daily update
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include "gdb_assert.h"
37 #include <sys/types.h>
38 #include "gdb_stat.h"
39 #include <fcntl.h>
40 #include "gdb_obstack.h"
41 #include "gdb_string.h"
42 #include "hashtab.h"
43
44 #include "breakpoint.h"
45 #include "block.h"
46 #include "dictionary.h"
47 #include "source.h"
48 #include "addrmap.h"
49 #include "arch-utils.h"
50 #include "exec.h"
51 #include "observer.h"
52 #include "complaints.h"
53 #include "psymtab.h"
54 #include "solist.h"
55 #include "gdb_bfd.h"
56 #include "btrace.h"
57
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile_pspace_info
67 {
68 struct obj_section **sections;
69 int num_sections;
70
71 /* Nonzero if object files have been added since the section map
72 was last updated. */
73 int new_objfiles_available;
74
75 /* Nonzero if the section map MUST be updated before use. */
76 int section_map_dirty;
77
78 /* Nonzero if section map updates should be inhibited if possible. */
79 int inhibit_updates;
80 };
81
82 /* Per-program-space data key. */
83 static const struct program_space_data *objfiles_pspace_data;
84
85 static void
86 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
87 {
88 struct objfile_pspace_info *info;
89
90 info = program_space_data (pspace, objfiles_pspace_data);
91 if (info != NULL)
92 {
93 xfree (info->sections);
94 xfree (info);
95 }
96 }
97
98 /* Get the current svr4 data. If none is found yet, add it now. This
99 function always returns a valid object. */
100
101 static struct objfile_pspace_info *
102 get_objfile_pspace_data (struct program_space *pspace)
103 {
104 struct objfile_pspace_info *info;
105
106 info = program_space_data (pspace, objfiles_pspace_data);
107 if (info == NULL)
108 {
109 info = XZALLOC (struct objfile_pspace_info);
110 set_program_space_data (pspace, objfiles_pspace_data, info);
111 }
112
113 return info;
114 }
115
116 \f
117
118 /* Per-BFD data key. */
119
120 static const struct bfd_data *objfiles_bfd_data;
121
122 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
123 NULL, and it already has a per-BFD storage object, use that.
124 Otherwise, allocate a new per-BFD storage object. If ABFD is not
125 NULL, the object is allocated on the BFD; otherwise it is allocated
126 on OBJFILE's obstack. Note that it is not safe to call this
127 multiple times for a given OBJFILE -- it can only be called when
128 allocating or re-initializing OBJFILE. */
129
130 static struct objfile_per_bfd_storage *
131 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
132 {
133 struct objfile_per_bfd_storage *storage = NULL;
134
135 if (abfd != NULL)
136 storage = bfd_data (abfd, objfiles_bfd_data);
137
138 if (storage == NULL)
139 {
140 if (abfd != NULL)
141 {
142 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
143 set_bfd_data (abfd, objfiles_bfd_data, storage);
144
145 /* Look up the gdbarch associated with the BFD. */
146 storage->gdbarch = gdbarch_from_bfd (abfd);
147 }
148 else
149 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
150 struct objfile_per_bfd_storage);
151
152 obstack_init (&storage->storage_obstack);
153 storage->filename_cache = bcache_xmalloc (NULL, NULL);
154 storage->macro_cache = bcache_xmalloc (NULL, NULL);
155 }
156
157 return storage;
158 }
159
160 /* Free STORAGE. */
161
162 static void
163 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
164 {
165 bcache_xfree (storage->filename_cache);
166 bcache_xfree (storage->macro_cache);
167 obstack_free (&storage->storage_obstack, 0);
168 }
169
170 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
171 cleanup function to the BFD registry. */
172
173 static void
174 objfile_bfd_data_free (struct bfd *unused, void *d)
175 {
176 free_objfile_per_bfd_storage (d);
177 }
178
179 /* See objfiles.h. */
180
181 void
182 set_objfile_per_bfd (struct objfile *objfile)
183 {
184 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
185 }
186
187 \f
188
189 /* Called via bfd_map_over_sections to build up the section table that
190 the objfile references. The objfile contains pointers to the start
191 of the table (objfile->sections) and to the first location after
192 the end of the table (objfile->sections_end). */
193
194 static void
195 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
196 struct objfile *objfile, int force)
197 {
198 struct obj_section *section;
199
200 if (!force)
201 {
202 flagword aflag;
203
204 aflag = bfd_get_section_flags (abfd, asect);
205 if (!(aflag & SEC_ALLOC))
206 return;
207 }
208
209 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
210 section->objfile = objfile;
211 section->the_bfd_section = asect;
212 section->ovly_mapped = 0;
213 }
214
215 static void
216 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
217 void *objfilep)
218 {
219 add_to_objfile_sections_full (abfd, asect, objfilep, 0);
220 }
221
222 /* Builds a section table for OBJFILE.
223
224 Note that the OFFSET and OVLY_MAPPED in each table entry are
225 initialized to zero. */
226
227 void
228 build_objfile_section_table (struct objfile *objfile)
229 {
230 int count = gdb_bfd_count_sections (objfile->obfd);
231
232 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
233 count,
234 struct obj_section);
235 objfile->sections_end = (objfile->sections + count);
236 bfd_map_over_sections (objfile->obfd,
237 add_to_objfile_sections, (void *) objfile);
238
239 /* See gdb_bfd_section_index. */
240 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
241 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
242 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
243 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
244 }
245
246 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
247 allocate a new objfile struct, fill it in as best we can, link it
248 into the list of all known objfiles, and return a pointer to the
249 new objfile struct.
250
251 NAME should contain original non-canonicalized filename or other
252 identifier as entered by user. If there is no better source use
253 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
254 NAME content is copied into returned objfile.
255
256 The FLAGS word contains various bits (OBJF_*) that can be taken as
257 requests for specific operations. Other bits like OBJF_SHARED are
258 simply copied through to the new objfile flags member. */
259
260 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
261 by jv-lang.c, to create an artificial objfile used to hold
262 information about dynamically-loaded Java classes. Unfortunately,
263 that branch of this function doesn't get tested very frequently, so
264 it's prone to breakage. (E.g. at one time the name was set to NULL
265 in that situation, which broke a loop over all names in the dynamic
266 library loader.) If you change this function, please try to leave
267 things in a consistent state even if abfd is NULL. */
268
269 struct objfile *
270 allocate_objfile (bfd *abfd, const char *name, int flags)
271 {
272 struct objfile *objfile;
273
274 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
275 objfile->psymbol_cache = psymbol_bcache_init ();
276 /* We could use obstack_specify_allocation here instead, but
277 gdb_obstack.h specifies the alloc/dealloc functions. */
278 obstack_init (&objfile->objfile_obstack);
279 terminate_minimal_symbol_table (objfile);
280
281 objfile_alloc_data (objfile);
282
283 /* Update the per-objfile information that comes from the bfd, ensuring
284 that any data that is reference is saved in the per-objfile data
285 region. */
286
287 if (name == NULL)
288 {
289 gdb_assert (abfd == NULL);
290 name = "<<anonymous objfile>>";
291 }
292 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack, name,
293 strlen (name));
294
295 objfile->obfd = abfd;
296 gdb_bfd_ref (abfd);
297 if (abfd != NULL)
298 {
299 objfile->mtime = bfd_get_mtime (abfd);
300
301 /* Build section table. */
302 build_objfile_section_table (objfile);
303 }
304
305 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
306 objfile->pspace = current_program_space;
307
308 /* Initialize the section indexes for this objfile, so that we can
309 later detect if they are used w/o being properly assigned to. */
310
311 objfile->sect_index_text = -1;
312 objfile->sect_index_data = -1;
313 objfile->sect_index_bss = -1;
314 objfile->sect_index_rodata = -1;
315
316 /* Add this file onto the tail of the linked list of other such files. */
317
318 objfile->next = NULL;
319 if (object_files == NULL)
320 object_files = objfile;
321 else
322 {
323 struct objfile *last_one;
324
325 for (last_one = object_files;
326 last_one->next;
327 last_one = last_one->next);
328 last_one->next = objfile;
329 }
330
331 /* Save passed in flag bits. */
332 objfile->flags |= flags;
333
334 /* Rebuild section map next time we need it. */
335 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
336
337 return objfile;
338 }
339
340 /* Retrieve the gdbarch associated with OBJFILE. */
341 struct gdbarch *
342 get_objfile_arch (struct objfile *objfile)
343 {
344 return objfile->per_bfd->gdbarch;
345 }
346
347 /* If there is a valid and known entry point, function fills *ENTRY_P with it
348 and returns non-zero; otherwise it returns zero. */
349
350 int
351 entry_point_address_query (CORE_ADDR *entry_p)
352 {
353 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
354 return 0;
355
356 *entry_p = symfile_objfile->ei.entry_point;
357
358 return 1;
359 }
360
361 /* Get current entry point address. Call error if it is not known. */
362
363 CORE_ADDR
364 entry_point_address (void)
365 {
366 CORE_ADDR retval;
367
368 if (!entry_point_address_query (&retval))
369 error (_("Entry point address is not known."));
370
371 return retval;
372 }
373
374 /* Iterator on PARENT and every separate debug objfile of PARENT.
375 The usage pattern is:
376 for (objfile = parent;
377 objfile;
378 objfile = objfile_separate_debug_iterate (parent, objfile))
379 ...
380 */
381
382 struct objfile *
383 objfile_separate_debug_iterate (const struct objfile *parent,
384 const struct objfile *objfile)
385 {
386 struct objfile *res;
387
388 /* If any, return the first child. */
389 res = objfile->separate_debug_objfile;
390 if (res)
391 return res;
392
393 /* Common case where there is no separate debug objfile. */
394 if (objfile == parent)
395 return NULL;
396
397 /* Return the brother if any. Note that we don't iterate on brothers of
398 the parents. */
399 res = objfile->separate_debug_objfile_link;
400 if (res)
401 return res;
402
403 for (res = objfile->separate_debug_objfile_backlink;
404 res != parent;
405 res = res->separate_debug_objfile_backlink)
406 {
407 gdb_assert (res != NULL);
408 if (res->separate_debug_objfile_link)
409 return res->separate_debug_objfile_link;
410 }
411 return NULL;
412 }
413
414 /* Put one object file before a specified on in the global list.
415 This can be used to make sure an object file is destroyed before
416 another when using ALL_OBJFILES_SAFE to free all objfiles. */
417 void
418 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
419 {
420 struct objfile **objp;
421
422 unlink_objfile (objfile);
423
424 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
425 {
426 if (*objp == before_this)
427 {
428 objfile->next = *objp;
429 *objp = objfile;
430 return;
431 }
432 }
433
434 internal_error (__FILE__, __LINE__,
435 _("put_objfile_before: before objfile not in list"));
436 }
437
438 /* Put OBJFILE at the front of the list. */
439
440 void
441 objfile_to_front (struct objfile *objfile)
442 {
443 struct objfile **objp;
444 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
445 {
446 if (*objp == objfile)
447 {
448 /* Unhook it from where it is. */
449 *objp = objfile->next;
450 /* Put it in the front. */
451 objfile->next = object_files;
452 object_files = objfile;
453 break;
454 }
455 }
456 }
457
458 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
459 list.
460
461 It is not a bug, or error, to call this function if OBJFILE is not known
462 to be in the current list. This is done in the case of mapped objfiles,
463 for example, just to ensure that the mapped objfile doesn't appear twice
464 in the list. Since the list is threaded, linking in a mapped objfile
465 twice would create a circular list.
466
467 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
468 unlinking it, just to ensure that we have completely severed any linkages
469 between the OBJFILE and the list. */
470
471 void
472 unlink_objfile (struct objfile *objfile)
473 {
474 struct objfile **objpp;
475
476 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
477 {
478 if (*objpp == objfile)
479 {
480 *objpp = (*objpp)->next;
481 objfile->next = NULL;
482 return;
483 }
484 }
485
486 internal_error (__FILE__, __LINE__,
487 _("unlink_objfile: objfile already unlinked"));
488 }
489
490 /* Add OBJFILE as a separate debug objfile of PARENT. */
491
492 void
493 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
494 {
495 gdb_assert (objfile && parent);
496
497 /* Must not be already in a list. */
498 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
499 gdb_assert (objfile->separate_debug_objfile_link == NULL);
500 gdb_assert (objfile->separate_debug_objfile == NULL);
501 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
502 gdb_assert (parent->separate_debug_objfile_link == NULL);
503
504 objfile->separate_debug_objfile_backlink = parent;
505 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
506 parent->separate_debug_objfile = objfile;
507
508 /* Put the separate debug object before the normal one, this is so that
509 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
510 put_objfile_before (objfile, parent);
511 }
512
513 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
514 itself. */
515
516 void
517 free_objfile_separate_debug (struct objfile *objfile)
518 {
519 struct objfile *child;
520
521 for (child = objfile->separate_debug_objfile; child;)
522 {
523 struct objfile *next_child = child->separate_debug_objfile_link;
524 free_objfile (child);
525 child = next_child;
526 }
527 }
528
529 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
530 that as much as possible is allocated on the objfile_obstack
531 so that the memory can be efficiently freed.
532
533 Things which we do NOT free because they are not in malloc'd memory
534 or not in memory specific to the objfile include:
535
536 objfile -> sf
537
538 FIXME: If the objfile is using reusable symbol information (via mmalloc),
539 then we need to take into account the fact that more than one process
540 may be using the symbol information at the same time (when mmalloc is
541 extended to support cooperative locking). When more than one process
542 is using the mapped symbol info, we need to be more careful about when
543 we free objects in the reusable area. */
544
545 void
546 free_objfile (struct objfile *objfile)
547 {
548 /* Free all separate debug objfiles. */
549 free_objfile_separate_debug (objfile);
550
551 if (objfile->separate_debug_objfile_backlink)
552 {
553 /* We freed the separate debug file, make sure the base objfile
554 doesn't reference it. */
555 struct objfile *child;
556
557 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
558
559 if (child == objfile)
560 {
561 /* OBJFILE is the first child. */
562 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
563 objfile->separate_debug_objfile_link;
564 }
565 else
566 {
567 /* Find OBJFILE in the list. */
568 while (1)
569 {
570 if (child->separate_debug_objfile_link == objfile)
571 {
572 child->separate_debug_objfile_link =
573 objfile->separate_debug_objfile_link;
574 break;
575 }
576 child = child->separate_debug_objfile_link;
577 gdb_assert (child);
578 }
579 }
580 }
581
582 /* Remove any references to this objfile in the global value
583 lists. */
584 preserve_values (objfile);
585
586 /* It still may reference data modules have associated with the objfile and
587 the symbol file data. */
588 forget_cached_source_info_for_objfile (objfile);
589
590 breakpoint_free_objfile (objfile);
591 btrace_free_objfile (objfile);
592
593 /* First do any symbol file specific actions required when we are
594 finished with a particular symbol file. Note that if the objfile
595 is using reusable symbol information (via mmalloc) then each of
596 these routines is responsible for doing the correct thing, either
597 freeing things which are valid only during this particular gdb
598 execution, or leaving them to be reused during the next one. */
599
600 if (objfile->sf != NULL)
601 {
602 (*objfile->sf->sym_finish) (objfile);
603 }
604
605 /* Discard any data modules have associated with the objfile. The function
606 still may reference objfile->obfd. */
607 objfile_free_data (objfile);
608
609 if (objfile->obfd)
610 gdb_bfd_unref (objfile->obfd);
611 else
612 free_objfile_per_bfd_storage (objfile->per_bfd);
613
614 /* Remove it from the chain of all objfiles. */
615
616 unlink_objfile (objfile);
617
618 if (objfile == symfile_objfile)
619 symfile_objfile = NULL;
620
621 /* Before the symbol table code was redone to make it easier to
622 selectively load and remove information particular to a specific
623 linkage unit, gdb used to do these things whenever the monolithic
624 symbol table was blown away. How much still needs to be done
625 is unknown, but we play it safe for now and keep each action until
626 it is shown to be no longer needed. */
627
628 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
629 for example), so we need to call this here. */
630 clear_pc_function_cache ();
631
632 /* Clear globals which might have pointed into a removed objfile.
633 FIXME: It's not clear which of these are supposed to persist
634 between expressions and which ought to be reset each time. */
635 expression_context_block = NULL;
636 innermost_block = NULL;
637
638 /* Check to see if the current_source_symtab belongs to this objfile,
639 and if so, call clear_current_source_symtab_and_line. */
640
641 {
642 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
643
644 if (cursal.symtab && cursal.symtab->objfile == objfile)
645 clear_current_source_symtab_and_line ();
646 }
647
648 /* The last thing we do is free the objfile struct itself. */
649
650 if (objfile->global_psymbols.list)
651 xfree (objfile->global_psymbols.list);
652 if (objfile->static_psymbols.list)
653 xfree (objfile->static_psymbols.list);
654 /* Free the obstacks for non-reusable objfiles. */
655 psymbol_bcache_free (objfile->psymbol_cache);
656 if (objfile->demangled_names_hash)
657 htab_delete (objfile->demangled_names_hash);
658 obstack_free (&objfile->objfile_obstack, 0);
659
660 /* Rebuild section map next time we need it. */
661 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
662
663 xfree (objfile);
664 }
665
666 static void
667 do_free_objfile_cleanup (void *obj)
668 {
669 free_objfile (obj);
670 }
671
672 struct cleanup *
673 make_cleanup_free_objfile (struct objfile *obj)
674 {
675 return make_cleanup (do_free_objfile_cleanup, obj);
676 }
677
678 /* Free all the object files at once and clean up their users. */
679
680 void
681 free_all_objfiles (void)
682 {
683 struct objfile *objfile, *temp;
684 struct so_list *so;
685
686 /* Any objfile referencewould become stale. */
687 for (so = master_so_list (); so; so = so->next)
688 gdb_assert (so->objfile == NULL);
689
690 ALL_OBJFILES_SAFE (objfile, temp)
691 {
692 free_objfile (objfile);
693 }
694 clear_symtab_users (0);
695 }
696 \f
697 /* A helper function for objfile_relocate1 that relocates a single
698 symbol. */
699
700 static void
701 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
702 struct section_offsets *delta)
703 {
704 fixup_symbol_section (sym, objfile);
705
706 /* The RS6000 code from which this was taken skipped
707 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
708 But I'm leaving out that test, on the theory that
709 they can't possibly pass the tests below. */
710 if ((SYMBOL_CLASS (sym) == LOC_LABEL
711 || SYMBOL_CLASS (sym) == LOC_STATIC)
712 && SYMBOL_SECTION (sym) >= 0)
713 {
714 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
715 }
716 }
717
718 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
719 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
720 Return non-zero iff any change happened. */
721
722 static int
723 objfile_relocate1 (struct objfile *objfile,
724 const struct section_offsets *new_offsets)
725 {
726 struct obj_section *s;
727 struct section_offsets *delta =
728 ((struct section_offsets *)
729 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
730
731 int i;
732 int something_changed = 0;
733
734 for (i = 0; i < objfile->num_sections; ++i)
735 {
736 delta->offsets[i] =
737 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
738 if (ANOFFSET (delta, i) != 0)
739 something_changed = 1;
740 }
741 if (!something_changed)
742 return 0;
743
744 /* OK, get all the symtabs. */
745 {
746 struct symtab *s;
747
748 ALL_OBJFILE_SYMTABS (objfile, s)
749 {
750 struct linetable *l;
751 struct blockvector *bv;
752 int i;
753
754 /* First the line table. */
755 l = LINETABLE (s);
756 if (l)
757 {
758 for (i = 0; i < l->nitems; ++i)
759 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
760 }
761
762 /* Don't relocate a shared blockvector more than once. */
763 if (!s->primary)
764 continue;
765
766 bv = BLOCKVECTOR (s);
767 if (BLOCKVECTOR_MAP (bv))
768 addrmap_relocate (BLOCKVECTOR_MAP (bv),
769 ANOFFSET (delta, s->block_line_section));
770
771 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
772 {
773 struct block *b;
774 struct symbol *sym;
775 struct dict_iterator iter;
776
777 b = BLOCKVECTOR_BLOCK (bv, i);
778 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
779 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
780
781 /* We only want to iterate over the local symbols, not any
782 symbols in included symtabs. */
783 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
784 {
785 relocate_one_symbol (sym, objfile, delta);
786 }
787 }
788 }
789 }
790
791 /* Relocate isolated symbols. */
792 {
793 struct symbol *iter;
794
795 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
796 relocate_one_symbol (iter, objfile, delta);
797 }
798
799 if (objfile->psymtabs_addrmap)
800 addrmap_relocate (objfile->psymtabs_addrmap,
801 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
802
803 if (objfile->sf)
804 objfile->sf->qf->relocate (objfile, new_offsets, delta);
805
806 {
807 struct minimal_symbol *msym;
808
809 ALL_OBJFILE_MSYMBOLS (objfile, msym)
810 if (SYMBOL_SECTION (msym) >= 0)
811 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
812 }
813 /* Relocating different sections by different amounts may cause the symbols
814 to be out of order. */
815 msymbols_sort (objfile);
816
817 if (objfile->ei.entry_point_p)
818 {
819 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
820 only as a fallback. */
821 struct obj_section *s;
822 s = find_pc_section (objfile->ei.entry_point);
823 if (s)
824 {
825 int idx = gdb_bfd_section_index (objfile->obfd, s->the_bfd_section);
826
827 objfile->ei.entry_point += ANOFFSET (delta, idx);
828 }
829 else
830 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
831 }
832
833 {
834 int i;
835
836 for (i = 0; i < objfile->num_sections; ++i)
837 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
838 }
839
840 /* Rebuild section map next time we need it. */
841 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
842
843 /* Update the table in exec_ops, used to read memory. */
844 ALL_OBJFILE_OSECTIONS (objfile, s)
845 {
846 int idx = s - objfile->sections;
847
848 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
849 obj_section_addr (s));
850 }
851
852 /* Relocating probes. */
853 if (objfile->sf && objfile->sf->sym_probe_fns)
854 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
855 new_offsets, delta);
856
857 /* Data changed. */
858 return 1;
859 }
860
861 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
862 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
863
864 The number and ordering of sections does differ between the two objfiles.
865 Only their names match. Also the file offsets will differ (objfile being
866 possibly prelinked but separate_debug_objfile is probably not prelinked) but
867 the in-memory absolute address as specified by NEW_OFFSETS must match both
868 files. */
869
870 void
871 objfile_relocate (struct objfile *objfile,
872 const struct section_offsets *new_offsets)
873 {
874 struct objfile *debug_objfile;
875 int changed = 0;
876
877 changed |= objfile_relocate1 (objfile, new_offsets);
878
879 for (debug_objfile = objfile->separate_debug_objfile;
880 debug_objfile;
881 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
882 {
883 struct section_addr_info *objfile_addrs;
884 struct section_offsets *new_debug_offsets;
885 struct cleanup *my_cleanups;
886
887 objfile_addrs = build_section_addr_info_from_objfile (objfile);
888 my_cleanups = make_cleanup (xfree, objfile_addrs);
889
890 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
891 relative ones must be already created according to debug_objfile. */
892
893 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
894
895 gdb_assert (debug_objfile->num_sections
896 == gdb_bfd_count_sections (debug_objfile->obfd));
897 new_debug_offsets =
898 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
899 make_cleanup (xfree, new_debug_offsets);
900 relative_addr_info_to_section_offsets (new_debug_offsets,
901 debug_objfile->num_sections,
902 objfile_addrs);
903
904 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
905
906 do_cleanups (my_cleanups);
907 }
908
909 /* Relocate breakpoints as necessary, after things are relocated. */
910 if (changed)
911 breakpoint_re_set ();
912 }
913
914 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
915 not touched here.
916 Return non-zero iff any change happened. */
917
918 static int
919 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
920 {
921 struct section_offsets *new_offsets =
922 ((struct section_offsets *)
923 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
924 int i;
925
926 for (i = 0; i < objfile->num_sections; ++i)
927 new_offsets->offsets[i] = slide;
928
929 return objfile_relocate1 (objfile, new_offsets);
930 }
931
932 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
933 SEPARATE_DEBUG_OBJFILEs. */
934
935 void
936 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
937 {
938 struct objfile *debug_objfile;
939 int changed = 0;
940
941 changed |= objfile_rebase1 (objfile, slide);
942
943 for (debug_objfile = objfile->separate_debug_objfile;
944 debug_objfile;
945 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
946 changed |= objfile_rebase1 (debug_objfile, slide);
947
948 /* Relocate breakpoints as necessary, after things are relocated. */
949 if (changed)
950 breakpoint_re_set ();
951 }
952 \f
953 /* Return non-zero if OBJFILE has partial symbols. */
954
955 int
956 objfile_has_partial_symbols (struct objfile *objfile)
957 {
958 if (!objfile->sf)
959 return 0;
960
961 /* If we have not read psymbols, but we have a function capable of reading
962 them, then that is an indication that they are in fact available. Without
963 this function the symbols may have been already read in but they also may
964 not be present in this objfile. */
965 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
966 && objfile->sf->sym_read_psymbols != NULL)
967 return 1;
968
969 return objfile->sf->qf->has_symbols (objfile);
970 }
971
972 /* Return non-zero if OBJFILE has full symbols. */
973
974 int
975 objfile_has_full_symbols (struct objfile *objfile)
976 {
977 return objfile->symtabs != NULL;
978 }
979
980 /* Return non-zero if OBJFILE has full or partial symbols, either directly
981 or through a separate debug file. */
982
983 int
984 objfile_has_symbols (struct objfile *objfile)
985 {
986 struct objfile *o;
987
988 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
989 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
990 return 1;
991 return 0;
992 }
993
994
995 /* Many places in gdb want to test just to see if we have any partial
996 symbols available. This function returns zero if none are currently
997 available, nonzero otherwise. */
998
999 int
1000 have_partial_symbols (void)
1001 {
1002 struct objfile *ofp;
1003
1004 ALL_OBJFILES (ofp)
1005 {
1006 if (objfile_has_partial_symbols (ofp))
1007 return 1;
1008 }
1009 return 0;
1010 }
1011
1012 /* Many places in gdb want to test just to see if we have any full
1013 symbols available. This function returns zero if none are currently
1014 available, nonzero otherwise. */
1015
1016 int
1017 have_full_symbols (void)
1018 {
1019 struct objfile *ofp;
1020
1021 ALL_OBJFILES (ofp)
1022 {
1023 if (objfile_has_full_symbols (ofp))
1024 return 1;
1025 }
1026 return 0;
1027 }
1028
1029
1030 /* This operations deletes all objfile entries that represent solibs that
1031 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1032 command. */
1033
1034 void
1035 objfile_purge_solibs (void)
1036 {
1037 struct objfile *objf;
1038 struct objfile *temp;
1039
1040 ALL_OBJFILES_SAFE (objf, temp)
1041 {
1042 /* We assume that the solib package has been purged already, or will
1043 be soon. */
1044
1045 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1046 free_objfile (objf);
1047 }
1048 }
1049
1050
1051 /* Many places in gdb want to test just to see if we have any minimal
1052 symbols available. This function returns zero if none are currently
1053 available, nonzero otherwise. */
1054
1055 int
1056 have_minimal_symbols (void)
1057 {
1058 struct objfile *ofp;
1059
1060 ALL_OBJFILES (ofp)
1061 {
1062 if (ofp->minimal_symbol_count > 0)
1063 {
1064 return 1;
1065 }
1066 }
1067 return 0;
1068 }
1069
1070 /* Qsort comparison function. */
1071
1072 static int
1073 qsort_cmp (const void *a, const void *b)
1074 {
1075 const struct obj_section *sect1 = *(const struct obj_section **) a;
1076 const struct obj_section *sect2 = *(const struct obj_section **) b;
1077 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1078 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1079
1080 if (sect1_addr < sect2_addr)
1081 return -1;
1082 else if (sect1_addr > sect2_addr)
1083 return 1;
1084 else
1085 {
1086 /* Sections are at the same address. This could happen if
1087 A) we have an objfile and a separate debuginfo.
1088 B) we are confused, and have added sections without proper relocation,
1089 or something like that. */
1090
1091 const struct objfile *const objfile1 = sect1->objfile;
1092 const struct objfile *const objfile2 = sect2->objfile;
1093
1094 if (objfile1->separate_debug_objfile == objfile2
1095 || objfile2->separate_debug_objfile == objfile1)
1096 {
1097 /* Case A. The ordering doesn't matter: separate debuginfo files
1098 will be filtered out later. */
1099
1100 return 0;
1101 }
1102
1103 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1104 triage. This section could be slow (since we iterate over all
1105 objfiles in each call to qsort_cmp), but this shouldn't happen
1106 very often (GDB is already in a confused state; one hopes this
1107 doesn't happen at all). If you discover that significant time is
1108 spent in the loops below, do 'set complaints 100' and examine the
1109 resulting complaints. */
1110
1111 if (objfile1 == objfile2)
1112 {
1113 /* Both sections came from the same objfile. We are really confused.
1114 Sort on sequence order of sections within the objfile. */
1115
1116 const struct obj_section *osect;
1117
1118 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1119 if (osect == sect1)
1120 return -1;
1121 else if (osect == sect2)
1122 return 1;
1123
1124 /* We should have found one of the sections before getting here. */
1125 gdb_assert_not_reached ("section not found");
1126 }
1127 else
1128 {
1129 /* Sort on sequence number of the objfile in the chain. */
1130
1131 const struct objfile *objfile;
1132
1133 ALL_OBJFILES (objfile)
1134 if (objfile == objfile1)
1135 return -1;
1136 else if (objfile == objfile2)
1137 return 1;
1138
1139 /* We should have found one of the objfiles before getting here. */
1140 gdb_assert_not_reached ("objfile not found");
1141 }
1142 }
1143
1144 /* Unreachable. */
1145 gdb_assert_not_reached ("unexpected code path");
1146 return 0;
1147 }
1148
1149 /* Select "better" obj_section to keep. We prefer the one that came from
1150 the real object, rather than the one from separate debuginfo.
1151 Most of the time the two sections are exactly identical, but with
1152 prelinking the .rel.dyn section in the real object may have different
1153 size. */
1154
1155 static struct obj_section *
1156 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1157 {
1158 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1159 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1160 || (b->objfile->separate_debug_objfile == a->objfile));
1161 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1162 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1163
1164 if (a->objfile->separate_debug_objfile != NULL)
1165 return a;
1166 return b;
1167 }
1168
1169 /* Return 1 if SECTION should be inserted into the section map.
1170 We want to insert only non-overlay and non-TLS section. */
1171
1172 static int
1173 insert_section_p (const struct bfd *abfd,
1174 const struct bfd_section *section)
1175 {
1176 const bfd_vma lma = bfd_section_lma (abfd, section);
1177
1178 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1179 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1180 /* This is an overlay section. IN_MEMORY check is needed to avoid
1181 discarding sections from the "system supplied DSO" (aka vdso)
1182 on some Linux systems (e.g. Fedora 11). */
1183 return 0;
1184 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1185 /* This is a TLS section. */
1186 return 0;
1187
1188 return 1;
1189 }
1190
1191 /* Filter out overlapping sections where one section came from the real
1192 objfile, and the other from a separate debuginfo file.
1193 Return the size of table after redundant sections have been eliminated. */
1194
1195 static int
1196 filter_debuginfo_sections (struct obj_section **map, int map_size)
1197 {
1198 int i, j;
1199
1200 for (i = 0, j = 0; i < map_size - 1; i++)
1201 {
1202 struct obj_section *const sect1 = map[i];
1203 struct obj_section *const sect2 = map[i + 1];
1204 const struct objfile *const objfile1 = sect1->objfile;
1205 const struct objfile *const objfile2 = sect2->objfile;
1206 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1207 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1208
1209 if (sect1_addr == sect2_addr
1210 && (objfile1->separate_debug_objfile == objfile2
1211 || objfile2->separate_debug_objfile == objfile1))
1212 {
1213 map[j++] = preferred_obj_section (sect1, sect2);
1214 ++i;
1215 }
1216 else
1217 map[j++] = sect1;
1218 }
1219
1220 if (i < map_size)
1221 {
1222 gdb_assert (i == map_size - 1);
1223 map[j++] = map[i];
1224 }
1225
1226 /* The map should not have shrunk to less than half the original size. */
1227 gdb_assert (map_size / 2 <= j);
1228
1229 return j;
1230 }
1231
1232 /* Filter out overlapping sections, issuing a warning if any are found.
1233 Overlapping sections could really be overlay sections which we didn't
1234 classify as such in insert_section_p, or we could be dealing with a
1235 corrupt binary. */
1236
1237 static int
1238 filter_overlapping_sections (struct obj_section **map, int map_size)
1239 {
1240 int i, j;
1241
1242 for (i = 0, j = 0; i < map_size - 1; )
1243 {
1244 int k;
1245
1246 map[j++] = map[i];
1247 for (k = i + 1; k < map_size; k++)
1248 {
1249 struct obj_section *const sect1 = map[i];
1250 struct obj_section *const sect2 = map[k];
1251 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1252 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1253 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1254
1255 gdb_assert (sect1_addr <= sect2_addr);
1256
1257 if (sect1_endaddr <= sect2_addr)
1258 break;
1259 else
1260 {
1261 /* We have an overlap. Report it. */
1262
1263 struct objfile *const objf1 = sect1->objfile;
1264 struct objfile *const objf2 = sect2->objfile;
1265
1266 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1267 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1268
1269 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1270
1271 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1272
1273 complaint (&symfile_complaints,
1274 _("unexpected overlap between:\n"
1275 " (A) section `%s' from `%s' [%s, %s)\n"
1276 " (B) section `%s' from `%s' [%s, %s).\n"
1277 "Will ignore section B"),
1278 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1279 paddress (gdbarch, sect1_addr),
1280 paddress (gdbarch, sect1_endaddr),
1281 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1282 paddress (gdbarch, sect2_addr),
1283 paddress (gdbarch, sect2_endaddr));
1284 }
1285 }
1286 i = k;
1287 }
1288
1289 if (i < map_size)
1290 {
1291 gdb_assert (i == map_size - 1);
1292 map[j++] = map[i];
1293 }
1294
1295 return j;
1296 }
1297
1298
1299 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1300 TLS, overlay and overlapping sections. */
1301
1302 static void
1303 update_section_map (struct program_space *pspace,
1304 struct obj_section ***pmap, int *pmap_size)
1305 {
1306 struct objfile_pspace_info *pspace_info;
1307 int alloc_size, map_size, i;
1308 struct obj_section *s, **map;
1309 struct objfile *objfile;
1310
1311 pspace_info = get_objfile_pspace_data (pspace);
1312 gdb_assert (pspace_info->section_map_dirty != 0
1313 || pspace_info->new_objfiles_available != 0);
1314
1315 map = *pmap;
1316 xfree (map);
1317
1318 alloc_size = 0;
1319 ALL_PSPACE_OBJFILES (pspace, objfile)
1320 ALL_OBJFILE_OSECTIONS (objfile, s)
1321 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1322 alloc_size += 1;
1323
1324 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1325 if (alloc_size == 0)
1326 {
1327 *pmap = NULL;
1328 *pmap_size = 0;
1329 return;
1330 }
1331
1332 map = xmalloc (alloc_size * sizeof (*map));
1333
1334 i = 0;
1335 ALL_PSPACE_OBJFILES (pspace, objfile)
1336 ALL_OBJFILE_OSECTIONS (objfile, s)
1337 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1338 map[i++] = s;
1339
1340 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1341 map_size = filter_debuginfo_sections(map, alloc_size);
1342 map_size = filter_overlapping_sections(map, map_size);
1343
1344 if (map_size < alloc_size)
1345 /* Some sections were eliminated. Trim excess space. */
1346 map = xrealloc (map, map_size * sizeof (*map));
1347 else
1348 gdb_assert (alloc_size == map_size);
1349
1350 *pmap = map;
1351 *pmap_size = map_size;
1352 }
1353
1354 /* Bsearch comparison function. */
1355
1356 static int
1357 bsearch_cmp (const void *key, const void *elt)
1358 {
1359 const CORE_ADDR pc = *(CORE_ADDR *) key;
1360 const struct obj_section *section = *(const struct obj_section **) elt;
1361
1362 if (pc < obj_section_addr (section))
1363 return -1;
1364 if (pc < obj_section_endaddr (section))
1365 return 0;
1366 return 1;
1367 }
1368
1369 /* Returns a section whose range includes PC or NULL if none found. */
1370
1371 struct obj_section *
1372 find_pc_section (CORE_ADDR pc)
1373 {
1374 struct objfile_pspace_info *pspace_info;
1375 struct obj_section *s, **sp;
1376
1377 /* Check for mapped overlay section first. */
1378 s = find_pc_mapped_section (pc);
1379 if (s)
1380 return s;
1381
1382 pspace_info = get_objfile_pspace_data (current_program_space);
1383 if (pspace_info->section_map_dirty
1384 || (pspace_info->new_objfiles_available
1385 && !pspace_info->inhibit_updates))
1386 {
1387 update_section_map (current_program_space,
1388 &pspace_info->sections,
1389 &pspace_info->num_sections);
1390
1391 /* Don't need updates to section map until objfiles are added,
1392 removed or relocated. */
1393 pspace_info->new_objfiles_available = 0;
1394 pspace_info->section_map_dirty = 0;
1395 }
1396
1397 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1398 bsearch be non-NULL. */
1399 if (pspace_info->sections == NULL)
1400 {
1401 gdb_assert (pspace_info->num_sections == 0);
1402 return NULL;
1403 }
1404
1405 sp = (struct obj_section **) bsearch (&pc,
1406 pspace_info->sections,
1407 pspace_info->num_sections,
1408 sizeof (*pspace_info->sections),
1409 bsearch_cmp);
1410 if (sp != NULL)
1411 return *sp;
1412 return NULL;
1413 }
1414
1415
1416 /* Return non-zero if PC is in a section called NAME. */
1417
1418 int
1419 pc_in_section (CORE_ADDR pc, char *name)
1420 {
1421 struct obj_section *s;
1422 int retval = 0;
1423
1424 s = find_pc_section (pc);
1425
1426 retval = (s != NULL
1427 && s->the_bfd_section->name != NULL
1428 && strcmp (s->the_bfd_section->name, name) == 0);
1429 return (retval);
1430 }
1431 \f
1432
1433 /* Set section_map_dirty so section map will be rebuilt next time it
1434 is used. Called by reread_symbols. */
1435
1436 void
1437 objfiles_changed (void)
1438 {
1439 /* Rebuild section map next time we need it. */
1440 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1441 }
1442
1443 /* See comments in objfiles.h. */
1444
1445 void
1446 inhibit_section_map_updates (struct program_space *pspace)
1447 {
1448 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1449 }
1450
1451 /* See comments in objfiles.h. */
1452
1453 void
1454 resume_section_map_updates (struct program_space *pspace)
1455 {
1456 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1457 }
1458
1459 /* See comments in objfiles.h. */
1460
1461 void
1462 resume_section_map_updates_cleanup (void *arg)
1463 {
1464 resume_section_map_updates (arg);
1465 }
1466
1467 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1468 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1469 searching the objfiles in the order they are stored internally,
1470 ignoring CURRENT_OBJFILE.
1471
1472 On most platorms, it should be close enough to doing the best
1473 we can without some knowledge specific to the architecture. */
1474
1475 void
1476 default_iterate_over_objfiles_in_search_order
1477 (struct gdbarch *gdbarch,
1478 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1479 void *cb_data, struct objfile *current_objfile)
1480 {
1481 int stop = 0;
1482 struct objfile *objfile;
1483
1484 ALL_OBJFILES (objfile)
1485 {
1486 stop = cb (objfile, cb_data);
1487 if (stop)
1488 return;
1489 }
1490 }
1491
1492 /* Return canonical name for OBJFILE. */
1493
1494 const char *
1495 objfile_name (const struct objfile *objfile)
1496 {
1497 if (objfile->obfd != NULL)
1498 return bfd_get_filename (objfile->obfd);
1499
1500 return objfile->original_name;
1501 }
1502
1503 /* Provide a prototype to silence -Wmissing-prototypes. */
1504 extern initialize_file_ftype _initialize_objfiles;
1505
1506 void
1507 _initialize_objfiles (void)
1508 {
1509 objfiles_pspace_data
1510 = register_program_space_data_with_cleanup (NULL,
1511 objfiles_pspace_data_cleanup);
1512
1513 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1514 objfile_bfd_data_free);
1515 }
This page took 0.079297 seconds and 5 git commands to generate.