0defac0fdca1ee3bb728fbdf5640595ef86099a6
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1994 Free Software Foundation, Inc.
3 Modified from expread.y by the Department of Computer Science at the
4 State University of New York at Buffalo, 1991.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* Parse an expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result. */
30
31 #include "defs.h"
32 #include <string.h>
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "frame.h"
36 #include "expression.h"
37 #include "value.h"
38 #include "command.h"
39 #include "language.h"
40 #include "parser-defs.h"
41 \f
42 /* Global variables declared in parser-defs.h (and commented there). */
43 struct expression *expout;
44 int expout_size;
45 int expout_ptr;
46 struct block *expression_context_block;
47 struct block *innermost_block;
48 int arglist_len;
49 union type_stack_elt *type_stack;
50 int type_stack_depth, type_stack_size;
51 char *lexptr;
52 char *namecopy;
53 int paren_depth;
54 int comma_terminates;
55 \f
56 static void
57 free_funcalls PARAMS ((void));
58
59 static void
60 prefixify_expression PARAMS ((struct expression *));
61
62 static int
63 length_of_subexp PARAMS ((struct expression *, int));
64
65 static void
66 prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int));
67
68 /* Data structure for saving values of arglist_len for function calls whose
69 arguments contain other function calls. */
70
71 struct funcall
72 {
73 struct funcall *next;
74 int arglist_len;
75 };
76
77 static struct funcall *funcall_chain;
78
79 /* Assign machine-independent names to certain registers
80 (unless overridden by the REGISTER_NAMES table) */
81
82 #ifdef NO_STD_REGS
83 unsigned num_std_regs = 0;
84 struct std_regs std_regs[1];
85 #else
86 struct std_regs std_regs[] = {
87
88 #ifdef PC_REGNUM
89 { "pc", PC_REGNUM },
90 #endif
91 #ifdef FP_REGNUM
92 { "fp", FP_REGNUM },
93 #endif
94 #ifdef SP_REGNUM
95 { "sp", SP_REGNUM },
96 #endif
97 #ifdef PS_REGNUM
98 { "ps", PS_REGNUM },
99 #endif
100
101 };
102
103 unsigned num_std_regs = (sizeof std_regs / sizeof std_regs[0]);
104
105 #endif
106
107
108 /* Begin counting arguments for a function call,
109 saving the data about any containing call. */
110
111 void
112 start_arglist ()
113 {
114 register struct funcall *new;
115
116 new = (struct funcall *) xmalloc (sizeof (struct funcall));
117 new->next = funcall_chain;
118 new->arglist_len = arglist_len;
119 arglist_len = 0;
120 funcall_chain = new;
121 }
122
123 /* Return the number of arguments in a function call just terminated,
124 and restore the data for the containing function call. */
125
126 int
127 end_arglist ()
128 {
129 register int val = arglist_len;
130 register struct funcall *call = funcall_chain;
131 funcall_chain = call->next;
132 arglist_len = call->arglist_len;
133 free ((PTR)call);
134 return val;
135 }
136
137 /* Free everything in the funcall chain.
138 Used when there is an error inside parsing. */
139
140 static void
141 free_funcalls ()
142 {
143 register struct funcall *call, *next;
144
145 for (call = funcall_chain; call; call = next)
146 {
147 next = call->next;
148 free ((PTR)call);
149 }
150 }
151 \f
152 /* This page contains the functions for adding data to the struct expression
153 being constructed. */
154
155 /* Add one element to the end of the expression. */
156
157 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
158 a register through here */
159
160 void
161 write_exp_elt (expelt)
162 union exp_element expelt;
163 {
164 if (expout_ptr >= expout_size)
165 {
166 expout_size *= 2;
167 expout = (struct expression *)
168 xrealloc ((char *) expout, sizeof (struct expression)
169 + EXP_ELEM_TO_BYTES (expout_size));
170 }
171 expout->elts[expout_ptr++] = expelt;
172 }
173
174 void
175 write_exp_elt_opcode (expelt)
176 enum exp_opcode expelt;
177 {
178 union exp_element tmp;
179
180 tmp.opcode = expelt;
181
182 write_exp_elt (tmp);
183 }
184
185 void
186 write_exp_elt_sym (expelt)
187 struct symbol *expelt;
188 {
189 union exp_element tmp;
190
191 tmp.symbol = expelt;
192
193 write_exp_elt (tmp);
194 }
195
196 void
197 write_exp_elt_block (b)
198 struct block *b;
199 {
200 union exp_element tmp;
201 tmp.block = b;
202 write_exp_elt (tmp);
203 }
204
205 void
206 write_exp_elt_longcst (expelt)
207 LONGEST expelt;
208 {
209 union exp_element tmp;
210
211 tmp.longconst = expelt;
212
213 write_exp_elt (tmp);
214 }
215
216 void
217 write_exp_elt_dblcst (expelt)
218 double expelt;
219 {
220 union exp_element tmp;
221
222 tmp.doubleconst = expelt;
223
224 write_exp_elt (tmp);
225 }
226
227 void
228 write_exp_elt_type (expelt)
229 struct type *expelt;
230 {
231 union exp_element tmp;
232
233 tmp.type = expelt;
234
235 write_exp_elt (tmp);
236 }
237
238 void
239 write_exp_elt_intern (expelt)
240 struct internalvar *expelt;
241 {
242 union exp_element tmp;
243
244 tmp.internalvar = expelt;
245
246 write_exp_elt (tmp);
247 }
248
249 /* Add a string constant to the end of the expression.
250
251 String constants are stored by first writing an expression element
252 that contains the length of the string, then stuffing the string
253 constant itself into however many expression elements are needed
254 to hold it, and then writing another expression element that contains
255 the length of the string. I.E. an expression element at each end of
256 the string records the string length, so you can skip over the
257 expression elements containing the actual string bytes from either
258 end of the string. Note that this also allows gdb to handle
259 strings with embedded null bytes, as is required for some languages.
260
261 Don't be fooled by the fact that the string is null byte terminated,
262 this is strictly for the convenience of debugging gdb itself. Gdb
263 Gdb does not depend up the string being null terminated, since the
264 actual length is recorded in expression elements at each end of the
265 string. The null byte is taken into consideration when computing how
266 many expression elements are required to hold the string constant, of
267 course. */
268
269
270 void
271 write_exp_string (str)
272 struct stoken str;
273 {
274 register int len = str.length;
275 register int lenelt;
276 register char *strdata;
277
278 /* Compute the number of expression elements required to hold the string
279 (including a null byte terminator), along with one expression element
280 at each end to record the actual string length (not including the
281 null byte terminator). */
282
283 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
284
285 /* Ensure that we have enough available expression elements to store
286 everything. */
287
288 if ((expout_ptr + lenelt) >= expout_size)
289 {
290 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
291 expout = (struct expression *)
292 xrealloc ((char *) expout, (sizeof (struct expression)
293 + EXP_ELEM_TO_BYTES (expout_size)));
294 }
295
296 /* Write the leading length expression element (which advances the current
297 expression element index), then write the string constant followed by a
298 terminating null byte, and then write the trailing length expression
299 element. */
300
301 write_exp_elt_longcst ((LONGEST) len);
302 strdata = (char *) &expout->elts[expout_ptr];
303 memcpy (strdata, str.ptr, len);
304 *(strdata + len) = '\0';
305 expout_ptr += lenelt - 2;
306 write_exp_elt_longcst ((LONGEST) len);
307 }
308
309 /* Add a bitstring constant to the end of the expression.
310
311 Bitstring constants are stored by first writing an expression element
312 that contains the length of the bitstring (in bits), then stuffing the
313 bitstring constant itself into however many expression elements are
314 needed to hold it, and then writing another expression element that
315 contains the length of the bitstring. I.E. an expression element at
316 each end of the bitstring records the bitstring length, so you can skip
317 over the expression elements containing the actual bitstring bytes from
318 either end of the bitstring. */
319
320 void
321 write_exp_bitstring (str)
322 struct stoken str;
323 {
324 register int bits = str.length; /* length in bits */
325 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
326 register int lenelt;
327 register char *strdata;
328
329 /* Compute the number of expression elements required to hold the bitstring,
330 along with one expression element at each end to record the actual
331 bitstring length in bits. */
332
333 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
334
335 /* Ensure that we have enough available expression elements to store
336 everything. */
337
338 if ((expout_ptr + lenelt) >= expout_size)
339 {
340 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
341 expout = (struct expression *)
342 xrealloc ((char *) expout, (sizeof (struct expression)
343 + EXP_ELEM_TO_BYTES (expout_size)));
344 }
345
346 /* Write the leading length expression element (which advances the current
347 expression element index), then write the bitstring constant, and then
348 write the trailing length expression element. */
349
350 write_exp_elt_longcst ((LONGEST) bits);
351 strdata = (char *) &expout->elts[expout_ptr];
352 memcpy (strdata, str.ptr, len);
353 expout_ptr += lenelt - 2;
354 write_exp_elt_longcst ((LONGEST) bits);
355 }
356
357 /* Add the appropriate elements for a minimal symbol to the end of
358 the expression. The rationale behind passing in text_symbol_type and
359 data_symbol_type was so that Modula-2 could pass in WORD for
360 data_symbol_type. Perhaps it still is useful to have those types vary
361 based on the language, but they no longer have names like "int", so
362 the initial rationale is gone. */
363
364 static struct type *msym_text_symbol_type;
365 static struct type *msym_data_symbol_type;
366 static struct type *msym_unknown_symbol_type;
367
368 void
369 write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type)
370 struct minimal_symbol *msymbol;
371 struct type *text_symbol_type;
372 struct type *data_symbol_type;
373 {
374 write_exp_elt_opcode (OP_LONG);
375 write_exp_elt_type (lookup_pointer_type (builtin_type_void));
376 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
377 write_exp_elt_opcode (OP_LONG);
378
379 write_exp_elt_opcode (UNOP_MEMVAL);
380 switch (msymbol -> type)
381 {
382 case mst_text:
383 case mst_file_text:
384 case mst_solib_trampoline:
385 write_exp_elt_type (msym_text_symbol_type);
386 break;
387
388 case mst_data:
389 case mst_file_data:
390 case mst_bss:
391 case mst_file_bss:
392 write_exp_elt_type (msym_data_symbol_type);
393 break;
394
395 default:
396 write_exp_elt_type (msym_unknown_symbol_type);
397 break;
398 }
399 write_exp_elt_opcode (UNOP_MEMVAL);
400 }
401 \f
402 /* Return a null-terminated temporary copy of the name
403 of a string token. */
404
405 char *
406 copy_name (token)
407 struct stoken token;
408 {
409 memcpy (namecopy, token.ptr, token.length);
410 namecopy[token.length] = 0;
411 return namecopy;
412 }
413 \f
414 /* Reverse an expression from suffix form (in which it is constructed)
415 to prefix form (in which we can conveniently print or execute it). */
416
417 static void
418 prefixify_expression (expr)
419 register struct expression *expr;
420 {
421 register int len =
422 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
423 register struct expression *temp;
424 register int inpos = expr->nelts, outpos = 0;
425
426 temp = (struct expression *) alloca (len);
427
428 /* Copy the original expression into temp. */
429 memcpy (temp, expr, len);
430
431 prefixify_subexp (temp, expr, inpos, outpos);
432 }
433
434 /* Return the number of exp_elements in the subexpression of EXPR
435 whose last exp_element is at index ENDPOS - 1 in EXPR. */
436
437 static int
438 length_of_subexp (expr, endpos)
439 register struct expression *expr;
440 register int endpos;
441 {
442 register int oplen = 1;
443 register int args = 0;
444 register int i;
445
446 if (endpos < 1)
447 error ("?error in length_of_subexp");
448
449 i = (int) expr->elts[endpos - 1].opcode;
450
451 switch (i)
452 {
453 /* C++ */
454 case OP_SCOPE:
455 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
456 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
457 break;
458
459 case OP_LONG:
460 case OP_DOUBLE:
461 case OP_VAR_VALUE:
462 oplen = 4;
463 break;
464
465 case OP_TYPE:
466 case OP_BOOL:
467 case OP_LAST:
468 case OP_REGISTER:
469 case OP_INTERNALVAR:
470 oplen = 3;
471 break;
472
473 case OP_F77_LITERAL_COMPLEX:
474 oplen = 1;
475 args = 2;
476 break;
477
478 case OP_F77_SUBSTR:
479 oplen = 1;
480 args = 2;
481 break;
482
483 case OP_FUNCALL:
484 case OP_F77_UNDETERMINED_ARGLIST:
485 oplen = 3;
486 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
487 break;
488
489 case UNOP_MAX:
490 case UNOP_MIN:
491 oplen = 3;
492 break;
493
494 case BINOP_VAL:
495 case UNOP_CAST:
496 case UNOP_MEMVAL:
497 oplen = 3;
498 args = 1;
499 break;
500
501 case UNOP_ABS:
502 case UNOP_CAP:
503 case UNOP_CHR:
504 case UNOP_FLOAT:
505 case UNOP_HIGH:
506 case UNOP_ODD:
507 case UNOP_ORD:
508 case UNOP_TRUNC:
509 oplen = 1;
510 args = 1;
511 break;
512
513 case OP_LABELED:
514 case STRUCTOP_STRUCT:
515 case STRUCTOP_PTR:
516 args = 1;
517 /* fall through */
518 case OP_M2_STRING:
519 case OP_STRING:
520 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
521 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
522 break;
523
524 case OP_BITSTRING:
525 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
526 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
527 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
528 break;
529
530 case OP_ARRAY:
531 oplen = 4;
532 args = longest_to_int (expr->elts[endpos - 2].longconst);
533 args -= longest_to_int (expr->elts[endpos - 3].longconst);
534 args += 1;
535 break;
536
537 case TERNOP_COND:
538 case TERNOP_SLICE:
539 case TERNOP_SLICE_COUNT:
540 args = 3;
541 break;
542
543 /* Modula-2 */
544 case MULTI_SUBSCRIPT:
545 /* Fortran */
546 case MULTI_F77_SUBSCRIPT:
547 oplen = 3;
548 args = 1 + longest_to_int (expr->elts[endpos- 2].longconst);
549 break;
550
551 case BINOP_ASSIGN_MODIFY:
552 oplen = 3;
553 args = 2;
554 break;
555
556 /* C++ */
557 case OP_THIS:
558 oplen = 2;
559 break;
560
561 default:
562 args = 1 + (i < (int) BINOP_END);
563 }
564
565 while (args > 0)
566 {
567 oplen += length_of_subexp (expr, endpos - oplen);
568 args--;
569 }
570
571 return oplen;
572 }
573
574 /* Copy the subexpression ending just before index INEND in INEXPR
575 into OUTEXPR, starting at index OUTBEG.
576 In the process, convert it from suffix to prefix form. */
577
578 static void
579 prefixify_subexp (inexpr, outexpr, inend, outbeg)
580 register struct expression *inexpr;
581 struct expression *outexpr;
582 register int inend;
583 int outbeg;
584 {
585 register int oplen = 1;
586 register int args = 0;
587 register int i;
588 int *arglens;
589 enum exp_opcode opcode;
590
591 /* Compute how long the last operation is (in OPLEN),
592 and also how many preceding subexpressions serve as
593 arguments for it (in ARGS). */
594
595 opcode = inexpr->elts[inend - 1].opcode;
596 switch (opcode)
597 {
598 /* C++ */
599 case OP_SCOPE:
600 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
601 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
602 break;
603
604 case OP_LONG:
605 case OP_DOUBLE:
606 case OP_VAR_VALUE:
607 oplen = 4;
608 break;
609
610 case OP_TYPE:
611 case OP_BOOL:
612 case OP_LAST:
613 case OP_REGISTER:
614 case OP_INTERNALVAR:
615 oplen = 3;
616 break;
617
618 case OP_F77_LITERAL_COMPLEX:
619 oplen = 1;
620 args = 2;
621 break;
622
623 case OP_F77_SUBSTR:
624 oplen = 1;
625 args = 2;
626 break;
627
628 case OP_FUNCALL:
629 case OP_F77_UNDETERMINED_ARGLIST:
630 oplen = 3;
631 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
632 break;
633
634 case UNOP_MIN:
635 case UNOP_MAX:
636 oplen = 3;
637 break;
638
639 case UNOP_CAST:
640 case UNOP_MEMVAL:
641 oplen = 3;
642 args = 1;
643 break;
644
645 case UNOP_ABS:
646 case UNOP_CAP:
647 case UNOP_CHR:
648 case UNOP_FLOAT:
649 case UNOP_HIGH:
650 case UNOP_ODD:
651 case UNOP_ORD:
652 case UNOP_TRUNC:
653 oplen=1;
654 args=1;
655 break;
656
657 case STRUCTOP_STRUCT:
658 case STRUCTOP_PTR:
659 case OP_LABELED:
660 args = 1;
661 /* fall through */
662 case OP_M2_STRING:
663 case OP_STRING:
664 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
665 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
666 break;
667
668 case OP_BITSTRING:
669 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
670 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
671 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
672 break;
673
674 case OP_ARRAY:
675 oplen = 4;
676 args = longest_to_int (inexpr->elts[inend - 2].longconst);
677 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
678 args += 1;
679 break;
680
681 case TERNOP_COND:
682 case TERNOP_SLICE:
683 case TERNOP_SLICE_COUNT:
684 args = 3;
685 break;
686
687 case BINOP_ASSIGN_MODIFY:
688 oplen = 3;
689 args = 2;
690 break;
691
692 /* Modula-2 */
693 case MULTI_SUBSCRIPT:
694 /* Fortran */
695 case MULTI_F77_SUBSCRIPT:
696 oplen = 3;
697 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
698 break;
699
700 /* C++ */
701 case OP_THIS:
702 oplen = 2;
703 break;
704
705 default:
706 args = 1 + ((int) opcode < (int) BINOP_END);
707 }
708
709 /* Copy the final operator itself, from the end of the input
710 to the beginning of the output. */
711 inend -= oplen;
712 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
713 EXP_ELEM_TO_BYTES (oplen));
714 outbeg += oplen;
715
716 /* Find the lengths of the arg subexpressions. */
717 arglens = (int *) alloca (args * sizeof (int));
718 for (i = args - 1; i >= 0; i--)
719 {
720 oplen = length_of_subexp (inexpr, inend);
721 arglens[i] = oplen;
722 inend -= oplen;
723 }
724
725 /* Now copy each subexpression, preserving the order of
726 the subexpressions, but prefixifying each one.
727 In this loop, inend starts at the beginning of
728 the expression this level is working on
729 and marches forward over the arguments.
730 outbeg does similarly in the output. */
731 for (i = 0; i < args; i++)
732 {
733 oplen = arglens[i];
734 inend += oplen;
735 prefixify_subexp (inexpr, outexpr, inend, outbeg);
736 outbeg += oplen;
737 }
738 }
739 \f
740 /* This page contains the two entry points to this file. */
741
742 /* Read an expression from the string *STRINGPTR points to,
743 parse it, and return a pointer to a struct expression that we malloc.
744 Use block BLOCK as the lexical context for variable names;
745 if BLOCK is zero, use the block of the selected stack frame.
746 Meanwhile, advance *STRINGPTR to point after the expression,
747 at the first nonwhite character that is not part of the expression
748 (possibly a null character).
749
750 If COMMA is nonzero, stop if a comma is reached. */
751
752 struct expression *
753 parse_exp_1 (stringptr, block, comma)
754 char **stringptr;
755 struct block *block;
756 int comma;
757 {
758 struct cleanup *old_chain;
759
760 lexptr = *stringptr;
761
762 paren_depth = 0;
763 type_stack_depth = 0;
764
765 comma_terminates = comma;
766
767 if (lexptr == 0 || *lexptr == 0)
768 error_no_arg ("expression to compute");
769
770 old_chain = make_cleanup (free_funcalls, 0);
771 funcall_chain = 0;
772
773 expression_context_block = block ? block : get_selected_block ();
774
775 namecopy = (char *) alloca (strlen (lexptr) + 1);
776 expout_size = 10;
777 expout_ptr = 0;
778 expout = (struct expression *)
779 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
780 expout->language_defn = current_language;
781 make_cleanup (free_current_contents, &expout);
782
783 if (current_language->la_parser ())
784 current_language->la_error (NULL);
785
786 discard_cleanups (old_chain);
787
788 /* Record the actual number of expression elements, and then
789 reallocate the expression memory so that we free up any
790 excess elements. */
791
792 expout->nelts = expout_ptr;
793 expout = (struct expression *)
794 xrealloc ((char *) expout,
795 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
796
797 /* Convert expression from postfix form as generated by yacc
798 parser, to a prefix form. */
799
800 DUMP_EXPRESSION (expout, gdb_stdout, "before conversion to prefix form");
801 prefixify_expression (expout);
802 DUMP_EXPRESSION (expout, gdb_stdout, "after conversion to prefix form");
803
804 *stringptr = lexptr;
805 return expout;
806 }
807
808 /* Parse STRING as an expression, and complain if this fails
809 to use up all of the contents of STRING. */
810
811 struct expression *
812 parse_expression (string)
813 char *string;
814 {
815 register struct expression *exp;
816 exp = parse_exp_1 (&string, 0, 0);
817 if (*string)
818 error ("Junk after end of expression.");
819 return exp;
820 }
821 \f
822 /* Stuff for maintaining a stack of types. Currently just used by C, but
823 probably useful for any language which declares its types "backwards". */
824
825 void
826 push_type (tp)
827 enum type_pieces tp;
828 {
829 if (type_stack_depth == type_stack_size)
830 {
831 type_stack_size *= 2;
832 type_stack = (union type_stack_elt *)
833 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
834 }
835 type_stack[type_stack_depth++].piece = tp;
836 }
837
838 void
839 push_type_int (n)
840 int n;
841 {
842 if (type_stack_depth == type_stack_size)
843 {
844 type_stack_size *= 2;
845 type_stack = (union type_stack_elt *)
846 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
847 }
848 type_stack[type_stack_depth++].int_val = n;
849 }
850
851 enum type_pieces
852 pop_type ()
853 {
854 if (type_stack_depth)
855 return type_stack[--type_stack_depth].piece;
856 return tp_end;
857 }
858
859 int
860 pop_type_int ()
861 {
862 if (type_stack_depth)
863 return type_stack[--type_stack_depth].int_val;
864 /* "Can't happen". */
865 return 0;
866 }
867
868 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
869 as modified by all the stuff on the stack. */
870 struct type *
871 follow_types (follow_type)
872 struct type *follow_type;
873 {
874 int done = 0;
875 int array_size;
876 struct type *range_type;
877
878 while (!done)
879 switch (pop_type ())
880 {
881 case tp_end:
882 done = 1;
883 break;
884 case tp_pointer:
885 follow_type = lookup_pointer_type (follow_type);
886 break;
887 case tp_reference:
888 follow_type = lookup_reference_type (follow_type);
889 break;
890 case tp_array:
891 array_size = pop_type_int ();
892 if (array_size != -1)
893 {
894 range_type =
895 create_range_type ((struct type *) NULL,
896 builtin_type_int, 0,
897 array_size - 1);
898 follow_type =
899 create_array_type ((struct type *) NULL,
900 follow_type, range_type);
901 }
902 else
903 follow_type = lookup_pointer_type (follow_type);
904 break;
905 case tp_function:
906 follow_type = lookup_function_type (follow_type);
907 break;
908 }
909 return follow_type;
910 }
911 \f
912 void
913 _initialize_parse ()
914 {
915 type_stack_size = 80;
916 type_stack_depth = 0;
917 type_stack = (union type_stack_elt *)
918 xmalloc (type_stack_size * sizeof (*type_stack));
919
920 msym_text_symbol_type =
921 init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
922 TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
923 msym_data_symbol_type =
924 init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
925 "<data variable, no debug info>", NULL);
926 msym_unknown_symbol_type =
927 init_type (TYPE_CODE_INT, 1, 0,
928 "<variable (not text or data), no debug info>",
929 NULL);
930 }
This page took 0.048939 seconds and 4 git commands to generate.