Use std::vector in objfiles.c
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observer.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55
56 #include <vector>
57
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile_pspace_info
67 {
68 struct obj_section **sections;
69 int num_sections;
70
71 /* Nonzero if object files have been added since the section map
72 was last updated. */
73 int new_objfiles_available;
74
75 /* Nonzero if the section map MUST be updated before use. */
76 int section_map_dirty;
77
78 /* Nonzero if section map updates should be inhibited if possible. */
79 int inhibit_updates;
80 };
81
82 /* Per-program-space data key. */
83 static const struct program_space_data *objfiles_pspace_data;
84
85 static void
86 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
87 {
88 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg;
89
90 xfree (info->sections);
91 xfree (info);
92 }
93
94 /* Get the current svr4 data. If none is found yet, add it now. This
95 function always returns a valid object. */
96
97 static struct objfile_pspace_info *
98 get_objfile_pspace_data (struct program_space *pspace)
99 {
100 struct objfile_pspace_info *info;
101
102 info = ((struct objfile_pspace_info *)
103 program_space_data (pspace, objfiles_pspace_data));
104 if (info == NULL)
105 {
106 info = XCNEW (struct objfile_pspace_info);
107 set_program_space_data (pspace, objfiles_pspace_data, info);
108 }
109
110 return info;
111 }
112
113 \f
114
115 /* Per-BFD data key. */
116
117 static const struct bfd_data *objfiles_bfd_data;
118
119 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
120 NULL, and it already has a per-BFD storage object, use that.
121 Otherwise, allocate a new per-BFD storage object. If ABFD is not
122 NULL, the object is allocated on the BFD; otherwise it is allocated
123 on OBJFILE's obstack. Note that it is not safe to call this
124 multiple times for a given OBJFILE -- it can only be called when
125 allocating or re-initializing OBJFILE. */
126
127 static struct objfile_per_bfd_storage *
128 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
129 {
130 struct objfile_per_bfd_storage *storage = NULL;
131
132 if (abfd != NULL)
133 storage = ((struct objfile_per_bfd_storage *)
134 bfd_data (abfd, objfiles_bfd_data));
135
136 if (storage == NULL)
137 {
138 /* If the object requires gdb to do relocations, we simply fall
139 back to not sharing data across users. These cases are rare
140 enough that this seems reasonable. */
141 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
142 {
143 storage
144 = ((struct objfile_per_bfd_storage *)
145 bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage)));
146 set_bfd_data (abfd, objfiles_bfd_data, storage);
147 }
148 else
149 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
150 struct objfile_per_bfd_storage);
151
152 /* Look up the gdbarch associated with the BFD. */
153 if (abfd != NULL)
154 storage->gdbarch = gdbarch_from_bfd (abfd);
155
156 obstack_init (&storage->storage_obstack);
157 storage->filename_cache = bcache_xmalloc (NULL, NULL);
158 storage->macro_cache = bcache_xmalloc (NULL, NULL);
159 storage->language_of_main = language_unknown;
160 }
161
162 return storage;
163 }
164
165 /* Free STORAGE. */
166
167 static void
168 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
169 {
170 bcache_xfree (storage->filename_cache);
171 bcache_xfree (storage->macro_cache);
172 if (storage->demangled_names_hash)
173 htab_delete (storage->demangled_names_hash);
174 obstack_free (&storage->storage_obstack, 0);
175 }
176
177 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
178 cleanup function to the BFD registry. */
179
180 static void
181 objfile_bfd_data_free (struct bfd *unused, void *d)
182 {
183 free_objfile_per_bfd_storage ((struct objfile_per_bfd_storage *) d);
184 }
185
186 /* See objfiles.h. */
187
188 void
189 set_objfile_per_bfd (struct objfile *objfile)
190 {
191 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
192 }
193
194 /* Set the objfile's per-BFD notion of the "main" name and
195 language. */
196
197 void
198 set_objfile_main_name (struct objfile *objfile,
199 const char *name, enum language lang)
200 {
201 if (objfile->per_bfd->name_of_main == NULL
202 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
203 objfile->per_bfd->name_of_main
204 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
205 strlen (name));
206 objfile->per_bfd->language_of_main = lang;
207 }
208
209 /* Helper structure to map blocks to static link properties in hash tables. */
210
211 struct static_link_htab_entry
212 {
213 const struct block *block;
214 const struct dynamic_prop *static_link;
215 };
216
217 /* Return a hash code for struct static_link_htab_entry *P. */
218
219 static hashval_t
220 static_link_htab_entry_hash (const void *p)
221 {
222 const struct static_link_htab_entry *e
223 = (const struct static_link_htab_entry *) p;
224
225 return htab_hash_pointer (e->block);
226 }
227
228 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
229 mappings for the same block. */
230
231 static int
232 static_link_htab_entry_eq (const void *p1, const void *p2)
233 {
234 const struct static_link_htab_entry *e1
235 = (const struct static_link_htab_entry *) p1;
236 const struct static_link_htab_entry *e2
237 = (const struct static_link_htab_entry *) p2;
238
239 return e1->block == e2->block;
240 }
241
242 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
243 Must not be called more than once for each BLOCK. */
244
245 void
246 objfile_register_static_link (struct objfile *objfile,
247 const struct block *block,
248 const struct dynamic_prop *static_link)
249 {
250 void **slot;
251 struct static_link_htab_entry lookup_entry;
252 struct static_link_htab_entry *entry;
253
254 if (objfile->static_links == NULL)
255 objfile->static_links = htab_create_alloc
256 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
257 xcalloc, xfree);
258
259 /* Create a slot for the mapping, make sure it's the first mapping for this
260 block and then create the mapping itself. */
261 lookup_entry.block = block;
262 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
263 gdb_assert (*slot == NULL);
264
265 entry = (struct static_link_htab_entry *) obstack_alloc
266 (&objfile->objfile_obstack, sizeof (*entry));
267 entry->block = block;
268 entry->static_link = static_link;
269 *slot = (void *) entry;
270 }
271
272 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
273 none was found. */
274
275 const struct dynamic_prop *
276 objfile_lookup_static_link (struct objfile *objfile,
277 const struct block *block)
278 {
279 struct static_link_htab_entry *entry;
280 struct static_link_htab_entry lookup_entry;
281
282 if (objfile->static_links == NULL)
283 return NULL;
284 lookup_entry.block = block;
285 entry
286 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
287 &lookup_entry);
288 if (entry == NULL)
289 return NULL;
290
291 gdb_assert (entry->block == block);
292 return entry->static_link;
293 }
294
295 \f
296
297 /* Called via bfd_map_over_sections to build up the section table that
298 the objfile references. The objfile contains pointers to the start
299 of the table (objfile->sections) and to the first location after
300 the end of the table (objfile->sections_end). */
301
302 static void
303 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
304 struct objfile *objfile, int force)
305 {
306 struct obj_section *section;
307
308 if (!force)
309 {
310 flagword aflag;
311
312 aflag = bfd_get_section_flags (abfd, asect);
313 if (!(aflag & SEC_ALLOC))
314 return;
315 }
316
317 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
318 section->objfile = objfile;
319 section->the_bfd_section = asect;
320 section->ovly_mapped = 0;
321 }
322
323 static void
324 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
325 void *objfilep)
326 {
327 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
328 }
329
330 /* Builds a section table for OBJFILE.
331
332 Note that the OFFSET and OVLY_MAPPED in each table entry are
333 initialized to zero. */
334
335 void
336 build_objfile_section_table (struct objfile *objfile)
337 {
338 int count = gdb_bfd_count_sections (objfile->obfd);
339
340 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
341 count,
342 struct obj_section);
343 objfile->sections_end = (objfile->sections + count);
344 bfd_map_over_sections (objfile->obfd,
345 add_to_objfile_sections, (void *) objfile);
346
347 /* See gdb_bfd_section_index. */
348 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
349 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
350 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
351 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
352 }
353
354 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
355 allocate a new objfile struct, fill it in as best we can, link it
356 into the list of all known objfiles, and return a pointer to the
357 new objfile struct.
358
359 NAME should contain original non-canonicalized filename or other
360 identifier as entered by user. If there is no better source use
361 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
362 NAME content is copied into returned objfile.
363
364 The FLAGS word contains various bits (OBJF_*) that can be taken as
365 requests for specific operations. Other bits like OBJF_SHARED are
366 simply copied through to the new objfile flags member. */
367
368 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
369 by jv-lang.c, to create an artificial objfile used to hold
370 information about dynamically-loaded Java classes. Unfortunately,
371 that branch of this function doesn't get tested very frequently, so
372 it's prone to breakage. (E.g. at one time the name was set to NULL
373 in that situation, which broke a loop over all names in the dynamic
374 library loader.) If you change this function, please try to leave
375 things in a consistent state even if abfd is NULL. */
376
377 struct objfile *
378 allocate_objfile (bfd *abfd, const char *name, int flags)
379 {
380 struct objfile *objfile;
381 char *expanded_name;
382
383 objfile = XCNEW (struct objfile);
384 objfile->psymbol_cache = psymbol_bcache_init ();
385 /* We could use obstack_specify_allocation here instead, but
386 gdb_obstack.h specifies the alloc/dealloc functions. */
387 obstack_init (&objfile->objfile_obstack);
388
389 objfile_alloc_data (objfile);
390
391 if (name == NULL)
392 {
393 gdb_assert (abfd == NULL);
394 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
395 expanded_name = xstrdup ("<<anonymous objfile>>");
396 }
397 else if ((flags & OBJF_NOT_FILENAME) != 0
398 || is_target_filename (name))
399 expanded_name = xstrdup (name);
400 else
401 expanded_name = gdb_abspath (name);
402 objfile->original_name
403 = (char *) obstack_copy0 (&objfile->objfile_obstack,
404 expanded_name,
405 strlen (expanded_name));
406 xfree (expanded_name);
407
408 /* Update the per-objfile information that comes from the bfd, ensuring
409 that any data that is reference is saved in the per-objfile data
410 region. */
411
412 objfile->obfd = abfd;
413 gdb_bfd_ref (abfd);
414 if (abfd != NULL)
415 {
416 objfile->mtime = bfd_get_mtime (abfd);
417
418 /* Build section table. */
419 build_objfile_section_table (objfile);
420 }
421
422 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
423 objfile->pspace = current_program_space;
424
425 terminate_minimal_symbol_table (objfile);
426
427 /* Initialize the section indexes for this objfile, so that we can
428 later detect if they are used w/o being properly assigned to. */
429
430 objfile->sect_index_text = -1;
431 objfile->sect_index_data = -1;
432 objfile->sect_index_bss = -1;
433 objfile->sect_index_rodata = -1;
434
435 /* Add this file onto the tail of the linked list of other such files. */
436
437 objfile->next = NULL;
438 if (object_files == NULL)
439 object_files = objfile;
440 else
441 {
442 struct objfile *last_one;
443
444 for (last_one = object_files;
445 last_one->next;
446 last_one = last_one->next);
447 last_one->next = objfile;
448 }
449
450 /* Save passed in flag bits. */
451 objfile->flags |= flags;
452
453 /* Rebuild section map next time we need it. */
454 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
455
456 return objfile;
457 }
458
459 /* Retrieve the gdbarch associated with OBJFILE. */
460
461 struct gdbarch *
462 get_objfile_arch (const struct objfile *objfile)
463 {
464 return objfile->per_bfd->gdbarch;
465 }
466
467 /* If there is a valid and known entry point, function fills *ENTRY_P with it
468 and returns non-zero; otherwise it returns zero. */
469
470 int
471 entry_point_address_query (CORE_ADDR *entry_p)
472 {
473 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
474 return 0;
475
476 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
477 + ANOFFSET (symfile_objfile->section_offsets,
478 symfile_objfile->per_bfd->ei.the_bfd_section_index));
479
480 return 1;
481 }
482
483 /* Get current entry point address. Call error if it is not known. */
484
485 CORE_ADDR
486 entry_point_address (void)
487 {
488 CORE_ADDR retval;
489
490 if (!entry_point_address_query (&retval))
491 error (_("Entry point address is not known."));
492
493 return retval;
494 }
495
496 /* Iterator on PARENT and every separate debug objfile of PARENT.
497 The usage pattern is:
498 for (objfile = parent;
499 objfile;
500 objfile = objfile_separate_debug_iterate (parent, objfile))
501 ...
502 */
503
504 struct objfile *
505 objfile_separate_debug_iterate (const struct objfile *parent,
506 const struct objfile *objfile)
507 {
508 struct objfile *res;
509
510 /* If any, return the first child. */
511 res = objfile->separate_debug_objfile;
512 if (res)
513 return res;
514
515 /* Common case where there is no separate debug objfile. */
516 if (objfile == parent)
517 return NULL;
518
519 /* Return the brother if any. Note that we don't iterate on brothers of
520 the parents. */
521 res = objfile->separate_debug_objfile_link;
522 if (res)
523 return res;
524
525 for (res = objfile->separate_debug_objfile_backlink;
526 res != parent;
527 res = res->separate_debug_objfile_backlink)
528 {
529 gdb_assert (res != NULL);
530 if (res->separate_debug_objfile_link)
531 return res->separate_debug_objfile_link;
532 }
533 return NULL;
534 }
535
536 /* Put one object file before a specified on in the global list.
537 This can be used to make sure an object file is destroyed before
538 another when using ALL_OBJFILES_SAFE to free all objfiles. */
539 void
540 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
541 {
542 struct objfile **objp;
543
544 unlink_objfile (objfile);
545
546 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
547 {
548 if (*objp == before_this)
549 {
550 objfile->next = *objp;
551 *objp = objfile;
552 return;
553 }
554 }
555
556 internal_error (__FILE__, __LINE__,
557 _("put_objfile_before: before objfile not in list"));
558 }
559
560 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
561 list.
562
563 It is not a bug, or error, to call this function if OBJFILE is not known
564 to be in the current list. This is done in the case of mapped objfiles,
565 for example, just to ensure that the mapped objfile doesn't appear twice
566 in the list. Since the list is threaded, linking in a mapped objfile
567 twice would create a circular list.
568
569 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
570 unlinking it, just to ensure that we have completely severed any linkages
571 between the OBJFILE and the list. */
572
573 void
574 unlink_objfile (struct objfile *objfile)
575 {
576 struct objfile **objpp;
577
578 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
579 {
580 if (*objpp == objfile)
581 {
582 *objpp = (*objpp)->next;
583 objfile->next = NULL;
584 return;
585 }
586 }
587
588 internal_error (__FILE__, __LINE__,
589 _("unlink_objfile: objfile already unlinked"));
590 }
591
592 /* Add OBJFILE as a separate debug objfile of PARENT. */
593
594 void
595 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
596 {
597 gdb_assert (objfile && parent);
598
599 /* Must not be already in a list. */
600 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
601 gdb_assert (objfile->separate_debug_objfile_link == NULL);
602 gdb_assert (objfile->separate_debug_objfile == NULL);
603 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
604 gdb_assert (parent->separate_debug_objfile_link == NULL);
605
606 objfile->separate_debug_objfile_backlink = parent;
607 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
608 parent->separate_debug_objfile = objfile;
609
610 /* Put the separate debug object before the normal one, this is so that
611 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
612 put_objfile_before (objfile, parent);
613 }
614
615 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
616 itself. */
617
618 void
619 free_objfile_separate_debug (struct objfile *objfile)
620 {
621 struct objfile *child;
622
623 for (child = objfile->separate_debug_objfile; child;)
624 {
625 struct objfile *next_child = child->separate_debug_objfile_link;
626 free_objfile (child);
627 child = next_child;
628 }
629 }
630
631 /* Destroy an objfile and all the symtabs and psymtabs under it. */
632
633 void
634 free_objfile (struct objfile *objfile)
635 {
636 /* First notify observers that this objfile is about to be freed. */
637 observer_notify_free_objfile (objfile);
638
639 /* Free all separate debug objfiles. */
640 free_objfile_separate_debug (objfile);
641
642 if (objfile->separate_debug_objfile_backlink)
643 {
644 /* We freed the separate debug file, make sure the base objfile
645 doesn't reference it. */
646 struct objfile *child;
647
648 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
649
650 if (child == objfile)
651 {
652 /* OBJFILE is the first child. */
653 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
654 objfile->separate_debug_objfile_link;
655 }
656 else
657 {
658 /* Find OBJFILE in the list. */
659 while (1)
660 {
661 if (child->separate_debug_objfile_link == objfile)
662 {
663 child->separate_debug_objfile_link =
664 objfile->separate_debug_objfile_link;
665 break;
666 }
667 child = child->separate_debug_objfile_link;
668 gdb_assert (child);
669 }
670 }
671 }
672
673 /* Remove any references to this objfile in the global value
674 lists. */
675 preserve_values (objfile);
676
677 /* It still may reference data modules have associated with the objfile and
678 the symbol file data. */
679 forget_cached_source_info_for_objfile (objfile);
680
681 breakpoint_free_objfile (objfile);
682 btrace_free_objfile (objfile);
683
684 /* First do any symbol file specific actions required when we are
685 finished with a particular symbol file. Note that if the objfile
686 is using reusable symbol information (via mmalloc) then each of
687 these routines is responsible for doing the correct thing, either
688 freeing things which are valid only during this particular gdb
689 execution, or leaving them to be reused during the next one. */
690
691 if (objfile->sf != NULL)
692 {
693 (*objfile->sf->sym_finish) (objfile);
694 }
695
696 /* Discard any data modules have associated with the objfile. The function
697 still may reference objfile->obfd. */
698 objfile_free_data (objfile);
699
700 if (objfile->obfd)
701 gdb_bfd_unref (objfile->obfd);
702 else
703 free_objfile_per_bfd_storage (objfile->per_bfd);
704
705 /* Remove it from the chain of all objfiles. */
706
707 unlink_objfile (objfile);
708
709 if (objfile == symfile_objfile)
710 symfile_objfile = NULL;
711
712 /* Before the symbol table code was redone to make it easier to
713 selectively load and remove information particular to a specific
714 linkage unit, gdb used to do these things whenever the monolithic
715 symbol table was blown away. How much still needs to be done
716 is unknown, but we play it safe for now and keep each action until
717 it is shown to be no longer needed. */
718
719 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
720 for example), so we need to call this here. */
721 clear_pc_function_cache ();
722
723 /* Clear globals which might have pointed into a removed objfile.
724 FIXME: It's not clear which of these are supposed to persist
725 between expressions and which ought to be reset each time. */
726 expression_context_block = NULL;
727 innermost_block = NULL;
728
729 /* Check to see if the current_source_symtab belongs to this objfile,
730 and if so, call clear_current_source_symtab_and_line. */
731
732 {
733 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
734
735 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == objfile)
736 clear_current_source_symtab_and_line ();
737 }
738
739 if (objfile->global_psymbols.list)
740 xfree (objfile->global_psymbols.list);
741 if (objfile->static_psymbols.list)
742 xfree (objfile->static_psymbols.list);
743 /* Free the obstacks for non-reusable objfiles. */
744 psymbol_bcache_free (objfile->psymbol_cache);
745 obstack_free (&objfile->objfile_obstack, 0);
746
747 /* Rebuild section map next time we need it. */
748 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
749
750 /* Free the map for static links. There's no need to free static link
751 themselves since they were allocated on the objstack. */
752 if (objfile->static_links != NULL)
753 htab_delete (objfile->static_links);
754
755 /* The last thing we do is free the objfile struct itself. */
756 xfree (objfile);
757 }
758
759 static void
760 do_free_objfile_cleanup (void *obj)
761 {
762 free_objfile ((struct objfile *) obj);
763 }
764
765 struct cleanup *
766 make_cleanup_free_objfile (struct objfile *obj)
767 {
768 return make_cleanup (do_free_objfile_cleanup, obj);
769 }
770
771 /* Free all the object files at once and clean up their users. */
772
773 void
774 free_all_objfiles (void)
775 {
776 struct objfile *objfile, *temp;
777 struct so_list *so;
778
779 /* Any objfile referencewould become stale. */
780 for (so = master_so_list (); so; so = so->next)
781 gdb_assert (so->objfile == NULL);
782
783 ALL_OBJFILES_SAFE (objfile, temp)
784 {
785 free_objfile (objfile);
786 }
787 clear_symtab_users (0);
788 }
789 \f
790 /* A helper function for objfile_relocate1 that relocates a single
791 symbol. */
792
793 static void
794 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
795 struct section_offsets *delta)
796 {
797 fixup_symbol_section (sym, objfile);
798
799 /* The RS6000 code from which this was taken skipped
800 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
801 But I'm leaving out that test, on the theory that
802 they can't possibly pass the tests below. */
803 if ((SYMBOL_CLASS (sym) == LOC_LABEL
804 || SYMBOL_CLASS (sym) == LOC_STATIC)
805 && SYMBOL_SECTION (sym) >= 0)
806 {
807 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
808 }
809 }
810
811 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
812 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
813 Return non-zero iff any change happened. */
814
815 static int
816 objfile_relocate1 (struct objfile *objfile,
817 const struct section_offsets *new_offsets)
818 {
819 struct obj_section *s;
820 struct section_offsets *delta =
821 ((struct section_offsets *)
822 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
823
824 int i;
825 int something_changed = 0;
826
827 for (i = 0; i < objfile->num_sections; ++i)
828 {
829 delta->offsets[i] =
830 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
831 if (ANOFFSET (delta, i) != 0)
832 something_changed = 1;
833 }
834 if (!something_changed)
835 return 0;
836
837 /* OK, get all the symtabs. */
838 {
839 struct compunit_symtab *cust;
840 struct symtab *s;
841
842 ALL_OBJFILE_FILETABS (objfile, cust, s)
843 {
844 struct linetable *l;
845 int i;
846
847 /* First the line table. */
848 l = SYMTAB_LINETABLE (s);
849 if (l)
850 {
851 for (i = 0; i < l->nitems; ++i)
852 l->item[i].pc += ANOFFSET (delta,
853 COMPUNIT_BLOCK_LINE_SECTION
854 (cust));
855 }
856 }
857
858 ALL_OBJFILE_COMPUNITS (objfile, cust)
859 {
860 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
861 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
862
863 if (BLOCKVECTOR_MAP (bv))
864 addrmap_relocate (BLOCKVECTOR_MAP (bv),
865 ANOFFSET (delta, block_line_section));
866
867 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
868 {
869 struct block *b;
870 struct symbol *sym;
871 struct dict_iterator iter;
872
873 b = BLOCKVECTOR_BLOCK (bv, i);
874 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
875 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
876
877 /* We only want to iterate over the local symbols, not any
878 symbols in included symtabs. */
879 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
880 {
881 relocate_one_symbol (sym, objfile, delta);
882 }
883 }
884 }
885 }
886
887 /* Relocate isolated symbols. */
888 {
889 struct symbol *iter;
890
891 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
892 relocate_one_symbol (iter, objfile, delta);
893 }
894
895 if (objfile->psymtabs_addrmap)
896 addrmap_relocate (objfile->psymtabs_addrmap,
897 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
898
899 if (objfile->sf)
900 objfile->sf->qf->relocate (objfile, new_offsets, delta);
901
902 {
903 int i;
904
905 for (i = 0; i < objfile->num_sections; ++i)
906 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
907 }
908
909 /* Rebuild section map next time we need it. */
910 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
911
912 /* Update the table in exec_ops, used to read memory. */
913 ALL_OBJFILE_OSECTIONS (objfile, s)
914 {
915 int idx = s - objfile->sections;
916
917 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
918 obj_section_addr (s));
919 }
920
921 /* Data changed. */
922 return 1;
923 }
924
925 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
926 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
927
928 The number and ordering of sections does differ between the two objfiles.
929 Only their names match. Also the file offsets will differ (objfile being
930 possibly prelinked but separate_debug_objfile is probably not prelinked) but
931 the in-memory absolute address as specified by NEW_OFFSETS must match both
932 files. */
933
934 void
935 objfile_relocate (struct objfile *objfile,
936 const struct section_offsets *new_offsets)
937 {
938 struct objfile *debug_objfile;
939 int changed = 0;
940
941 changed |= objfile_relocate1 (objfile, new_offsets);
942
943 for (debug_objfile = objfile->separate_debug_objfile;
944 debug_objfile;
945 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
946 {
947 struct section_addr_info *objfile_addrs;
948 struct cleanup *my_cleanups;
949
950 objfile_addrs = build_section_addr_info_from_objfile (objfile);
951 my_cleanups = make_cleanup (xfree, objfile_addrs);
952
953 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
954 relative ones must be already created according to debug_objfile. */
955
956 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
957
958 gdb_assert (debug_objfile->num_sections
959 == gdb_bfd_count_sections (debug_objfile->obfd));
960 std::vector<struct section_offsets>
961 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
962 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
963 debug_objfile->num_sections,
964 objfile_addrs);
965
966 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
967
968 do_cleanups (my_cleanups);
969 }
970
971 /* Relocate breakpoints as necessary, after things are relocated. */
972 if (changed)
973 breakpoint_re_set ();
974 }
975
976 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
977 not touched here.
978 Return non-zero iff any change happened. */
979
980 static int
981 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
982 {
983 struct section_offsets *new_offsets =
984 ((struct section_offsets *)
985 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
986 int i;
987
988 for (i = 0; i < objfile->num_sections; ++i)
989 new_offsets->offsets[i] = slide;
990
991 return objfile_relocate1 (objfile, new_offsets);
992 }
993
994 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
995 SEPARATE_DEBUG_OBJFILEs. */
996
997 void
998 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
999 {
1000 struct objfile *debug_objfile;
1001 int changed = 0;
1002
1003 changed |= objfile_rebase1 (objfile, slide);
1004
1005 for (debug_objfile = objfile->separate_debug_objfile;
1006 debug_objfile;
1007 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
1008 changed |= objfile_rebase1 (debug_objfile, slide);
1009
1010 /* Relocate breakpoints as necessary, after things are relocated. */
1011 if (changed)
1012 breakpoint_re_set ();
1013 }
1014 \f
1015 /* Return non-zero if OBJFILE has partial symbols. */
1016
1017 int
1018 objfile_has_partial_symbols (struct objfile *objfile)
1019 {
1020 if (!objfile->sf)
1021 return 0;
1022
1023 /* If we have not read psymbols, but we have a function capable of reading
1024 them, then that is an indication that they are in fact available. Without
1025 this function the symbols may have been already read in but they also may
1026 not be present in this objfile. */
1027 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
1028 && objfile->sf->sym_read_psymbols != NULL)
1029 return 1;
1030
1031 return objfile->sf->qf->has_symbols (objfile);
1032 }
1033
1034 /* Return non-zero if OBJFILE has full symbols. */
1035
1036 int
1037 objfile_has_full_symbols (struct objfile *objfile)
1038 {
1039 return objfile->compunit_symtabs != NULL;
1040 }
1041
1042 /* Return non-zero if OBJFILE has full or partial symbols, either directly
1043 or through a separate debug file. */
1044
1045 int
1046 objfile_has_symbols (struct objfile *objfile)
1047 {
1048 struct objfile *o;
1049
1050 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
1051 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1052 return 1;
1053 return 0;
1054 }
1055
1056
1057 /* Many places in gdb want to test just to see if we have any partial
1058 symbols available. This function returns zero if none are currently
1059 available, nonzero otherwise. */
1060
1061 int
1062 have_partial_symbols (void)
1063 {
1064 struct objfile *ofp;
1065
1066 ALL_OBJFILES (ofp)
1067 {
1068 if (objfile_has_partial_symbols (ofp))
1069 return 1;
1070 }
1071 return 0;
1072 }
1073
1074 /* Many places in gdb want to test just to see if we have any full
1075 symbols available. This function returns zero if none are currently
1076 available, nonzero otherwise. */
1077
1078 int
1079 have_full_symbols (void)
1080 {
1081 struct objfile *ofp;
1082
1083 ALL_OBJFILES (ofp)
1084 {
1085 if (objfile_has_full_symbols (ofp))
1086 return 1;
1087 }
1088 return 0;
1089 }
1090
1091
1092 /* This operations deletes all objfile entries that represent solibs that
1093 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1094 command. */
1095
1096 void
1097 objfile_purge_solibs (void)
1098 {
1099 struct objfile *objf;
1100 struct objfile *temp;
1101
1102 ALL_OBJFILES_SAFE (objf, temp)
1103 {
1104 /* We assume that the solib package has been purged already, or will
1105 be soon. */
1106
1107 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1108 free_objfile (objf);
1109 }
1110 }
1111
1112
1113 /* Many places in gdb want to test just to see if we have any minimal
1114 symbols available. This function returns zero if none are currently
1115 available, nonzero otherwise. */
1116
1117 int
1118 have_minimal_symbols (void)
1119 {
1120 struct objfile *ofp;
1121
1122 ALL_OBJFILES (ofp)
1123 {
1124 if (ofp->per_bfd->minimal_symbol_count > 0)
1125 {
1126 return 1;
1127 }
1128 }
1129 return 0;
1130 }
1131
1132 /* Qsort comparison function. */
1133
1134 static int
1135 qsort_cmp (const void *a, const void *b)
1136 {
1137 const struct obj_section *sect1 = *(const struct obj_section **) a;
1138 const struct obj_section *sect2 = *(const struct obj_section **) b;
1139 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1140 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1141
1142 if (sect1_addr < sect2_addr)
1143 return -1;
1144 else if (sect1_addr > sect2_addr)
1145 return 1;
1146 else
1147 {
1148 /* Sections are at the same address. This could happen if
1149 A) we have an objfile and a separate debuginfo.
1150 B) we are confused, and have added sections without proper relocation,
1151 or something like that. */
1152
1153 const struct objfile *const objfile1 = sect1->objfile;
1154 const struct objfile *const objfile2 = sect2->objfile;
1155
1156 if (objfile1->separate_debug_objfile == objfile2
1157 || objfile2->separate_debug_objfile == objfile1)
1158 {
1159 /* Case A. The ordering doesn't matter: separate debuginfo files
1160 will be filtered out later. */
1161
1162 return 0;
1163 }
1164
1165 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1166 triage. This section could be slow (since we iterate over all
1167 objfiles in each call to qsort_cmp), but this shouldn't happen
1168 very often (GDB is already in a confused state; one hopes this
1169 doesn't happen at all). If you discover that significant time is
1170 spent in the loops below, do 'set complaints 100' and examine the
1171 resulting complaints. */
1172
1173 if (objfile1 == objfile2)
1174 {
1175 /* Both sections came from the same objfile. We are really confused.
1176 Sort on sequence order of sections within the objfile. */
1177
1178 const struct obj_section *osect;
1179
1180 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1181 if (osect == sect1)
1182 return -1;
1183 else if (osect == sect2)
1184 return 1;
1185
1186 /* We should have found one of the sections before getting here. */
1187 gdb_assert_not_reached ("section not found");
1188 }
1189 else
1190 {
1191 /* Sort on sequence number of the objfile in the chain. */
1192
1193 const struct objfile *objfile;
1194
1195 ALL_OBJFILES (objfile)
1196 if (objfile == objfile1)
1197 return -1;
1198 else if (objfile == objfile2)
1199 return 1;
1200
1201 /* We should have found one of the objfiles before getting here. */
1202 gdb_assert_not_reached ("objfile not found");
1203 }
1204 }
1205
1206 /* Unreachable. */
1207 gdb_assert_not_reached ("unexpected code path");
1208 return 0;
1209 }
1210
1211 /* Select "better" obj_section to keep. We prefer the one that came from
1212 the real object, rather than the one from separate debuginfo.
1213 Most of the time the two sections are exactly identical, but with
1214 prelinking the .rel.dyn section in the real object may have different
1215 size. */
1216
1217 static struct obj_section *
1218 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1219 {
1220 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1221 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1222 || (b->objfile->separate_debug_objfile == a->objfile));
1223 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1224 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1225
1226 if (a->objfile->separate_debug_objfile != NULL)
1227 return a;
1228 return b;
1229 }
1230
1231 /* Return 1 if SECTION should be inserted into the section map.
1232 We want to insert only non-overlay and non-TLS section. */
1233
1234 static int
1235 insert_section_p (const struct bfd *abfd,
1236 const struct bfd_section *section)
1237 {
1238 const bfd_vma lma = bfd_section_lma (abfd, section);
1239
1240 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1241 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1242 /* This is an overlay section. IN_MEMORY check is needed to avoid
1243 discarding sections from the "system supplied DSO" (aka vdso)
1244 on some Linux systems (e.g. Fedora 11). */
1245 return 0;
1246 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1247 /* This is a TLS section. */
1248 return 0;
1249
1250 return 1;
1251 }
1252
1253 /* Filter out overlapping sections where one section came from the real
1254 objfile, and the other from a separate debuginfo file.
1255 Return the size of table after redundant sections have been eliminated. */
1256
1257 static int
1258 filter_debuginfo_sections (struct obj_section **map, int map_size)
1259 {
1260 int i, j;
1261
1262 for (i = 0, j = 0; i < map_size - 1; i++)
1263 {
1264 struct obj_section *const sect1 = map[i];
1265 struct obj_section *const sect2 = map[i + 1];
1266 const struct objfile *const objfile1 = sect1->objfile;
1267 const struct objfile *const objfile2 = sect2->objfile;
1268 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1269 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1270
1271 if (sect1_addr == sect2_addr
1272 && (objfile1->separate_debug_objfile == objfile2
1273 || objfile2->separate_debug_objfile == objfile1))
1274 {
1275 map[j++] = preferred_obj_section (sect1, sect2);
1276 ++i;
1277 }
1278 else
1279 map[j++] = sect1;
1280 }
1281
1282 if (i < map_size)
1283 {
1284 gdb_assert (i == map_size - 1);
1285 map[j++] = map[i];
1286 }
1287
1288 /* The map should not have shrunk to less than half the original size. */
1289 gdb_assert (map_size / 2 <= j);
1290
1291 return j;
1292 }
1293
1294 /* Filter out overlapping sections, issuing a warning if any are found.
1295 Overlapping sections could really be overlay sections which we didn't
1296 classify as such in insert_section_p, or we could be dealing with a
1297 corrupt binary. */
1298
1299 static int
1300 filter_overlapping_sections (struct obj_section **map, int map_size)
1301 {
1302 int i, j;
1303
1304 for (i = 0, j = 0; i < map_size - 1; )
1305 {
1306 int k;
1307
1308 map[j++] = map[i];
1309 for (k = i + 1; k < map_size; k++)
1310 {
1311 struct obj_section *const sect1 = map[i];
1312 struct obj_section *const sect2 = map[k];
1313 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1314 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1315 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1316
1317 gdb_assert (sect1_addr <= sect2_addr);
1318
1319 if (sect1_endaddr <= sect2_addr)
1320 break;
1321 else
1322 {
1323 /* We have an overlap. Report it. */
1324
1325 struct objfile *const objf1 = sect1->objfile;
1326 struct objfile *const objf2 = sect2->objfile;
1327
1328 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1329 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1330
1331 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1332
1333 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1334
1335 complaint (&symfile_complaints,
1336 _("unexpected overlap between:\n"
1337 " (A) section `%s' from `%s' [%s, %s)\n"
1338 " (B) section `%s' from `%s' [%s, %s).\n"
1339 "Will ignore section B"),
1340 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1341 paddress (gdbarch, sect1_addr),
1342 paddress (gdbarch, sect1_endaddr),
1343 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1344 paddress (gdbarch, sect2_addr),
1345 paddress (gdbarch, sect2_endaddr));
1346 }
1347 }
1348 i = k;
1349 }
1350
1351 if (i < map_size)
1352 {
1353 gdb_assert (i == map_size - 1);
1354 map[j++] = map[i];
1355 }
1356
1357 return j;
1358 }
1359
1360
1361 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1362 TLS, overlay and overlapping sections. */
1363
1364 static void
1365 update_section_map (struct program_space *pspace,
1366 struct obj_section ***pmap, int *pmap_size)
1367 {
1368 struct objfile_pspace_info *pspace_info;
1369 int alloc_size, map_size, i;
1370 struct obj_section *s, **map;
1371 struct objfile *objfile;
1372
1373 pspace_info = get_objfile_pspace_data (pspace);
1374 gdb_assert (pspace_info->section_map_dirty != 0
1375 || pspace_info->new_objfiles_available != 0);
1376
1377 map = *pmap;
1378 xfree (map);
1379
1380 alloc_size = 0;
1381 ALL_PSPACE_OBJFILES (pspace, objfile)
1382 ALL_OBJFILE_OSECTIONS (objfile, s)
1383 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1384 alloc_size += 1;
1385
1386 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1387 if (alloc_size == 0)
1388 {
1389 *pmap = NULL;
1390 *pmap_size = 0;
1391 return;
1392 }
1393
1394 map = XNEWVEC (struct obj_section *, alloc_size);
1395
1396 i = 0;
1397 ALL_PSPACE_OBJFILES (pspace, objfile)
1398 ALL_OBJFILE_OSECTIONS (objfile, s)
1399 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1400 map[i++] = s;
1401
1402 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1403 map_size = filter_debuginfo_sections(map, alloc_size);
1404 map_size = filter_overlapping_sections(map, map_size);
1405
1406 if (map_size < alloc_size)
1407 /* Some sections were eliminated. Trim excess space. */
1408 map = XRESIZEVEC (struct obj_section *, map, map_size);
1409 else
1410 gdb_assert (alloc_size == map_size);
1411
1412 *pmap = map;
1413 *pmap_size = map_size;
1414 }
1415
1416 /* Bsearch comparison function. */
1417
1418 static int
1419 bsearch_cmp (const void *key, const void *elt)
1420 {
1421 const CORE_ADDR pc = *(CORE_ADDR *) key;
1422 const struct obj_section *section = *(const struct obj_section **) elt;
1423
1424 if (pc < obj_section_addr (section))
1425 return -1;
1426 if (pc < obj_section_endaddr (section))
1427 return 0;
1428 return 1;
1429 }
1430
1431 /* Returns a section whose range includes PC or NULL if none found. */
1432
1433 struct obj_section *
1434 find_pc_section (CORE_ADDR pc)
1435 {
1436 struct objfile_pspace_info *pspace_info;
1437 struct obj_section *s, **sp;
1438
1439 /* Check for mapped overlay section first. */
1440 s = find_pc_mapped_section (pc);
1441 if (s)
1442 return s;
1443
1444 pspace_info = get_objfile_pspace_data (current_program_space);
1445 if (pspace_info->section_map_dirty
1446 || (pspace_info->new_objfiles_available
1447 && !pspace_info->inhibit_updates))
1448 {
1449 update_section_map (current_program_space,
1450 &pspace_info->sections,
1451 &pspace_info->num_sections);
1452
1453 /* Don't need updates to section map until objfiles are added,
1454 removed or relocated. */
1455 pspace_info->new_objfiles_available = 0;
1456 pspace_info->section_map_dirty = 0;
1457 }
1458
1459 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1460 bsearch be non-NULL. */
1461 if (pspace_info->sections == NULL)
1462 {
1463 gdb_assert (pspace_info->num_sections == 0);
1464 return NULL;
1465 }
1466
1467 sp = (struct obj_section **) bsearch (&pc,
1468 pspace_info->sections,
1469 pspace_info->num_sections,
1470 sizeof (*pspace_info->sections),
1471 bsearch_cmp);
1472 if (sp != NULL)
1473 return *sp;
1474 return NULL;
1475 }
1476
1477
1478 /* Return non-zero if PC is in a section called NAME. */
1479
1480 int
1481 pc_in_section (CORE_ADDR pc, char *name)
1482 {
1483 struct obj_section *s;
1484 int retval = 0;
1485
1486 s = find_pc_section (pc);
1487
1488 retval = (s != NULL
1489 && s->the_bfd_section->name != NULL
1490 && strcmp (s->the_bfd_section->name, name) == 0);
1491 return (retval);
1492 }
1493 \f
1494
1495 /* Set section_map_dirty so section map will be rebuilt next time it
1496 is used. Called by reread_symbols. */
1497
1498 void
1499 objfiles_changed (void)
1500 {
1501 /* Rebuild section map next time we need it. */
1502 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1503 }
1504
1505 /* See comments in objfiles.h. */
1506
1507 void
1508 inhibit_section_map_updates (struct program_space *pspace)
1509 {
1510 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1511 }
1512
1513 /* See comments in objfiles.h. */
1514
1515 void
1516 resume_section_map_updates (struct program_space *pspace)
1517 {
1518 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1519 }
1520
1521 /* See comments in objfiles.h. */
1522
1523 void
1524 resume_section_map_updates_cleanup (void *arg)
1525 {
1526 resume_section_map_updates ((struct program_space *) arg);
1527 }
1528
1529 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1530 otherwise. */
1531
1532 int
1533 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1534 {
1535 struct obj_section *osect;
1536
1537 if (objfile == NULL)
1538 return 0;
1539
1540 ALL_OBJFILE_OSECTIONS (objfile, osect)
1541 {
1542 if (section_is_overlay (osect) && !section_is_mapped (osect))
1543 continue;
1544
1545 if (obj_section_addr (osect) <= addr
1546 && addr < obj_section_endaddr (osect))
1547 return 1;
1548 }
1549 return 0;
1550 }
1551
1552 int
1553 shared_objfile_contains_address_p (struct program_space *pspace,
1554 CORE_ADDR address)
1555 {
1556 struct objfile *objfile;
1557
1558 ALL_PSPACE_OBJFILES (pspace, objfile)
1559 {
1560 if ((objfile->flags & OBJF_SHARED) != 0
1561 && is_addr_in_objfile (address, objfile))
1562 return 1;
1563 }
1564
1565 return 0;
1566 }
1567
1568 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1569 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1570 searching the objfiles in the order they are stored internally,
1571 ignoring CURRENT_OBJFILE.
1572
1573 On most platorms, it should be close enough to doing the best
1574 we can without some knowledge specific to the architecture. */
1575
1576 void
1577 default_iterate_over_objfiles_in_search_order
1578 (struct gdbarch *gdbarch,
1579 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1580 void *cb_data, struct objfile *current_objfile)
1581 {
1582 int stop = 0;
1583 struct objfile *objfile;
1584
1585 ALL_OBJFILES (objfile)
1586 {
1587 stop = cb (objfile, cb_data);
1588 if (stop)
1589 return;
1590 }
1591 }
1592
1593 /* See objfiles.h. */
1594
1595 const char *
1596 objfile_name (const struct objfile *objfile)
1597 {
1598 if (objfile->obfd != NULL)
1599 return bfd_get_filename (objfile->obfd);
1600
1601 return objfile->original_name;
1602 }
1603
1604 /* See objfiles.h. */
1605
1606 const char *
1607 objfile_filename (const struct objfile *objfile)
1608 {
1609 if (objfile->obfd != NULL)
1610 return bfd_get_filename (objfile->obfd);
1611
1612 return NULL;
1613 }
1614
1615 /* See objfiles.h. */
1616
1617 const char *
1618 objfile_debug_name (const struct objfile *objfile)
1619 {
1620 return lbasename (objfile->original_name);
1621 }
1622
1623 /* See objfiles.h. */
1624
1625 const char *
1626 objfile_flavour_name (struct objfile *objfile)
1627 {
1628 if (objfile->obfd != NULL)
1629 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1630 return NULL;
1631 }
1632
1633 /* Provide a prototype to silence -Wmissing-prototypes. */
1634 extern initialize_file_ftype _initialize_objfiles;
1635
1636 void
1637 _initialize_objfiles (void)
1638 {
1639 objfiles_pspace_data
1640 = register_program_space_data_with_cleanup (NULL,
1641 objfiles_pspace_data_cleanup);
1642
1643 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1644 objfile_bfd_data_free);
1645 }
This page took 0.096963 seconds and 5 git commands to generate.