* symfile.c (reread_symbols): Update.
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53
54 /* Prototypes for local functions */
55
56 static void objfile_alloc_data (struct objfile *objfile);
57 static void objfile_free_data (struct objfile *objfile);
58
59 /* Externally visible variables that are owned by this module.
60 See declarations in objfile.h for more info. */
61
62 struct objfile *object_files; /* Linked list of all objfiles */
63 struct objfile *current_objfile; /* For symbol file being read in */
64 struct objfile *symfile_objfile; /* Main symbol table loaded from */
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 /* Locate all mappable sections of a BFD file.
68 objfile_p_char is a char * to get it through
69 bfd_map_over_sections; we cast it back to its proper type. */
70
71 /* Called via bfd_map_over_sections to build up the section table that
72 the objfile references. The objfile contains pointers to the start
73 of the table (objfile->sections) and to the first location after
74 the end of the table (objfile->sections_end). */
75
76 static void
77 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
78 void *objfile_p_char)
79 {
80 struct objfile *objfile = (struct objfile *) objfile_p_char;
81 struct obj_section section;
82 flagword aflag;
83
84 aflag = bfd_get_section_flags (abfd, asect);
85
86 if (!(aflag & SEC_ALLOC))
87 return;
88
89 if (0 == bfd_section_size (abfd, asect))
90 return;
91 section.offset = 0;
92 section.objfile = objfile;
93 section.the_bfd_section = asect;
94 section.ovly_mapped = 0;
95 section.addr = bfd_section_vma (abfd, asect);
96 section.endaddr = section.addr + bfd_section_size (abfd, asect);
97 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
98 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
99 }
100
101 /* Builds a section table for OBJFILE.
102 Returns 0 if OK, 1 on error (in which case bfd_error contains the
103 error).
104
105 Note that while we are building the table, which goes into the
106 psymbol obstack, we hijack the sections_end pointer to instead hold
107 a count of the number of sections. When bfd_map_over_sections
108 returns, this count is used to compute the pointer to the end of
109 the sections table, which then overwrites the count.
110
111 Also note that the OFFSET and OVLY_MAPPED in each table entry
112 are initialized to zero.
113
114 Also note that if anything else writes to the psymbol obstack while
115 we are building the table, we're pretty much hosed. */
116
117 int
118 build_objfile_section_table (struct objfile *objfile)
119 {
120 /* objfile->sections can be already set when reading a mapped symbol
121 file. I believe that we do need to rebuild the section table in
122 this case (we rebuild other things derived from the bfd), but we
123 can't free the old one (it's in the objfile_obstack). So we just
124 waste some memory. */
125
126 objfile->sections_end = 0;
127 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
128 objfile->sections = (struct obj_section *)
129 obstack_finish (&objfile->objfile_obstack);
130 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
131 return (0);
132 }
133
134 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
135 allocate a new objfile struct, fill it in as best we can, link it
136 into the list of all known objfiles, and return a pointer to the
137 new objfile struct.
138
139 The FLAGS word contains various bits (OBJF_*) that can be taken as
140 requests for specific operations. Other bits like OBJF_SHARED are
141 simply copied through to the new objfile flags member. */
142
143 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
144 by jv-lang.c, to create an artificial objfile used to hold
145 information about dynamically-loaded Java classes. Unfortunately,
146 that branch of this function doesn't get tested very frequently, so
147 it's prone to breakage. (E.g. at one time the name was set to NULL
148 in that situation, which broke a loop over all names in the dynamic
149 library loader.) If you change this function, please try to leave
150 things in a consistent state even if abfd is NULL. */
151
152 struct objfile *
153 allocate_objfile (bfd *abfd, int flags)
154 {
155 struct objfile *objfile = NULL;
156 struct objfile *last_one = NULL;
157
158 /* If we don't support mapped symbol files, didn't ask for the file to be
159 mapped, or failed to open the mapped file for some reason, then revert
160 back to an unmapped objfile. */
161
162 if (objfile == NULL)
163 {
164 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
165 memset (objfile, 0, sizeof (struct objfile));
166 objfile->psymbol_cache = bcache_xmalloc ();
167 objfile->macro_cache = bcache_xmalloc ();
168 /* We could use obstack_specify_allocation here instead, but
169 gdb_obstack.h specifies the alloc/dealloc functions. */
170 obstack_init (&objfile->objfile_obstack);
171 terminate_minimal_symbol_table (objfile);
172 }
173
174 objfile_alloc_data (objfile);
175
176 /* Update the per-objfile information that comes from the bfd, ensuring
177 that any data that is reference is saved in the per-objfile data
178 region. */
179
180 objfile->obfd = abfd;
181 if (objfile->name != NULL)
182 {
183 xfree (objfile->name);
184 }
185 if (abfd != NULL)
186 {
187 /* Look up the gdbarch associated with the BFD. */
188 objfile->gdbarch = gdbarch_from_bfd (abfd);
189
190 objfile->name = xstrdup (bfd_get_filename (abfd));
191 objfile->mtime = bfd_get_mtime (abfd);
192
193 /* Build section table. */
194
195 if (build_objfile_section_table (objfile))
196 {
197 error (_("Can't find the file sections in `%s': %s"),
198 objfile->name, bfd_errmsg (bfd_get_error ()));
199 }
200 }
201 else
202 {
203 objfile->name = xstrdup ("<<anonymous objfile>>");
204 }
205
206 /* Initialize the section indexes for this objfile, so that we can
207 later detect if they are used w/o being properly assigned to. */
208
209 objfile->sect_index_text = -1;
210 objfile->sect_index_data = -1;
211 objfile->sect_index_bss = -1;
212 objfile->sect_index_rodata = -1;
213
214 /* We don't yet have a C++-specific namespace symtab. */
215
216 objfile->cp_namespace_symtab = NULL;
217
218 /* Add this file onto the tail of the linked list of other such files. */
219
220 objfile->next = NULL;
221 if (object_files == NULL)
222 object_files = objfile;
223 else
224 {
225 for (last_one = object_files;
226 last_one->next;
227 last_one = last_one->next);
228 last_one->next = objfile;
229 }
230
231 /* Save passed in flag bits. */
232 objfile->flags |= flags;
233
234 return (objfile);
235 }
236
237 /* Retrieve the gdbarch associated with OBJFILE. */
238 struct gdbarch *
239 get_objfile_arch (struct objfile *objfile)
240 {
241 return objfile->gdbarch;
242 }
243
244 /* Initialize entry point information for this objfile. */
245
246 void
247 init_entry_point_info (struct objfile *objfile)
248 {
249 /* Save startup file's range of PC addresses to help blockframe.c
250 decide where the bottom of the stack is. */
251
252 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
253 {
254 /* Executable file -- record its entry point so we'll recognize
255 the startup file because it contains the entry point. */
256 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
257 }
258 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
259 && bfd_get_start_address (objfile->obfd) != 0)
260 /* Some shared libraries may have entry points set and be
261 runnable. There's no clear way to indicate this, so just check
262 for values other than zero. */
263 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
264 else
265 {
266 /* Examination of non-executable.o files. Short-circuit this stuff. */
267 objfile->ei.entry_point = INVALID_ENTRY_POINT;
268 }
269 }
270
271 /* Get current entry point address. */
272
273 CORE_ADDR
274 entry_point_address (void)
275 {
276 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
277 }
278
279 /* Create the terminating entry of OBJFILE's minimal symbol table.
280 If OBJFILE->msymbols is zero, allocate a single entry from
281 OBJFILE->objfile_obstack; otherwise, just initialize
282 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
283 void
284 terminate_minimal_symbol_table (struct objfile *objfile)
285 {
286 if (! objfile->msymbols)
287 objfile->msymbols = ((struct minimal_symbol *)
288 obstack_alloc (&objfile->objfile_obstack,
289 sizeof (objfile->msymbols[0])));
290
291 {
292 struct minimal_symbol *m
293 = &objfile->msymbols[objfile->minimal_symbol_count];
294
295 memset (m, 0, sizeof (*m));
296 /* Don't rely on these enumeration values being 0's. */
297 MSYMBOL_TYPE (m) = mst_unknown;
298 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
299 }
300 }
301
302
303 /* Put one object file before a specified on in the global list.
304 This can be used to make sure an object file is destroyed before
305 another when using ALL_OBJFILES_SAFE to free all objfiles. */
306 void
307 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
308 {
309 struct objfile **objp;
310
311 unlink_objfile (objfile);
312
313 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
314 {
315 if (*objp == before_this)
316 {
317 objfile->next = *objp;
318 *objp = objfile;
319 return;
320 }
321 }
322
323 internal_error (__FILE__, __LINE__,
324 _("put_objfile_before: before objfile not in list"));
325 }
326
327 /* Put OBJFILE at the front of the list. */
328
329 void
330 objfile_to_front (struct objfile *objfile)
331 {
332 struct objfile **objp;
333 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
334 {
335 if (*objp == objfile)
336 {
337 /* Unhook it from where it is. */
338 *objp = objfile->next;
339 /* Put it in the front. */
340 objfile->next = object_files;
341 object_files = objfile;
342 break;
343 }
344 }
345 }
346
347 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
348 list.
349
350 It is not a bug, or error, to call this function if OBJFILE is not known
351 to be in the current list. This is done in the case of mapped objfiles,
352 for example, just to ensure that the mapped objfile doesn't appear twice
353 in the list. Since the list is threaded, linking in a mapped objfile
354 twice would create a circular list.
355
356 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
357 unlinking it, just to ensure that we have completely severed any linkages
358 between the OBJFILE and the list. */
359
360 void
361 unlink_objfile (struct objfile *objfile)
362 {
363 struct objfile **objpp;
364
365 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
366 {
367 if (*objpp == objfile)
368 {
369 *objpp = (*objpp)->next;
370 objfile->next = NULL;
371 return;
372 }
373 }
374
375 internal_error (__FILE__, __LINE__,
376 _("unlink_objfile: objfile already unlinked"));
377 }
378
379
380 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
381 that as much as possible is allocated on the objfile_obstack
382 so that the memory can be efficiently freed.
383
384 Things which we do NOT free because they are not in malloc'd memory
385 or not in memory specific to the objfile include:
386
387 objfile -> sf
388
389 FIXME: If the objfile is using reusable symbol information (via mmalloc),
390 then we need to take into account the fact that more than one process
391 may be using the symbol information at the same time (when mmalloc is
392 extended to support cooperative locking). When more than one process
393 is using the mapped symbol info, we need to be more careful about when
394 we free objects in the reusable area. */
395
396 void
397 free_objfile (struct objfile *objfile)
398 {
399 if (objfile->separate_debug_objfile)
400 {
401 free_objfile (objfile->separate_debug_objfile);
402 }
403
404 if (objfile->separate_debug_objfile_backlink)
405 {
406 /* We freed the separate debug file, make sure the base objfile
407 doesn't reference it. */
408 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
409 }
410
411 /* Remove any references to this objfile in the global value
412 lists. */
413 preserve_values (objfile);
414
415 /* First do any symbol file specific actions required when we are
416 finished with a particular symbol file. Note that if the objfile
417 is using reusable symbol information (via mmalloc) then each of
418 these routines is responsible for doing the correct thing, either
419 freeing things which are valid only during this particular gdb
420 execution, or leaving them to be reused during the next one. */
421
422 if (objfile->sf != NULL)
423 {
424 (*objfile->sf->sym_finish) (objfile);
425 }
426
427 /* We always close the bfd. */
428
429 if (objfile->obfd != NULL)
430 {
431 char *name = bfd_get_filename (objfile->obfd);
432 if (!bfd_close (objfile->obfd))
433 warning (_("cannot close \"%s\": %s"),
434 name, bfd_errmsg (bfd_get_error ()));
435 xfree (name);
436 }
437
438 /* Remove it from the chain of all objfiles. */
439
440 unlink_objfile (objfile);
441
442 /* If we are going to free the runtime common objfile, mark it
443 as unallocated. */
444
445 if (objfile == rt_common_objfile)
446 rt_common_objfile = NULL;
447
448 /* Before the symbol table code was redone to make it easier to
449 selectively load and remove information particular to a specific
450 linkage unit, gdb used to do these things whenever the monolithic
451 symbol table was blown away. How much still needs to be done
452 is unknown, but we play it safe for now and keep each action until
453 it is shown to be no longer needed. */
454
455 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
456 for example), so we need to call this here. */
457 clear_pc_function_cache ();
458
459 /* Clear globals which might have pointed into a removed objfile.
460 FIXME: It's not clear which of these are supposed to persist
461 between expressions and which ought to be reset each time. */
462 expression_context_block = NULL;
463 innermost_block = NULL;
464
465 /* Check to see if the current_source_symtab belongs to this objfile,
466 and if so, call clear_current_source_symtab_and_line. */
467
468 {
469 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
470 struct symtab *s;
471
472 ALL_OBJFILE_SYMTABS (objfile, s)
473 {
474 if (s == cursal.symtab)
475 clear_current_source_symtab_and_line ();
476 }
477 }
478
479 /* The last thing we do is free the objfile struct itself. */
480
481 objfile_free_data (objfile);
482 if (objfile->name != NULL)
483 {
484 xfree (objfile->name);
485 }
486 if (objfile->global_psymbols.list)
487 xfree (objfile->global_psymbols.list);
488 if (objfile->static_psymbols.list)
489 xfree (objfile->static_psymbols.list);
490 /* Free the obstacks for non-reusable objfiles */
491 bcache_xfree (objfile->psymbol_cache);
492 bcache_xfree (objfile->macro_cache);
493 if (objfile->demangled_names_hash)
494 htab_delete (objfile->demangled_names_hash);
495 obstack_free (&objfile->objfile_obstack, 0);
496 xfree (objfile);
497 objfile = NULL;
498 }
499
500 static void
501 do_free_objfile_cleanup (void *obj)
502 {
503 free_objfile (obj);
504 }
505
506 struct cleanup *
507 make_cleanup_free_objfile (struct objfile *obj)
508 {
509 return make_cleanup (do_free_objfile_cleanup, obj);
510 }
511
512 /* Free all the object files at once and clean up their users. */
513
514 void
515 free_all_objfiles (void)
516 {
517 struct objfile *objfile, *temp;
518
519 ALL_OBJFILES_SAFE (objfile, temp)
520 {
521 free_objfile (objfile);
522 }
523 clear_symtab_users ();
524 }
525 \f
526 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
527 entries in new_offsets. */
528 void
529 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
530 {
531 struct obj_section *s;
532 struct section_offsets *delta =
533 ((struct section_offsets *)
534 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
535
536 {
537 int i;
538 int something_changed = 0;
539 for (i = 0; i < objfile->num_sections; ++i)
540 {
541 delta->offsets[i] =
542 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
543 if (ANOFFSET (delta, i) != 0)
544 something_changed = 1;
545 }
546 if (!something_changed)
547 return;
548 }
549
550 /* OK, get all the symtabs. */
551 {
552 struct symtab *s;
553
554 ALL_OBJFILE_SYMTABS (objfile, s)
555 {
556 struct linetable *l;
557 struct blockvector *bv;
558 int i;
559
560 /* First the line table. */
561 l = LINETABLE (s);
562 if (l)
563 {
564 for (i = 0; i < l->nitems; ++i)
565 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
566 }
567
568 /* Don't relocate a shared blockvector more than once. */
569 if (!s->primary)
570 continue;
571
572 bv = BLOCKVECTOR (s);
573 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
574 {
575 struct block *b;
576 struct symbol *sym;
577 struct dict_iterator iter;
578
579 b = BLOCKVECTOR_BLOCK (bv, i);
580 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
581 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
582 if (BLOCKVECTOR_MAP (bv))
583 addrmap_relocate (BLOCKVECTOR_MAP (bv),
584 ANOFFSET (delta, s->block_line_section));
585
586 ALL_BLOCK_SYMBOLS (b, iter, sym)
587 {
588 fixup_symbol_section (sym, objfile);
589
590 /* The RS6000 code from which this was taken skipped
591 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
592 But I'm leaving out that test, on the theory that
593 they can't possibly pass the tests below. */
594 if ((SYMBOL_CLASS (sym) == LOC_LABEL
595 || SYMBOL_CLASS (sym) == LOC_STATIC)
596 && SYMBOL_SECTION (sym) >= 0)
597 {
598 SYMBOL_VALUE_ADDRESS (sym) +=
599 ANOFFSET (delta, SYMBOL_SECTION (sym));
600 }
601 }
602 }
603 }
604 }
605
606 {
607 struct partial_symtab *p;
608
609 ALL_OBJFILE_PSYMTABS (objfile, p)
610 {
611 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
612 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
613 }
614 }
615
616 {
617 struct partial_symbol **psym;
618
619 for (psym = objfile->global_psymbols.list;
620 psym < objfile->global_psymbols.next;
621 psym++)
622 {
623 fixup_psymbol_section (*psym, objfile);
624 if (SYMBOL_SECTION (*psym) >= 0)
625 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
626 SYMBOL_SECTION (*psym));
627 }
628 for (psym = objfile->static_psymbols.list;
629 psym < objfile->static_psymbols.next;
630 psym++)
631 {
632 fixup_psymbol_section (*psym, objfile);
633 if (SYMBOL_SECTION (*psym) >= 0)
634 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
635 SYMBOL_SECTION (*psym));
636 }
637 }
638
639 {
640 struct minimal_symbol *msym;
641 ALL_OBJFILE_MSYMBOLS (objfile, msym)
642 if (SYMBOL_SECTION (msym) >= 0)
643 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
644 }
645 /* Relocating different sections by different amounts may cause the symbols
646 to be out of order. */
647 msymbols_sort (objfile);
648
649 {
650 int i;
651 for (i = 0; i < objfile->num_sections; ++i)
652 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
653 }
654
655 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
656 {
657 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
658 only as a fallback. */
659 struct obj_section *s;
660 s = find_pc_section (objfile->ei.entry_point);
661 if (s)
662 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
663 else
664 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
665 }
666
667 {
668 struct obj_section *s;
669 bfd *abfd;
670
671 abfd = objfile->obfd;
672
673 ALL_OBJFILE_OSECTIONS (objfile, s)
674 {
675 int idx = s->the_bfd_section->index;
676
677 s->addr += ANOFFSET (delta, idx);
678 s->endaddr += ANOFFSET (delta, idx);
679 }
680 }
681
682 /* Update the table in exec_ops, used to read memory. */
683 ALL_OBJFILE_OSECTIONS (objfile, s)
684 {
685 int idx = s->the_bfd_section->index;
686
687 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
688 s->addr);
689 }
690
691 /* Relocate breakpoints as necessary, after things are relocated. */
692 breakpoint_re_set ();
693 }
694 \f
695 /* Many places in gdb want to test just to see if we have any partial
696 symbols available. This function returns zero if none are currently
697 available, nonzero otherwise. */
698
699 int
700 have_partial_symbols (void)
701 {
702 struct objfile *ofp;
703
704 ALL_OBJFILES (ofp)
705 {
706 if (ofp->psymtabs != NULL)
707 {
708 return 1;
709 }
710 }
711 return 0;
712 }
713
714 /* Many places in gdb want to test just to see if we have any full
715 symbols available. This function returns zero if none are currently
716 available, nonzero otherwise. */
717
718 int
719 have_full_symbols (void)
720 {
721 struct objfile *ofp;
722
723 ALL_OBJFILES (ofp)
724 {
725 if (ofp->symtabs != NULL)
726 {
727 return 1;
728 }
729 }
730 return 0;
731 }
732
733
734 /* This operations deletes all objfile entries that represent solibs that
735 weren't explicitly loaded by the user, via e.g., the add-symbol-file
736 command.
737 */
738 void
739 objfile_purge_solibs (void)
740 {
741 struct objfile *objf;
742 struct objfile *temp;
743
744 ALL_OBJFILES_SAFE (objf, temp)
745 {
746 /* We assume that the solib package has been purged already, or will
747 be soon.
748 */
749 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
750 free_objfile (objf);
751 }
752 }
753
754
755 /* Many places in gdb want to test just to see if we have any minimal
756 symbols available. This function returns zero if none are currently
757 available, nonzero otherwise. */
758
759 int
760 have_minimal_symbols (void)
761 {
762 struct objfile *ofp;
763
764 ALL_OBJFILES (ofp)
765 {
766 if (ofp->minimal_symbol_count > 0)
767 {
768 return 1;
769 }
770 }
771 return 0;
772 }
773
774 /* Returns a section whose range includes PC and SECTION, or NULL if
775 none found. Note the distinction between the return type, struct
776 obj_section (which is defined in gdb), and the input type "struct
777 bfd_section" (which is a bfd-defined data type). The obj_section
778 contains a pointer to the "struct bfd_section". */
779
780 struct obj_section *
781 find_pc_sect_section (CORE_ADDR pc, struct bfd_section *section)
782 {
783 struct obj_section *s;
784 struct objfile *objfile;
785
786 ALL_OBJSECTIONS (objfile, s)
787 if ((section == 0 || section == s->the_bfd_section) &&
788 s->addr <= pc && pc < s->endaddr)
789 return (s);
790
791 return (NULL);
792 }
793
794 /* Returns a section whose range includes PC or NULL if none found.
795 Backward compatibility, no section. */
796
797 struct obj_section *
798 find_pc_section (CORE_ADDR pc)
799 {
800 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
801 }
802
803
804 /* In SVR4, we recognize a trampoline by it's section name.
805 That is, if the pc is in a section named ".plt" then we are in
806 a trampoline. */
807
808 int
809 in_plt_section (CORE_ADDR pc, char *name)
810 {
811 struct obj_section *s;
812 int retval = 0;
813
814 s = find_pc_section (pc);
815
816 retval = (s != NULL
817 && s->the_bfd_section->name != NULL
818 && strcmp (s->the_bfd_section->name, ".plt") == 0);
819 return (retval);
820 }
821 \f
822
823 /* Keep a registry of per-objfile data-pointers required by other GDB
824 modules. */
825
826 struct objfile_data
827 {
828 unsigned index;
829 void (*cleanup) (struct objfile *, void *);
830 };
831
832 struct objfile_data_registration
833 {
834 struct objfile_data *data;
835 struct objfile_data_registration *next;
836 };
837
838 struct objfile_data_registry
839 {
840 struct objfile_data_registration *registrations;
841 unsigned num_registrations;
842 };
843
844 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
845
846 const struct objfile_data *
847 register_objfile_data_with_cleanup (void (*cleanup) (struct objfile *, void *))
848 {
849 struct objfile_data_registration **curr;
850
851 /* Append new registration. */
852 for (curr = &objfile_data_registry.registrations;
853 *curr != NULL; curr = &(*curr)->next);
854
855 *curr = XMALLOC (struct objfile_data_registration);
856 (*curr)->next = NULL;
857 (*curr)->data = XMALLOC (struct objfile_data);
858 (*curr)->data->index = objfile_data_registry.num_registrations++;
859 (*curr)->data->cleanup = cleanup;
860
861 return (*curr)->data;
862 }
863
864 const struct objfile_data *
865 register_objfile_data (void)
866 {
867 return register_objfile_data_with_cleanup (NULL);
868 }
869
870 static void
871 objfile_alloc_data (struct objfile *objfile)
872 {
873 gdb_assert (objfile->data == NULL);
874 objfile->num_data = objfile_data_registry.num_registrations;
875 objfile->data = XCALLOC (objfile->num_data, void *);
876 }
877
878 static void
879 objfile_free_data (struct objfile *objfile)
880 {
881 gdb_assert (objfile->data != NULL);
882 clear_objfile_data (objfile);
883 xfree (objfile->data);
884 objfile->data = NULL;
885 }
886
887 void
888 clear_objfile_data (struct objfile *objfile)
889 {
890 struct objfile_data_registration *registration;
891 int i;
892
893 gdb_assert (objfile->data != NULL);
894
895 for (registration = objfile_data_registry.registrations, i = 0;
896 i < objfile->num_data;
897 registration = registration->next, i++)
898 if (objfile->data[i] != NULL && registration->data->cleanup)
899 registration->data->cleanup (objfile, objfile->data[i]);
900
901 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
902 }
903
904 void
905 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
906 void *value)
907 {
908 gdb_assert (data->index < objfile->num_data);
909 objfile->data[data->index] = value;
910 }
911
912 void *
913 objfile_data (struct objfile *objfile, const struct objfile_data *data)
914 {
915 gdb_assert (data->index < objfile->num_data);
916 return objfile->data[data->index];
917 }
This page took 0.049963 seconds and 5 git commands to generate.