gdb/
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53 #include "observer.h"
54 #include "complaints.h"
55
56 /* Prototypes for local functions */
57
58 static void objfile_alloc_data (struct objfile *objfile);
59 static void objfile_free_data (struct objfile *objfile);
60
61 /* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
64 struct objfile *current_objfile; /* For symbol file being read in */
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 struct objfile_pspace_info
68 {
69 int objfiles_changed_p;
70 struct obj_section **sections;
71 int num_sections;
72 };
73
74 /* Per-program-space data key. */
75 static const struct program_space_data *objfiles_pspace_data;
76
77 static void
78 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79 {
80 struct objfile_pspace_info *info;
81
82 info = program_space_data (pspace, objfiles_pspace_data);
83 if (info != NULL)
84 {
85 xfree (info->sections);
86 xfree (info);
87 }
88 }
89
90 /* Get the current svr4 data. If none is found yet, add it now. This
91 function always returns a valid object. */
92
93 static struct objfile_pspace_info *
94 get_objfile_pspace_data (struct program_space *pspace)
95 {
96 struct objfile_pspace_info *info;
97
98 info = program_space_data (pspace, objfiles_pspace_data);
99 if (info == NULL)
100 {
101 info = XZALLOC (struct objfile_pspace_info);
102 set_program_space_data (pspace, objfiles_pspace_data, info);
103 }
104
105 return info;
106 }
107
108 /* Records whether any objfiles appeared or disappeared since we last updated
109 address to obj section map. */
110
111 /* Locate all mappable sections of a BFD file.
112 objfile_p_char is a char * to get it through
113 bfd_map_over_sections; we cast it back to its proper type. */
114
115 /* Called via bfd_map_over_sections to build up the section table that
116 the objfile references. The objfile contains pointers to the start
117 of the table (objfile->sections) and to the first location after
118 the end of the table (objfile->sections_end). */
119
120 static void
121 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
122 void *objfile_p_char)
123 {
124 struct objfile *objfile = (struct objfile *) objfile_p_char;
125 struct obj_section section;
126 flagword aflag;
127
128 aflag = bfd_get_section_flags (abfd, asect);
129
130 if (!(aflag & SEC_ALLOC))
131 return;
132
133 if (0 == bfd_section_size (abfd, asect))
134 return;
135 section.objfile = objfile;
136 section.the_bfd_section = asect;
137 section.ovly_mapped = 0;
138 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
139 objfile->sections_end
140 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
141 }
142
143 /* Builds a section table for OBJFILE.
144 Returns 0 if OK, 1 on error (in which case bfd_error contains the
145 error).
146
147 Note that while we are building the table, which goes into the
148 psymbol obstack, we hijack the sections_end pointer to instead hold
149 a count of the number of sections. When bfd_map_over_sections
150 returns, this count is used to compute the pointer to the end of
151 the sections table, which then overwrites the count.
152
153 Also note that the OFFSET and OVLY_MAPPED in each table entry
154 are initialized to zero.
155
156 Also note that if anything else writes to the psymbol obstack while
157 we are building the table, we're pretty much hosed. */
158
159 int
160 build_objfile_section_table (struct objfile *objfile)
161 {
162 /* objfile->sections can be already set when reading a mapped symbol
163 file. I believe that we do need to rebuild the section table in
164 this case (we rebuild other things derived from the bfd), but we
165 can't free the old one (it's in the objfile_obstack). So we just
166 waste some memory. */
167
168 objfile->sections_end = 0;
169 bfd_map_over_sections (objfile->obfd,
170 add_to_objfile_sections, (void *) objfile);
171 objfile->sections = obstack_finish (&objfile->objfile_obstack);
172 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
173 return (0);
174 }
175
176 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
177 allocate a new objfile struct, fill it in as best we can, link it
178 into the list of all known objfiles, and return a pointer to the
179 new objfile struct.
180
181 The FLAGS word contains various bits (OBJF_*) that can be taken as
182 requests for specific operations. Other bits like OBJF_SHARED are
183 simply copied through to the new objfile flags member. */
184
185 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
186 by jv-lang.c, to create an artificial objfile used to hold
187 information about dynamically-loaded Java classes. Unfortunately,
188 that branch of this function doesn't get tested very frequently, so
189 it's prone to breakage. (E.g. at one time the name was set to NULL
190 in that situation, which broke a loop over all names in the dynamic
191 library loader.) If you change this function, please try to leave
192 things in a consistent state even if abfd is NULL. */
193
194 struct objfile *
195 allocate_objfile (bfd *abfd, int flags)
196 {
197 struct objfile *objfile;
198
199 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
200 objfile->psymbol_cache = bcache_xmalloc ();
201 objfile->macro_cache = bcache_xmalloc ();
202 objfile->filename_cache = bcache_xmalloc ();
203 /* We could use obstack_specify_allocation here instead, but
204 gdb_obstack.h specifies the alloc/dealloc functions. */
205 obstack_init (&objfile->objfile_obstack);
206 terminate_minimal_symbol_table (objfile);
207
208 objfile_alloc_data (objfile);
209
210 /* Update the per-objfile information that comes from the bfd, ensuring
211 that any data that is reference is saved in the per-objfile data
212 region. */
213
214 objfile->obfd = gdb_bfd_ref (abfd);
215 if (objfile->name != NULL)
216 {
217 xfree (objfile->name);
218 }
219 if (abfd != NULL)
220 {
221 /* Look up the gdbarch associated with the BFD. */
222 objfile->gdbarch = gdbarch_from_bfd (abfd);
223
224 objfile->name = xstrdup (bfd_get_filename (abfd));
225 objfile->mtime = bfd_get_mtime (abfd);
226
227 /* Build section table. */
228
229 if (build_objfile_section_table (objfile))
230 {
231 error (_("Can't find the file sections in `%s': %s"),
232 objfile->name, bfd_errmsg (bfd_get_error ()));
233 }
234 }
235 else
236 {
237 objfile->name = xstrdup ("<<anonymous objfile>>");
238 }
239
240 objfile->pspace = current_program_space;
241
242 /* Initialize the section indexes for this objfile, so that we can
243 later detect if they are used w/o being properly assigned to. */
244
245 objfile->sect_index_text = -1;
246 objfile->sect_index_data = -1;
247 objfile->sect_index_bss = -1;
248 objfile->sect_index_rodata = -1;
249
250 /* We don't yet have a C++-specific namespace symtab. */
251
252 objfile->cp_namespace_symtab = NULL;
253
254 /* Add this file onto the tail of the linked list of other such files. */
255
256 objfile->next = NULL;
257 if (object_files == NULL)
258 object_files = objfile;
259 else
260 {
261 struct objfile *last_one;
262
263 for (last_one = object_files;
264 last_one->next;
265 last_one = last_one->next);
266 last_one->next = objfile;
267 }
268
269 /* Save passed in flag bits. */
270 objfile->flags |= flags;
271
272 /* Rebuild section map next time we need it. */
273 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
274
275 return objfile;
276 }
277
278 /* Retrieve the gdbarch associated with OBJFILE. */
279 struct gdbarch *
280 get_objfile_arch (struct objfile *objfile)
281 {
282 return objfile->gdbarch;
283 }
284
285 /* Initialize entry point information for this objfile. */
286
287 void
288 init_entry_point_info (struct objfile *objfile)
289 {
290 /* Save startup file's range of PC addresses to help blockframe.c
291 decide where the bottom of the stack is. */
292
293 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
294 {
295 /* Executable file -- record its entry point so we'll recognize
296 the startup file because it contains the entry point. */
297 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
298 objfile->ei.entry_point_p = 1;
299 }
300 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
301 && bfd_get_start_address (objfile->obfd) != 0)
302 {
303 /* Some shared libraries may have entry points set and be
304 runnable. There's no clear way to indicate this, so just check
305 for values other than zero. */
306 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
307 objfile->ei.entry_point_p = 1;
308 }
309 else
310 {
311 /* Examination of non-executable.o files. Short-circuit this stuff. */
312 objfile->ei.entry_point_p = 0;
313 }
314 }
315
316 /* If there is a valid and known entry point, function fills *ENTRY_P with it
317 and returns non-zero; otherwise it returns zero. */
318
319 int
320 entry_point_address_query (CORE_ADDR *entry_p)
321 {
322 struct gdbarch *gdbarch;
323 CORE_ADDR entry_point;
324
325 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
326 return 0;
327
328 gdbarch = get_objfile_arch (symfile_objfile);
329
330 entry_point = symfile_objfile->ei.entry_point;
331
332 /* Make certain that the address points at real code, and not a
333 function descriptor. */
334 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
335 &current_target);
336
337 /* Remove any ISA markers, so that this matches entries in the
338 symbol table. */
339 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
340
341 *entry_p = entry_point;
342 return 1;
343 }
344
345 /* Get current entry point address. Call error if it is not known. */
346
347 CORE_ADDR
348 entry_point_address (void)
349 {
350 CORE_ADDR retval;
351
352 if (!entry_point_address_query (&retval))
353 error (_("Entry point address is not known."));
354
355 return retval;
356 }
357
358 /* Create the terminating entry of OBJFILE's minimal symbol table.
359 If OBJFILE->msymbols is zero, allocate a single entry from
360 OBJFILE->objfile_obstack; otherwise, just initialize
361 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
362 void
363 terminate_minimal_symbol_table (struct objfile *objfile)
364 {
365 if (! objfile->msymbols)
366 objfile->msymbols = ((struct minimal_symbol *)
367 obstack_alloc (&objfile->objfile_obstack,
368 sizeof (objfile->msymbols[0])));
369
370 {
371 struct minimal_symbol *m
372 = &objfile->msymbols[objfile->minimal_symbol_count];
373
374 memset (m, 0, sizeof (*m));
375 /* Don't rely on these enumeration values being 0's. */
376 MSYMBOL_TYPE (m) = mst_unknown;
377 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
378 }
379 }
380
381
382 /* Put one object file before a specified on in the global list.
383 This can be used to make sure an object file is destroyed before
384 another when using ALL_OBJFILES_SAFE to free all objfiles. */
385 void
386 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
387 {
388 struct objfile **objp;
389
390 unlink_objfile (objfile);
391
392 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
393 {
394 if (*objp == before_this)
395 {
396 objfile->next = *objp;
397 *objp = objfile;
398 return;
399 }
400 }
401
402 internal_error (__FILE__, __LINE__,
403 _("put_objfile_before: before objfile not in list"));
404 }
405
406 /* Put OBJFILE at the front of the list. */
407
408 void
409 objfile_to_front (struct objfile *objfile)
410 {
411 struct objfile **objp;
412 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
413 {
414 if (*objp == objfile)
415 {
416 /* Unhook it from where it is. */
417 *objp = objfile->next;
418 /* Put it in the front. */
419 objfile->next = object_files;
420 object_files = objfile;
421 break;
422 }
423 }
424 }
425
426 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
427 list.
428
429 It is not a bug, or error, to call this function if OBJFILE is not known
430 to be in the current list. This is done in the case of mapped objfiles,
431 for example, just to ensure that the mapped objfile doesn't appear twice
432 in the list. Since the list is threaded, linking in a mapped objfile
433 twice would create a circular list.
434
435 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
436 unlinking it, just to ensure that we have completely severed any linkages
437 between the OBJFILE and the list. */
438
439 void
440 unlink_objfile (struct objfile *objfile)
441 {
442 struct objfile **objpp;
443
444 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
445 {
446 if (*objpp == objfile)
447 {
448 *objpp = (*objpp)->next;
449 objfile->next = NULL;
450 return;
451 }
452 }
453
454 internal_error (__FILE__, __LINE__,
455 _("unlink_objfile: objfile already unlinked"));
456 }
457
458
459 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
460 that as much as possible is allocated on the objfile_obstack
461 so that the memory can be efficiently freed.
462
463 Things which we do NOT free because they are not in malloc'd memory
464 or not in memory specific to the objfile include:
465
466 objfile -> sf
467
468 FIXME: If the objfile is using reusable symbol information (via mmalloc),
469 then we need to take into account the fact that more than one process
470 may be using the symbol information at the same time (when mmalloc is
471 extended to support cooperative locking). When more than one process
472 is using the mapped symbol info, we need to be more careful about when
473 we free objects in the reusable area. */
474
475 void
476 free_objfile (struct objfile *objfile)
477 {
478 if (objfile->separate_debug_objfile)
479 {
480 free_objfile (objfile->separate_debug_objfile);
481 }
482
483 if (objfile->separate_debug_objfile_backlink)
484 {
485 /* We freed the separate debug file, make sure the base objfile
486 doesn't reference it. */
487 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
488 }
489
490 /* Remove any references to this objfile in the global value
491 lists. */
492 preserve_values (objfile);
493
494 /* First do any symbol file specific actions required when we are
495 finished with a particular symbol file. Note that if the objfile
496 is using reusable symbol information (via mmalloc) then each of
497 these routines is responsible for doing the correct thing, either
498 freeing things which are valid only during this particular gdb
499 execution, or leaving them to be reused during the next one. */
500
501 if (objfile->sf != NULL)
502 {
503 (*objfile->sf->sym_finish) (objfile);
504 }
505
506 /* Discard any data modules have associated with the objfile. */
507 objfile_free_data (objfile);
508
509 gdb_bfd_unref (objfile->obfd);
510
511 /* Remove it from the chain of all objfiles. */
512
513 unlink_objfile (objfile);
514
515 if (objfile == symfile_objfile)
516 symfile_objfile = NULL;
517
518 if (objfile == rt_common_objfile)
519 rt_common_objfile = NULL;
520
521 /* Before the symbol table code was redone to make it easier to
522 selectively load and remove information particular to a specific
523 linkage unit, gdb used to do these things whenever the monolithic
524 symbol table was blown away. How much still needs to be done
525 is unknown, but we play it safe for now and keep each action until
526 it is shown to be no longer needed. */
527
528 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
529 for example), so we need to call this here. */
530 clear_pc_function_cache ();
531
532 /* Clear globals which might have pointed into a removed objfile.
533 FIXME: It's not clear which of these are supposed to persist
534 between expressions and which ought to be reset each time. */
535 expression_context_block = NULL;
536 innermost_block = NULL;
537
538 /* Check to see if the current_source_symtab belongs to this objfile,
539 and if so, call clear_current_source_symtab_and_line. */
540
541 {
542 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
543 struct symtab *s;
544
545 ALL_OBJFILE_SYMTABS (objfile, s)
546 {
547 if (s == cursal.symtab)
548 clear_current_source_symtab_and_line ();
549 }
550 }
551
552 /* The last thing we do is free the objfile struct itself. */
553
554 if (objfile->name != NULL)
555 {
556 xfree (objfile->name);
557 }
558 if (objfile->global_psymbols.list)
559 xfree (objfile->global_psymbols.list);
560 if (objfile->static_psymbols.list)
561 xfree (objfile->static_psymbols.list);
562 /* Free the obstacks for non-reusable objfiles */
563 bcache_xfree (objfile->psymbol_cache);
564 bcache_xfree (objfile->macro_cache);
565 bcache_xfree (objfile->filename_cache);
566 if (objfile->demangled_names_hash)
567 htab_delete (objfile->demangled_names_hash);
568 obstack_free (&objfile->objfile_obstack, 0);
569
570 /* Rebuild section map next time we need it. */
571 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
572
573 xfree (objfile);
574 }
575
576 static void
577 do_free_objfile_cleanup (void *obj)
578 {
579 free_objfile (obj);
580 }
581
582 struct cleanup *
583 make_cleanup_free_objfile (struct objfile *obj)
584 {
585 return make_cleanup (do_free_objfile_cleanup, obj);
586 }
587
588 /* Free all the object files at once and clean up their users. */
589
590 void
591 free_all_objfiles (void)
592 {
593 struct objfile *objfile, *temp;
594
595 ALL_OBJFILES_SAFE (objfile, temp)
596 {
597 free_objfile (objfile);
598 }
599 clear_symtab_users ();
600 }
601 \f
602 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
603 entries in new_offsets. */
604 void
605 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
606 {
607 struct obj_section *s;
608 struct section_offsets *delta =
609 ((struct section_offsets *)
610 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
611
612 {
613 int i;
614 int something_changed = 0;
615 for (i = 0; i < objfile->num_sections; ++i)
616 {
617 delta->offsets[i] =
618 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
619 if (ANOFFSET (delta, i) != 0)
620 something_changed = 1;
621 }
622 if (!something_changed)
623 return;
624 }
625
626 /* OK, get all the symtabs. */
627 {
628 struct symtab *s;
629
630 ALL_OBJFILE_SYMTABS (objfile, s)
631 {
632 struct linetable *l;
633 struct blockvector *bv;
634 int i;
635
636 /* First the line table. */
637 l = LINETABLE (s);
638 if (l)
639 {
640 for (i = 0; i < l->nitems; ++i)
641 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
642 }
643
644 /* Don't relocate a shared blockvector more than once. */
645 if (!s->primary)
646 continue;
647
648 bv = BLOCKVECTOR (s);
649 if (BLOCKVECTOR_MAP (bv))
650 addrmap_relocate (BLOCKVECTOR_MAP (bv),
651 ANOFFSET (delta, s->block_line_section));
652
653 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
654 {
655 struct block *b;
656 struct symbol *sym;
657 struct dict_iterator iter;
658
659 b = BLOCKVECTOR_BLOCK (bv, i);
660 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
661 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
662
663 ALL_BLOCK_SYMBOLS (b, iter, sym)
664 {
665 fixup_symbol_section (sym, objfile);
666
667 /* The RS6000 code from which this was taken skipped
668 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
669 But I'm leaving out that test, on the theory that
670 they can't possibly pass the tests below. */
671 if ((SYMBOL_CLASS (sym) == LOC_LABEL
672 || SYMBOL_CLASS (sym) == LOC_STATIC)
673 && SYMBOL_SECTION (sym) >= 0)
674 {
675 SYMBOL_VALUE_ADDRESS (sym) +=
676 ANOFFSET (delta, SYMBOL_SECTION (sym));
677 }
678 }
679 }
680 }
681 }
682
683 if (objfile->psymtabs_addrmap)
684 addrmap_relocate (objfile->psymtabs_addrmap,
685 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
686
687 {
688 struct partial_symtab *p;
689
690 ALL_OBJFILE_PSYMTABS (objfile, p)
691 {
692 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
693 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
694 }
695 }
696
697 {
698 struct partial_symbol **psym;
699
700 for (psym = objfile->global_psymbols.list;
701 psym < objfile->global_psymbols.next;
702 psym++)
703 {
704 fixup_psymbol_section (*psym, objfile);
705 if (SYMBOL_SECTION (*psym) >= 0)
706 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
707 SYMBOL_SECTION (*psym));
708 }
709 for (psym = objfile->static_psymbols.list;
710 psym < objfile->static_psymbols.next;
711 psym++)
712 {
713 fixup_psymbol_section (*psym, objfile);
714 if (SYMBOL_SECTION (*psym) >= 0)
715 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
716 SYMBOL_SECTION (*psym));
717 }
718 }
719
720 {
721 struct minimal_symbol *msym;
722 ALL_OBJFILE_MSYMBOLS (objfile, msym)
723 if (SYMBOL_SECTION (msym) >= 0)
724 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
725 }
726 /* Relocating different sections by different amounts may cause the symbols
727 to be out of order. */
728 msymbols_sort (objfile);
729
730 if (objfile->ei.entry_point_p)
731 {
732 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
733 only as a fallback. */
734 struct obj_section *s;
735 s = find_pc_section (objfile->ei.entry_point);
736 if (s)
737 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
738 else
739 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
740 }
741
742 {
743 int i;
744 for (i = 0; i < objfile->num_sections; ++i)
745 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
746 }
747
748 /* Rebuild section map next time we need it. */
749 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
750
751 /* Update the table in exec_ops, used to read memory. */
752 ALL_OBJFILE_OSECTIONS (objfile, s)
753 {
754 int idx = s->the_bfd_section->index;
755
756 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
757 obj_section_addr (s));
758 }
759
760 /* Relocate breakpoints as necessary, after things are relocated. */
761 breakpoint_re_set ();
762 }
763 \f
764 /* Return non-zero if OBJFILE has partial symbols. */
765
766 int
767 objfile_has_partial_symbols (struct objfile *objfile)
768 {
769 return objfile->psymtabs != NULL;
770 }
771
772 /* Return non-zero if OBJFILE has full symbols. */
773
774 int
775 objfile_has_full_symbols (struct objfile *objfile)
776 {
777 return objfile->symtabs != NULL;
778 }
779
780 /* Return non-zero if OBJFILE has full or partial symbols, either directly
781 or throught its separate debug file. */
782
783 int
784 objfile_has_symbols (struct objfile *objfile)
785 {
786 struct objfile *separate_objfile;
787
788 if (objfile_has_partial_symbols (objfile)
789 || objfile_has_full_symbols (objfile))
790 return 1;
791
792 separate_objfile = objfile->separate_debug_objfile;
793 if (separate_objfile == NULL)
794 return 0;
795
796 if (objfile_has_partial_symbols (separate_objfile)
797 || objfile_has_full_symbols (separate_objfile))
798 return 1;
799
800 return 0;
801 }
802
803
804 /* Many places in gdb want to test just to see if we have any partial
805 symbols available. This function returns zero if none are currently
806 available, nonzero otherwise. */
807
808 int
809 have_partial_symbols (void)
810 {
811 struct objfile *ofp;
812
813 ALL_OBJFILES (ofp)
814 {
815 if (objfile_has_partial_symbols (ofp))
816 return 1;
817 }
818 return 0;
819 }
820
821 /* Many places in gdb want to test just to see if we have any full
822 symbols available. This function returns zero if none are currently
823 available, nonzero otherwise. */
824
825 int
826 have_full_symbols (void)
827 {
828 struct objfile *ofp;
829
830 ALL_OBJFILES (ofp)
831 {
832 if (objfile_has_full_symbols (ofp))
833 return 1;
834 }
835 return 0;
836 }
837
838
839 /* This operations deletes all objfile entries that represent solibs that
840 weren't explicitly loaded by the user, via e.g., the add-symbol-file
841 command.
842 */
843 void
844 objfile_purge_solibs (void)
845 {
846 struct objfile *objf;
847 struct objfile *temp;
848
849 ALL_OBJFILES_SAFE (objf, temp)
850 {
851 /* We assume that the solib package has been purged already, or will
852 be soon.
853 */
854 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
855 free_objfile (objf);
856 }
857 }
858
859
860 /* Many places in gdb want to test just to see if we have any minimal
861 symbols available. This function returns zero if none are currently
862 available, nonzero otherwise. */
863
864 int
865 have_minimal_symbols (void)
866 {
867 struct objfile *ofp;
868
869 ALL_OBJFILES (ofp)
870 {
871 if (ofp->minimal_symbol_count > 0)
872 {
873 return 1;
874 }
875 }
876 return 0;
877 }
878
879 /* Qsort comparison function. */
880
881 static int
882 qsort_cmp (const void *a, const void *b)
883 {
884 const struct obj_section *sect1 = *(const struct obj_section **) a;
885 const struct obj_section *sect2 = *(const struct obj_section **) b;
886 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
887 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
888
889 if (sect1_addr < sect2_addr)
890 return -1;
891 else if (sect1_addr > sect2_addr)
892 return 1;
893 else
894 {
895 /* Sections are at the same address. This could happen if
896 A) we have an objfile and a separate debuginfo.
897 B) we are confused, and have added sections without proper relocation,
898 or something like that. */
899
900 const struct objfile *const objfile1 = sect1->objfile;
901 const struct objfile *const objfile2 = sect2->objfile;
902
903 if (objfile1->separate_debug_objfile == objfile2
904 || objfile2->separate_debug_objfile == objfile1)
905 {
906 /* Case A. The ordering doesn't matter: separate debuginfo files
907 will be filtered out later. */
908
909 return 0;
910 }
911
912 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
913 triage. This section could be slow (since we iterate over all
914 objfiles in each call to qsort_cmp), but this shouldn't happen
915 very often (GDB is already in a confused state; one hopes this
916 doesn't happen at all). If you discover that significant time is
917 spent in the loops below, do 'set complaints 100' and examine the
918 resulting complaints. */
919
920 if (objfile1 == objfile2)
921 {
922 /* Both sections came from the same objfile. We are really confused.
923 Sort on sequence order of sections within the objfile. */
924
925 const struct obj_section *osect;
926
927 ALL_OBJFILE_OSECTIONS (objfile1, osect)
928 if (osect == sect1)
929 return -1;
930 else if (osect == sect2)
931 return 1;
932
933 /* We should have found one of the sections before getting here. */
934 gdb_assert (0);
935 }
936 else
937 {
938 /* Sort on sequence number of the objfile in the chain. */
939
940 const struct objfile *objfile;
941
942 ALL_OBJFILES (objfile)
943 if (objfile == objfile1)
944 return -1;
945 else if (objfile == objfile2)
946 return 1;
947
948 /* We should have found one of the objfiles before getting here. */
949 gdb_assert (0);
950 }
951
952 }
953
954 /* Unreachable. */
955 gdb_assert (0);
956 return 0;
957 }
958
959 /* Select "better" obj_section to keep. We prefer the one that came from
960 the real object, rather than the one from separate debuginfo.
961 Most of the time the two sections are exactly identical, but with
962 prelinking the .rel.dyn section in the real object may have different
963 size. */
964
965 static struct obj_section *
966 preferred_obj_section (struct obj_section *a, struct obj_section *b)
967 {
968 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
969 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
970 || (b->objfile->separate_debug_objfile == a->objfile));
971 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
972 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
973
974 if (a->objfile->separate_debug_objfile != NULL)
975 return a;
976 return b;
977 }
978
979 /* Return 1 if SECTION should be inserted into the section map.
980 We want to insert only non-overlay and non-TLS section. */
981
982 static int
983 insert_section_p (const struct bfd *abfd,
984 const struct bfd_section *section)
985 {
986 const bfd_vma lma = bfd_section_lma (abfd, section);
987
988 if (lma != 0 && lma != bfd_section_vma (abfd, section)
989 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
990 /* This is an overlay section. IN_MEMORY check is needed to avoid
991 discarding sections from the "system supplied DSO" (aka vdso)
992 on some Linux systems (e.g. Fedora 11). */
993 return 0;
994 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
995 /* This is a TLS section. */
996 return 0;
997
998 return 1;
999 }
1000
1001 /* Filter out overlapping sections where one section came from the real
1002 objfile, and the other from a separate debuginfo file.
1003 Return the size of table after redundant sections have been eliminated. */
1004
1005 static int
1006 filter_debuginfo_sections (struct obj_section **map, int map_size)
1007 {
1008 int i, j;
1009
1010 for (i = 0, j = 0; i < map_size - 1; i++)
1011 {
1012 struct obj_section *const sect1 = map[i];
1013 struct obj_section *const sect2 = map[i + 1];
1014 const struct objfile *const objfile1 = sect1->objfile;
1015 const struct objfile *const objfile2 = sect2->objfile;
1016 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1017 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1018
1019 if (sect1_addr == sect2_addr
1020 && (objfile1->separate_debug_objfile == objfile2
1021 || objfile2->separate_debug_objfile == objfile1))
1022 {
1023 map[j++] = preferred_obj_section (sect1, sect2);
1024 ++i;
1025 }
1026 else
1027 map[j++] = sect1;
1028 }
1029
1030 if (i < map_size)
1031 {
1032 gdb_assert (i == map_size - 1);
1033 map[j++] = map[i];
1034 }
1035
1036 /* The map should not have shrunk to less than half the original size. */
1037 gdb_assert (map_size / 2 <= j);
1038
1039 return j;
1040 }
1041
1042 /* Filter out overlapping sections, issuing a warning if any are found.
1043 Overlapping sections could really be overlay sections which we didn't
1044 classify as such in insert_section_p, or we could be dealing with a
1045 corrupt binary. */
1046
1047 static int
1048 filter_overlapping_sections (struct obj_section **map, int map_size)
1049 {
1050 int i, j;
1051
1052 for (i = 0, j = 0; i < map_size - 1; )
1053 {
1054 int k;
1055
1056 map[j++] = map[i];
1057 for (k = i + 1; k < map_size; k++)
1058 {
1059 struct obj_section *const sect1 = map[i];
1060 struct obj_section *const sect2 = map[k];
1061 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1062 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1063 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1064
1065 gdb_assert (sect1_addr <= sect2_addr);
1066
1067 if (sect1_endaddr <= sect2_addr)
1068 break;
1069 else
1070 {
1071 /* We have an overlap. Report it. */
1072
1073 struct objfile *const objf1 = sect1->objfile;
1074 struct objfile *const objf2 = sect2->objfile;
1075
1076 const struct bfd *const abfd1 = objf1->obfd;
1077 const struct bfd *const abfd2 = objf2->obfd;
1078
1079 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1080 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1081
1082 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1083
1084 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1085
1086 complaint (&symfile_complaints,
1087 _("unexpected overlap between:\n"
1088 " (A) section `%s' from `%s' [%s, %s)\n"
1089 " (B) section `%s' from `%s' [%s, %s).\n"
1090 "Will ignore section B"),
1091 bfd_section_name (abfd1, bfds1), objf1->name,
1092 paddress (gdbarch, sect1_addr),
1093 paddress (gdbarch, sect1_endaddr),
1094 bfd_section_name (abfd2, bfds2), objf2->name,
1095 paddress (gdbarch, sect2_addr),
1096 paddress (gdbarch, sect2_endaddr));
1097 }
1098 }
1099 i = k;
1100 }
1101
1102 if (i < map_size)
1103 {
1104 gdb_assert (i == map_size - 1);
1105 map[j++] = map[i];
1106 }
1107
1108 return j;
1109 }
1110
1111
1112 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1113 TLS, overlay and overlapping sections. */
1114
1115 static void
1116 update_section_map (struct program_space *pspace,
1117 struct obj_section ***pmap, int *pmap_size)
1118 {
1119 int alloc_size, map_size, i;
1120 struct obj_section *s, **map;
1121 struct objfile *objfile;
1122
1123 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1124
1125 map = *pmap;
1126 xfree (map);
1127
1128 alloc_size = 0;
1129 ALL_PSPACE_OBJFILES (pspace, objfile)
1130 ALL_OBJFILE_OSECTIONS (objfile, s)
1131 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1132 alloc_size += 1;
1133
1134 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1135 if (alloc_size == 0)
1136 {
1137 *pmap = NULL;
1138 *pmap_size = 0;
1139 return;
1140 }
1141
1142 map = xmalloc (alloc_size * sizeof (*map));
1143
1144 i = 0;
1145 ALL_PSPACE_OBJFILES (pspace, objfile)
1146 ALL_OBJFILE_OSECTIONS (objfile, s)
1147 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1148 map[i++] = s;
1149
1150 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1151 map_size = filter_debuginfo_sections(map, alloc_size);
1152 map_size = filter_overlapping_sections(map, map_size);
1153
1154 if (map_size < alloc_size)
1155 /* Some sections were eliminated. Trim excess space. */
1156 map = xrealloc (map, map_size * sizeof (*map));
1157 else
1158 gdb_assert (alloc_size == map_size);
1159
1160 *pmap = map;
1161 *pmap_size = map_size;
1162 }
1163
1164 /* Bsearch comparison function. */
1165
1166 static int
1167 bsearch_cmp (const void *key, const void *elt)
1168 {
1169 const CORE_ADDR pc = *(CORE_ADDR *) key;
1170 const struct obj_section *section = *(const struct obj_section **) elt;
1171
1172 if (pc < obj_section_addr (section))
1173 return -1;
1174 if (pc < obj_section_endaddr (section))
1175 return 0;
1176 return 1;
1177 }
1178
1179 /* Returns a section whose range includes PC or NULL if none found. */
1180
1181 struct obj_section *
1182 find_pc_section (CORE_ADDR pc)
1183 {
1184 struct objfile_pspace_info *pspace_info;
1185 struct obj_section *s, **sp;
1186
1187 /* Check for mapped overlay section first. */
1188 s = find_pc_mapped_section (pc);
1189 if (s)
1190 return s;
1191
1192 pspace_info = get_objfile_pspace_data (current_program_space);
1193 if (pspace_info->objfiles_changed_p != 0)
1194 {
1195 update_section_map (current_program_space,
1196 &pspace_info->sections,
1197 &pspace_info->num_sections);
1198
1199 /* Don't need updates to section map until objfiles are added,
1200 removed or relocated. */
1201 pspace_info->objfiles_changed_p = 0;
1202 }
1203
1204 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1205 bsearch be non-NULL. */
1206 if (pspace_info->sections == NULL)
1207 {
1208 gdb_assert (pspace_info->num_sections == 0);
1209 return NULL;
1210 }
1211
1212 sp = (struct obj_section **) bsearch (&pc,
1213 pspace_info->sections,
1214 pspace_info->num_sections,
1215 sizeof (*pspace_info->sections),
1216 bsearch_cmp);
1217 if (sp != NULL)
1218 return *sp;
1219 return NULL;
1220 }
1221
1222
1223 /* In SVR4, we recognize a trampoline by it's section name.
1224 That is, if the pc is in a section named ".plt" then we are in
1225 a trampoline. */
1226
1227 int
1228 in_plt_section (CORE_ADDR pc, char *name)
1229 {
1230 struct obj_section *s;
1231 int retval = 0;
1232
1233 s = find_pc_section (pc);
1234
1235 retval = (s != NULL
1236 && s->the_bfd_section->name != NULL
1237 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1238 return (retval);
1239 }
1240 \f
1241
1242 /* Keep a registry of per-objfile data-pointers required by other GDB
1243 modules. */
1244
1245 struct objfile_data
1246 {
1247 unsigned index;
1248 void (*save) (struct objfile *, void *);
1249 void (*free) (struct objfile *, void *);
1250 };
1251
1252 struct objfile_data_registration
1253 {
1254 struct objfile_data *data;
1255 struct objfile_data_registration *next;
1256 };
1257
1258 struct objfile_data_registry
1259 {
1260 struct objfile_data_registration *registrations;
1261 unsigned num_registrations;
1262 };
1263
1264 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1265
1266 const struct objfile_data *
1267 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1268 void (*free) (struct objfile *, void *))
1269 {
1270 struct objfile_data_registration **curr;
1271
1272 /* Append new registration. */
1273 for (curr = &objfile_data_registry.registrations;
1274 *curr != NULL; curr = &(*curr)->next);
1275
1276 *curr = XMALLOC (struct objfile_data_registration);
1277 (*curr)->next = NULL;
1278 (*curr)->data = XMALLOC (struct objfile_data);
1279 (*curr)->data->index = objfile_data_registry.num_registrations++;
1280 (*curr)->data->save = save;
1281 (*curr)->data->free = free;
1282
1283 return (*curr)->data;
1284 }
1285
1286 const struct objfile_data *
1287 register_objfile_data (void)
1288 {
1289 return register_objfile_data_with_cleanup (NULL, NULL);
1290 }
1291
1292 static void
1293 objfile_alloc_data (struct objfile *objfile)
1294 {
1295 gdb_assert (objfile->data == NULL);
1296 objfile->num_data = objfile_data_registry.num_registrations;
1297 objfile->data = XCALLOC (objfile->num_data, void *);
1298 }
1299
1300 static void
1301 objfile_free_data (struct objfile *objfile)
1302 {
1303 gdb_assert (objfile->data != NULL);
1304 clear_objfile_data (objfile);
1305 xfree (objfile->data);
1306 objfile->data = NULL;
1307 }
1308
1309 void
1310 clear_objfile_data (struct objfile *objfile)
1311 {
1312 struct objfile_data_registration *registration;
1313 int i;
1314
1315 gdb_assert (objfile->data != NULL);
1316
1317 /* Process all the save handlers. */
1318
1319 for (registration = objfile_data_registry.registrations, i = 0;
1320 i < objfile->num_data;
1321 registration = registration->next, i++)
1322 if (objfile->data[i] != NULL && registration->data->save != NULL)
1323 registration->data->save (objfile, objfile->data[i]);
1324
1325 /* Now process all the free handlers. */
1326
1327 for (registration = objfile_data_registry.registrations, i = 0;
1328 i < objfile->num_data;
1329 registration = registration->next, i++)
1330 if (objfile->data[i] != NULL && registration->data->free != NULL)
1331 registration->data->free (objfile, objfile->data[i]);
1332
1333 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1334 }
1335
1336 void
1337 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1338 void *value)
1339 {
1340 gdb_assert (data->index < objfile->num_data);
1341 objfile->data[data->index] = value;
1342 }
1343
1344 void *
1345 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1346 {
1347 gdb_assert (data->index < objfile->num_data);
1348 return objfile->data[data->index];
1349 }
1350
1351 /* Set objfiles_changed_p so section map will be rebuilt next time it
1352 is used. Called by reread_symbols. */
1353
1354 void
1355 objfiles_changed (void)
1356 {
1357 /* Rebuild section map next time we need it. */
1358 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1359 }
1360
1361 /* Add reference to ABFD. Returns ABFD. */
1362 struct bfd *
1363 gdb_bfd_ref (struct bfd *abfd)
1364 {
1365 int *p_refcount = bfd_usrdata (abfd);
1366
1367 if (p_refcount != NULL)
1368 {
1369 *p_refcount += 1;
1370 return abfd;
1371 }
1372
1373 p_refcount = xmalloc (sizeof (*p_refcount));
1374 *p_refcount = 1;
1375 bfd_usrdata (abfd) = p_refcount;
1376
1377 return abfd;
1378 }
1379
1380 /* Unreference and possibly close ABFD. */
1381 void
1382 gdb_bfd_unref (struct bfd *abfd)
1383 {
1384 int *p_refcount;
1385 char *name;
1386
1387 if (abfd == NULL)
1388 return;
1389
1390 p_refcount = bfd_usrdata (abfd);
1391
1392 /* Valid range for p_refcount: a pointer to int counter, which has a
1393 value of 1 (single owner) or 2 (shared). */
1394 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1395
1396 *p_refcount -= 1;
1397 if (*p_refcount > 0)
1398 return;
1399
1400 xfree (p_refcount);
1401 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1402
1403 name = bfd_get_filename (abfd);
1404 if (!bfd_close (abfd))
1405 warning (_("cannot close \"%s\": %s"),
1406 name, bfd_errmsg (bfd_get_error ()));
1407 xfree (name);
1408 }
1409
1410 /* Provide a prototype to silence -Wmissing-prototypes. */
1411 extern initialize_file_ftype _initialize_objfiles;
1412
1413 void
1414 _initialize_objfiles (void)
1415 {
1416 objfiles_pspace_data
1417 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1418 }
This page took 0.100399 seconds and 5 git commands to generate.