(*curr)->next);
927
928 *curr = XMALLOC (struct objfile_data_registration);
929 (*curr)->next = NULL;
930 (*curr)->data = XMALLOC (struct objfile_data);
931 (*curr)->data->index = objfile_data_registry.num_registrations++;
932 (*curr)->data->cleanup = cleanup;
933
934 return (*curr)->data;
935 }
936
937 const struct objfile_data *
938 register_objfile_data (void)
939 {
940 return register_objfile_data_with_cleanup (NULL);
941 }
942
943 static void
944 objfile_alloc_data (struct objfile *objfile)
945 {
946 gdb_assert (objfile->data == NULL);
947 objfile->num_data = objfile_data_registry.num_registrations;
948 objfile->data = XCALLOC (objfile->num_data, void *);
949 }
950
951 static void
952 objfile_free_data (struct objfile *objfile)
953 {
954 gdb_assert (objfile->data != NULL);
955 clear_objfile_data (objfile);
956 xfree (objfile->data);
957 objfile->data = NULL;
958 }
959
960 void
961 clear_objfile_data (struct objfile *objfile)
962 {
963 struct objfile_data_registration *registration;
964 int i;
965
966 gdb_assert (objfile->data != NULL);
967
968 for (registration = objfile_data_registry.registrations, i = 0;
969 i < objfile->num_data;
970 registration = registration->next, i++)
971 if (objfile->data[i] != NULL && registration->data->cleanup)
972 registration->data->cleanup (objfile, objfile->data[i]);
973
974 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
975 }
976
977 void
978 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
979 void *value)
980 {
981 gdb_assert (data->index < objfile->num_data);
982 objfile->data[data->index] = value;
983 }
984
985 void *
986 objfile_data (struct objfile *objfile, const struct objfile_data *data)
987 {
988 gdb_assert (data->index < objfile->num_data);
989 return objfile->data[data->index];
990 }
991
992 /* Set objfiles_updated_p so section map will be rebuilt next time it
993 is used. Called by executable_changed observer. */
994
995 static void
996 set_objfiles_updated_on_exe_change (void)
997 {
998 objfiles_updated_p = 1; /* Rebuild section map next time we need it. */
999 }
1000
1001 /* Set objfiles_updated_p so section map will be rebuilt next time it
1002 is used. Called by solib_loaded/unloaded observer. */
1003
1004 static void
1005 set_objfiles_updated_on_solib_activity (struct so_list *so_list)
1006 {
1007 objfiles_updated_p = 1; /* Rebuild section map next time we need it. */
1008 }
1009
1010 void
1011 _initialize_objfiles (void)
1012 {
1013 observer_attach_executable_changed (set_objfiles_updated_on_exe_change);
1014 observer_attach_solib_loaded (set_objfiles_updated_on_solib_activity);
1015 observer_attach_solib_unloaded (set_objfiles_updated_on_solib_activity);
1016 }
This page took 0.05252 seconds and 5 git commands to generate.