vla: introduce new bound type abstraction adapt uses
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include <string.h>
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "frame.h"
39 #include "expression.h"
40 #include "value.h"
41 #include "command.h"
42 #include "language.h"
43 #include "f-lang.h"
44 #include "parser-defs.h"
45 #include "gdbcmd.h"
46 #include "symfile.h" /* for overlay functions */
47 #include "inferior.h"
48 #include "doublest.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "source.h"
52 #include "objfiles.h"
53 #include "exceptions.h"
54 #include "user-regs.h"
55
56 /* Standard set of definitions for printing, dumping, prefixifying,
57 * and evaluating expressions. */
58
59 const struct exp_descriptor exp_descriptor_standard =
60 {
61 print_subexp_standard,
62 operator_length_standard,
63 operator_check_standard,
64 op_name_standard,
65 dump_subexp_body_standard,
66 evaluate_subexp_standard
67 };
68 \f
69 /* Global variables declared in parser-defs.h (and commented there). */
70 const struct block *expression_context_block;
71 CORE_ADDR expression_context_pc;
72 const struct block *innermost_block;
73 int arglist_len;
74 static struct type_stack type_stack;
75 const char *lexptr;
76 const char *prev_lexptr;
77 int paren_depth;
78 int comma_terminates;
79
80 /* True if parsing an expression to attempt completion. */
81 int parse_completion;
82
83 /* The index of the last struct expression directly before a '.' or
84 '->'. This is set when parsing and is only used when completing a
85 field name. It is -1 if no dereference operation was found. */
86 static int expout_last_struct = -1;
87
88 /* If we are completing a tagged type name, this will be nonzero. */
89 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
90
91 /* The token for tagged type name completion. */
92 static char *expout_completion_name;
93
94 \f
95 static unsigned int expressiondebug = 0;
96 static void
97 show_expressiondebug (struct ui_file *file, int from_tty,
98 struct cmd_list_element *c, const char *value)
99 {
100 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
101 }
102
103
104 /* Non-zero if an expression parser should set yydebug. */
105 int parser_debug;
106
107 static void
108 show_parserdebug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
112 }
113
114
115 static void free_funcalls (void *ignore);
116
117 static int prefixify_subexp (struct expression *, struct expression *, int,
118 int);
119
120 static struct expression *parse_exp_in_context (const char **, CORE_ADDR,
121 const struct block *, int,
122 int, int *);
123 static struct expression *parse_exp_in_context_1 (const char **, CORE_ADDR,
124 const struct block *, int,
125 int, int *);
126
127 void _initialize_parse (void);
128
129 /* Data structure for saving values of arglist_len for function calls whose
130 arguments contain other function calls. */
131
132 struct funcall
133 {
134 struct funcall *next;
135 int arglist_len;
136 };
137
138 static struct funcall *funcall_chain;
139
140 /* Begin counting arguments for a function call,
141 saving the data about any containing call. */
142
143 void
144 start_arglist (void)
145 {
146 struct funcall *new;
147
148 new = (struct funcall *) xmalloc (sizeof (struct funcall));
149 new->next = funcall_chain;
150 new->arglist_len = arglist_len;
151 arglist_len = 0;
152 funcall_chain = new;
153 }
154
155 /* Return the number of arguments in a function call just terminated,
156 and restore the data for the containing function call. */
157
158 int
159 end_arglist (void)
160 {
161 int val = arglist_len;
162 struct funcall *call = funcall_chain;
163
164 funcall_chain = call->next;
165 arglist_len = call->arglist_len;
166 xfree (call);
167 return val;
168 }
169
170 /* Free everything in the funcall chain.
171 Used when there is an error inside parsing. */
172
173 static void
174 free_funcalls (void *ignore)
175 {
176 struct funcall *call, *next;
177
178 for (call = funcall_chain; call; call = next)
179 {
180 next = call->next;
181 xfree (call);
182 }
183 }
184 \f
185
186 /* See definition in parser-defs.h. */
187
188 void
189 initialize_expout (struct parser_state *ps, size_t initial_size,
190 const struct language_defn *lang,
191 struct gdbarch *gdbarch)
192 {
193 ps->expout_size = initial_size;
194 ps->expout_ptr = 0;
195 ps->expout = xmalloc (sizeof (struct expression)
196 + EXP_ELEM_TO_BYTES (ps->expout_size));
197 ps->expout->language_defn = lang;
198 ps->expout->gdbarch = gdbarch;
199 }
200
201 /* See definition in parser-defs.h. */
202
203 void
204 reallocate_expout (struct parser_state *ps)
205 {
206 /* Record the actual number of expression elements, and then
207 reallocate the expression memory so that we free up any
208 excess elements. */
209
210 ps->expout->nelts = ps->expout_ptr;
211 ps->expout = (struct expression *)
212 xrealloc (ps->expout,
213 sizeof (struct expression)
214 + EXP_ELEM_TO_BYTES (ps->expout_ptr));
215 }
216
217 /* This page contains the functions for adding data to the struct expression
218 being constructed. */
219
220 /* Add one element to the end of the expression. */
221
222 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
223 a register through here. */
224
225 static void
226 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
227 {
228 if (ps->expout_ptr >= ps->expout_size)
229 {
230 ps->expout_size *= 2;
231 ps->expout = (struct expression *)
232 xrealloc (ps->expout, sizeof (struct expression)
233 + EXP_ELEM_TO_BYTES (ps->expout_size));
234 }
235 ps->expout->elts[ps->expout_ptr++] = *expelt;
236 }
237
238 void
239 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
240 {
241 union exp_element tmp;
242
243 memset (&tmp, 0, sizeof (union exp_element));
244 tmp.opcode = expelt;
245 write_exp_elt (ps, &tmp);
246 }
247
248 void
249 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
250 {
251 union exp_element tmp;
252
253 memset (&tmp, 0, sizeof (union exp_element));
254 tmp.symbol = expelt;
255 write_exp_elt (ps, &tmp);
256 }
257
258 void
259 write_exp_elt_block (struct parser_state *ps, const struct block *b)
260 {
261 union exp_element tmp;
262
263 memset (&tmp, 0, sizeof (union exp_element));
264 tmp.block = b;
265 write_exp_elt (ps, &tmp);
266 }
267
268 void
269 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
270 {
271 union exp_element tmp;
272
273 memset (&tmp, 0, sizeof (union exp_element));
274 tmp.objfile = objfile;
275 write_exp_elt (ps, &tmp);
276 }
277
278 void
279 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
280 {
281 union exp_element tmp;
282
283 memset (&tmp, 0, sizeof (union exp_element));
284 tmp.longconst = expelt;
285 write_exp_elt (ps, &tmp);
286 }
287
288 void
289 write_exp_elt_dblcst (struct parser_state *ps, DOUBLEST expelt)
290 {
291 union exp_element tmp;
292
293 memset (&tmp, 0, sizeof (union exp_element));
294 tmp.doubleconst = expelt;
295 write_exp_elt (ps, &tmp);
296 }
297
298 void
299 write_exp_elt_decfloatcst (struct parser_state *ps, gdb_byte expelt[16])
300 {
301 union exp_element tmp;
302 int index;
303
304 for (index = 0; index < 16; index++)
305 tmp.decfloatconst[index] = expelt[index];
306
307 write_exp_elt (ps, &tmp);
308 }
309
310 void
311 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
312 {
313 union exp_element tmp;
314
315 memset (&tmp, 0, sizeof (union exp_element));
316 tmp.type = expelt;
317 write_exp_elt (ps, &tmp);
318 }
319
320 void
321 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
322 {
323 union exp_element tmp;
324
325 memset (&tmp, 0, sizeof (union exp_element));
326 tmp.internalvar = expelt;
327 write_exp_elt (ps, &tmp);
328 }
329
330 /* Add a string constant to the end of the expression.
331
332 String constants are stored by first writing an expression element
333 that contains the length of the string, then stuffing the string
334 constant itself into however many expression elements are needed
335 to hold it, and then writing another expression element that contains
336 the length of the string. I.e. an expression element at each end of
337 the string records the string length, so you can skip over the
338 expression elements containing the actual string bytes from either
339 end of the string. Note that this also allows gdb to handle
340 strings with embedded null bytes, as is required for some languages.
341
342 Don't be fooled by the fact that the string is null byte terminated,
343 this is strictly for the convenience of debugging gdb itself.
344 Gdb does not depend up the string being null terminated, since the
345 actual length is recorded in expression elements at each end of the
346 string. The null byte is taken into consideration when computing how
347 many expression elements are required to hold the string constant, of
348 course. */
349
350
351 void
352 write_exp_string (struct parser_state *ps, struct stoken str)
353 {
354 int len = str.length;
355 size_t lenelt;
356 char *strdata;
357
358 /* Compute the number of expression elements required to hold the string
359 (including a null byte terminator), along with one expression element
360 at each end to record the actual string length (not including the
361 null byte terminator). */
362
363 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
364
365 increase_expout_size (ps, lenelt);
366
367 /* Write the leading length expression element (which advances the current
368 expression element index), then write the string constant followed by a
369 terminating null byte, and then write the trailing length expression
370 element. */
371
372 write_exp_elt_longcst (ps, (LONGEST) len);
373 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
374 memcpy (strdata, str.ptr, len);
375 *(strdata + len) = '\0';
376 ps->expout_ptr += lenelt - 2;
377 write_exp_elt_longcst (ps, (LONGEST) len);
378 }
379
380 /* Add a vector of string constants to the end of the expression.
381
382 This adds an OP_STRING operation, but encodes the contents
383 differently from write_exp_string. The language is expected to
384 handle evaluation of this expression itself.
385
386 After the usual OP_STRING header, TYPE is written into the
387 expression as a long constant. The interpretation of this field is
388 up to the language evaluator.
389
390 Next, each string in VEC is written. The length is written as a
391 long constant, followed by the contents of the string. */
392
393 void
394 write_exp_string_vector (struct parser_state *ps, int type,
395 struct stoken_vector *vec)
396 {
397 int i, len;
398 size_t n_slots;
399
400 /* Compute the size. We compute the size in number of slots to
401 avoid issues with string padding. */
402 n_slots = 0;
403 for (i = 0; i < vec->len; ++i)
404 {
405 /* One slot for the length of this element, plus the number of
406 slots needed for this string. */
407 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
408 }
409
410 /* One more slot for the type of the string. */
411 ++n_slots;
412
413 /* Now compute a phony string length. */
414 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
415
416 n_slots += 4;
417 increase_expout_size (ps, n_slots);
418
419 write_exp_elt_opcode (ps, OP_STRING);
420 write_exp_elt_longcst (ps, len);
421 write_exp_elt_longcst (ps, type);
422
423 for (i = 0; i < vec->len; ++i)
424 {
425 write_exp_elt_longcst (ps, vec->tokens[i].length);
426 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
427 vec->tokens[i].length);
428 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
429 }
430
431 write_exp_elt_longcst (ps, len);
432 write_exp_elt_opcode (ps, OP_STRING);
433 }
434
435 /* Add a bitstring constant to the end of the expression.
436
437 Bitstring constants are stored by first writing an expression element
438 that contains the length of the bitstring (in bits), then stuffing the
439 bitstring constant itself into however many expression elements are
440 needed to hold it, and then writing another expression element that
441 contains the length of the bitstring. I.e. an expression element at
442 each end of the bitstring records the bitstring length, so you can skip
443 over the expression elements containing the actual bitstring bytes from
444 either end of the bitstring. */
445
446 void
447 write_exp_bitstring (struct parser_state *ps, struct stoken str)
448 {
449 int bits = str.length; /* length in bits */
450 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
451 size_t lenelt;
452 char *strdata;
453
454 /* Compute the number of expression elements required to hold the bitstring,
455 along with one expression element at each end to record the actual
456 bitstring length in bits. */
457
458 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
459
460 increase_expout_size (ps, lenelt);
461
462 /* Write the leading length expression element (which advances the current
463 expression element index), then write the bitstring constant, and then
464 write the trailing length expression element. */
465
466 write_exp_elt_longcst (ps, (LONGEST) bits);
467 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
468 memcpy (strdata, str.ptr, len);
469 ps->expout_ptr += lenelt - 2;
470 write_exp_elt_longcst (ps, (LONGEST) bits);
471 }
472
473 /* Add the appropriate elements for a minimal symbol to the end of
474 the expression. */
475
476 void
477 write_exp_msymbol (struct parser_state *ps,
478 struct bound_minimal_symbol bound_msym)
479 {
480 struct minimal_symbol *msymbol = bound_msym.minsym;
481 struct objfile *objfile = bound_msym.objfile;
482 struct gdbarch *gdbarch = get_objfile_arch (objfile);
483
484 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (bound_msym);
485 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
486 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
487 CORE_ADDR pc;
488
489 /* The minimal symbol might point to a function descriptor;
490 resolve it to the actual code address instead. */
491 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
492 if (pc != addr)
493 {
494 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
495
496 /* In this case, assume we have a code symbol instead of
497 a data symbol. */
498
499 if (ifunc_msym.minsym != NULL
500 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
501 && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
502 {
503 /* A function descriptor has been resolved but PC is still in the
504 STT_GNU_IFUNC resolver body (such as because inferior does not
505 run to be able to call it). */
506
507 type = mst_text_gnu_ifunc;
508 }
509 else
510 type = mst_text;
511 section = NULL;
512 addr = pc;
513 }
514
515 if (overlay_debugging)
516 addr = symbol_overlayed_address (addr, section);
517
518 write_exp_elt_opcode (ps, OP_LONG);
519 /* Let's make the type big enough to hold a 64-bit address. */
520 write_exp_elt_type (ps, objfile_type (objfile)->builtin_core_addr);
521 write_exp_elt_longcst (ps, (LONGEST) addr);
522 write_exp_elt_opcode (ps, OP_LONG);
523
524 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
525 {
526 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
527 write_exp_elt_objfile (ps, objfile);
528 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_tls_symbol);
529 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
530 return;
531 }
532
533 write_exp_elt_opcode (ps, UNOP_MEMVAL);
534 switch (type)
535 {
536 case mst_text:
537 case mst_file_text:
538 case mst_solib_trampoline:
539 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_text_symbol);
540 break;
541
542 case mst_text_gnu_ifunc:
543 write_exp_elt_type (ps, objfile_type (objfile)
544 ->nodebug_text_gnu_ifunc_symbol);
545 break;
546
547 case mst_data:
548 case mst_file_data:
549 case mst_bss:
550 case mst_file_bss:
551 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_data_symbol);
552 break;
553
554 case mst_slot_got_plt:
555 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_got_plt_symbol);
556 break;
557
558 default:
559 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_unknown_symbol);
560 break;
561 }
562 write_exp_elt_opcode (ps, UNOP_MEMVAL);
563 }
564
565 /* Mark the current index as the starting location of a structure
566 expression. This is used when completing on field names. */
567
568 void
569 mark_struct_expression (struct parser_state *ps)
570 {
571 gdb_assert (parse_completion
572 && expout_tag_completion_type == TYPE_CODE_UNDEF);
573 expout_last_struct = ps->expout_ptr;
574 }
575
576 /* Indicate that the current parser invocation is completing a tag.
577 TAG is the type code of the tag, and PTR and LENGTH represent the
578 start of the tag name. */
579
580 void
581 mark_completion_tag (enum type_code tag, const char *ptr, int length)
582 {
583 gdb_assert (parse_completion
584 && expout_tag_completion_type == TYPE_CODE_UNDEF
585 && expout_completion_name == NULL
586 && expout_last_struct == -1);
587 gdb_assert (tag == TYPE_CODE_UNION
588 || tag == TYPE_CODE_STRUCT
589 || tag == TYPE_CODE_CLASS
590 || tag == TYPE_CODE_ENUM);
591 expout_tag_completion_type = tag;
592 expout_completion_name = xmalloc (length + 1);
593 memcpy (expout_completion_name, ptr, length);
594 expout_completion_name[length] = '\0';
595 }
596
597 \f
598 /* Recognize tokens that start with '$'. These include:
599
600 $regname A native register name or a "standard
601 register name".
602
603 $variable A convenience variable with a name chosen
604 by the user.
605
606 $digits Value history with index <digits>, starting
607 from the first value which has index 1.
608
609 $$digits Value history with index <digits> relative
610 to the last value. I.e. $$0 is the last
611 value, $$1 is the one previous to that, $$2
612 is the one previous to $$1, etc.
613
614 $ | $0 | $$0 The last value in the value history.
615
616 $$ An abbreviation for the second to the last
617 value in the value history, I.e. $$1 */
618
619 void
620 write_dollar_variable (struct parser_state *ps, struct stoken str)
621 {
622 struct symbol *sym = NULL;
623 struct bound_minimal_symbol msym;
624 struct internalvar *isym = NULL;
625
626 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
627 and $$digits (equivalent to $<-digits> if you could type that). */
628
629 int negate = 0;
630 int i = 1;
631 /* Double dollar means negate the number and add -1 as well.
632 Thus $$ alone means -1. */
633 if (str.length >= 2 && str.ptr[1] == '$')
634 {
635 negate = 1;
636 i = 2;
637 }
638 if (i == str.length)
639 {
640 /* Just dollars (one or two). */
641 i = -negate;
642 goto handle_last;
643 }
644 /* Is the rest of the token digits? */
645 for (; i < str.length; i++)
646 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
647 break;
648 if (i == str.length)
649 {
650 i = atoi (str.ptr + 1 + negate);
651 if (negate)
652 i = -i;
653 goto handle_last;
654 }
655
656 /* Handle tokens that refer to machine registers:
657 $ followed by a register name. */
658 i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
659 str.ptr + 1, str.length - 1);
660 if (i >= 0)
661 goto handle_register;
662
663 /* Any names starting with $ are probably debugger internal variables. */
664
665 isym = lookup_only_internalvar (copy_name (str) + 1);
666 if (isym)
667 {
668 write_exp_elt_opcode (ps, OP_INTERNALVAR);
669 write_exp_elt_intern (ps, isym);
670 write_exp_elt_opcode (ps, OP_INTERNALVAR);
671 return;
672 }
673
674 /* On some systems, such as HP-UX and hppa-linux, certain system routines
675 have names beginning with $ or $$. Check for those, first. */
676
677 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
678 VAR_DOMAIN, NULL);
679 if (sym)
680 {
681 write_exp_elt_opcode (ps, OP_VAR_VALUE);
682 write_exp_elt_block (ps, block_found); /* set by lookup_symbol */
683 write_exp_elt_sym (ps, sym);
684 write_exp_elt_opcode (ps, OP_VAR_VALUE);
685 return;
686 }
687 msym = lookup_bound_minimal_symbol (copy_name (str));
688 if (msym.minsym)
689 {
690 write_exp_msymbol (ps, msym);
691 return;
692 }
693
694 /* Any other names are assumed to be debugger internal variables. */
695
696 write_exp_elt_opcode (ps, OP_INTERNALVAR);
697 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
698 write_exp_elt_opcode (ps, OP_INTERNALVAR);
699 return;
700 handle_last:
701 write_exp_elt_opcode (ps, OP_LAST);
702 write_exp_elt_longcst (ps, (LONGEST) i);
703 write_exp_elt_opcode (ps, OP_LAST);
704 return;
705 handle_register:
706 write_exp_elt_opcode (ps, OP_REGISTER);
707 str.length--;
708 str.ptr++;
709 write_exp_string (ps, str);
710 write_exp_elt_opcode (ps, OP_REGISTER);
711 return;
712 }
713
714
715 const char *
716 find_template_name_end (const char *p)
717 {
718 int depth = 1;
719 int just_seen_right = 0;
720 int just_seen_colon = 0;
721 int just_seen_space = 0;
722
723 if (!p || (*p != '<'))
724 return 0;
725
726 while (*++p)
727 {
728 switch (*p)
729 {
730 case '\'':
731 case '\"':
732 case '{':
733 case '}':
734 /* In future, may want to allow these?? */
735 return 0;
736 case '<':
737 depth++; /* start nested template */
738 if (just_seen_colon || just_seen_right || just_seen_space)
739 return 0; /* but not after : or :: or > or space */
740 break;
741 case '>':
742 if (just_seen_colon || just_seen_right)
743 return 0; /* end a (nested?) template */
744 just_seen_right = 1; /* but not after : or :: */
745 if (--depth == 0) /* also disallow >>, insist on > > */
746 return ++p; /* if outermost ended, return */
747 break;
748 case ':':
749 if (just_seen_space || (just_seen_colon > 1))
750 return 0; /* nested class spec coming up */
751 just_seen_colon++; /* we allow :: but not :::: */
752 break;
753 case ' ':
754 break;
755 default:
756 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
757 (*p >= 'A' && *p <= 'Z') ||
758 (*p >= '0' && *p <= '9') ||
759 (*p == '_') || (*p == ',') || /* commas for template args */
760 (*p == '&') || (*p == '*') || /* pointer and ref types */
761 (*p == '(') || (*p == ')') || /* function types */
762 (*p == '[') || (*p == ']'))) /* array types */
763 return 0;
764 }
765 if (*p != ' ')
766 just_seen_space = 0;
767 if (*p != ':')
768 just_seen_colon = 0;
769 if (*p != '>')
770 just_seen_right = 0;
771 }
772 return 0;
773 }
774 \f
775
776 /* Return a null-terminated temporary copy of the name of a string token.
777
778 Tokens that refer to names do so with explicit pointer and length,
779 so they can share the storage that lexptr is parsing.
780 When it is necessary to pass a name to a function that expects
781 a null-terminated string, the substring is copied out
782 into a separate block of storage.
783
784 N.B. A single buffer is reused on each call. */
785
786 char *
787 copy_name (struct stoken token)
788 {
789 /* A temporary buffer for identifiers, so we can null-terminate them.
790 We allocate this with xrealloc. parse_exp_1 used to allocate with
791 alloca, using the size of the whole expression as a conservative
792 estimate of the space needed. However, macro expansion can
793 introduce names longer than the original expression; there's no
794 practical way to know beforehand how large that might be. */
795 static char *namecopy;
796 static size_t namecopy_size;
797
798 /* Make sure there's enough space for the token. */
799 if (namecopy_size < token.length + 1)
800 {
801 namecopy_size = token.length + 1;
802 namecopy = xrealloc (namecopy, token.length + 1);
803 }
804
805 memcpy (namecopy, token.ptr, token.length);
806 namecopy[token.length] = 0;
807
808 return namecopy;
809 }
810 \f
811
812 /* See comments on parser-defs.h. */
813
814 int
815 prefixify_expression (struct expression *expr)
816 {
817 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
818 struct expression *temp;
819 int inpos = expr->nelts, outpos = 0;
820
821 temp = (struct expression *) alloca (len);
822
823 /* Copy the original expression into temp. */
824 memcpy (temp, expr, len);
825
826 return prefixify_subexp (temp, expr, inpos, outpos);
827 }
828
829 /* Return the number of exp_elements in the postfix subexpression
830 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
831
832 int
833 length_of_subexp (struct expression *expr, int endpos)
834 {
835 int oplen, args;
836
837 operator_length (expr, endpos, &oplen, &args);
838
839 while (args > 0)
840 {
841 oplen += length_of_subexp (expr, endpos - oplen);
842 args--;
843 }
844
845 return oplen;
846 }
847
848 /* Sets *OPLENP to the length of the operator whose (last) index is
849 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
850 operator takes. */
851
852 void
853 operator_length (const struct expression *expr, int endpos, int *oplenp,
854 int *argsp)
855 {
856 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
857 oplenp, argsp);
858 }
859
860 /* Default value for operator_length in exp_descriptor vectors. */
861
862 void
863 operator_length_standard (const struct expression *expr, int endpos,
864 int *oplenp, int *argsp)
865 {
866 int oplen = 1;
867 int args = 0;
868 enum f90_range_type range_type;
869 int i;
870
871 if (endpos < 1)
872 error (_("?error in operator_length_standard"));
873
874 i = (int) expr->elts[endpos - 1].opcode;
875
876 switch (i)
877 {
878 /* C++ */
879 case OP_SCOPE:
880 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
881 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
882 break;
883
884 case OP_LONG:
885 case OP_DOUBLE:
886 case OP_DECFLOAT:
887 case OP_VAR_VALUE:
888 oplen = 4;
889 break;
890
891 case OP_TYPE:
892 case OP_BOOL:
893 case OP_LAST:
894 case OP_INTERNALVAR:
895 case OP_VAR_ENTRY_VALUE:
896 oplen = 3;
897 break;
898
899 case OP_COMPLEX:
900 oplen = 3;
901 args = 2;
902 break;
903
904 case OP_FUNCALL:
905 case OP_F77_UNDETERMINED_ARGLIST:
906 oplen = 3;
907 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
908 break;
909
910 case TYPE_INSTANCE:
911 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
912 args = 1;
913 break;
914
915 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
916 oplen = 4;
917 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
918 break;
919
920 case UNOP_MAX:
921 case UNOP_MIN:
922 oplen = 3;
923 break;
924
925 case UNOP_CAST_TYPE:
926 case UNOP_DYNAMIC_CAST:
927 case UNOP_REINTERPRET_CAST:
928 case UNOP_MEMVAL_TYPE:
929 oplen = 1;
930 args = 2;
931 break;
932
933 case BINOP_VAL:
934 case UNOP_CAST:
935 case UNOP_MEMVAL:
936 oplen = 3;
937 args = 1;
938 break;
939
940 case UNOP_MEMVAL_TLS:
941 oplen = 4;
942 args = 1;
943 break;
944
945 case UNOP_ABS:
946 case UNOP_CAP:
947 case UNOP_CHR:
948 case UNOP_FLOAT:
949 case UNOP_HIGH:
950 case UNOP_ODD:
951 case UNOP_ORD:
952 case UNOP_TRUNC:
953 case OP_TYPEOF:
954 case OP_DECLTYPE:
955 case OP_TYPEID:
956 oplen = 1;
957 args = 1;
958 break;
959
960 case OP_ADL_FUNC:
961 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
962 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
963 oplen++;
964 oplen++;
965 break;
966
967 case STRUCTOP_STRUCT:
968 case STRUCTOP_PTR:
969 args = 1;
970 /* fall through */
971 case OP_REGISTER:
972 case OP_M2_STRING:
973 case OP_STRING:
974 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
975 NSString constant. */
976 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
977 case OP_NAME:
978 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
979 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
980 break;
981
982 case OP_ARRAY:
983 oplen = 4;
984 args = longest_to_int (expr->elts[endpos - 2].longconst);
985 args -= longest_to_int (expr->elts[endpos - 3].longconst);
986 args += 1;
987 break;
988
989 case TERNOP_COND:
990 case TERNOP_SLICE:
991 args = 3;
992 break;
993
994 /* Modula-2 */
995 case MULTI_SUBSCRIPT:
996 oplen = 3;
997 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
998 break;
999
1000 case BINOP_ASSIGN_MODIFY:
1001 oplen = 3;
1002 args = 2;
1003 break;
1004
1005 /* C++ */
1006 case OP_THIS:
1007 oplen = 2;
1008 break;
1009
1010 case OP_F90_RANGE:
1011 oplen = 3;
1012
1013 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1014 switch (range_type)
1015 {
1016 case LOW_BOUND_DEFAULT:
1017 case HIGH_BOUND_DEFAULT:
1018 args = 1;
1019 break;
1020 case BOTH_BOUND_DEFAULT:
1021 args = 0;
1022 break;
1023 case NONE_BOUND_DEFAULT:
1024 args = 2;
1025 break;
1026 }
1027
1028 break;
1029
1030 default:
1031 args = 1 + (i < (int) BINOP_END);
1032 }
1033
1034 *oplenp = oplen;
1035 *argsp = args;
1036 }
1037
1038 /* Copy the subexpression ending just before index INEND in INEXPR
1039 into OUTEXPR, starting at index OUTBEG.
1040 In the process, convert it from suffix to prefix form.
1041 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1042 Otherwise, it returns the index of the subexpression which is the
1043 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1044
1045 static int
1046 prefixify_subexp (struct expression *inexpr,
1047 struct expression *outexpr, int inend, int outbeg)
1048 {
1049 int oplen;
1050 int args;
1051 int i;
1052 int *arglens;
1053 int result = -1;
1054
1055 operator_length (inexpr, inend, &oplen, &args);
1056
1057 /* Copy the final operator itself, from the end of the input
1058 to the beginning of the output. */
1059 inend -= oplen;
1060 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1061 EXP_ELEM_TO_BYTES (oplen));
1062 outbeg += oplen;
1063
1064 if (expout_last_struct == inend)
1065 result = outbeg - oplen;
1066
1067 /* Find the lengths of the arg subexpressions. */
1068 arglens = (int *) alloca (args * sizeof (int));
1069 for (i = args - 1; i >= 0; i--)
1070 {
1071 oplen = length_of_subexp (inexpr, inend);
1072 arglens[i] = oplen;
1073 inend -= oplen;
1074 }
1075
1076 /* Now copy each subexpression, preserving the order of
1077 the subexpressions, but prefixifying each one.
1078 In this loop, inend starts at the beginning of
1079 the expression this level is working on
1080 and marches forward over the arguments.
1081 outbeg does similarly in the output. */
1082 for (i = 0; i < args; i++)
1083 {
1084 int r;
1085
1086 oplen = arglens[i];
1087 inend += oplen;
1088 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1089 if (r != -1)
1090 {
1091 /* Return immediately. We probably have only parsed a
1092 partial expression, so we don't want to try to reverse
1093 the other operands. */
1094 return r;
1095 }
1096 outbeg += oplen;
1097 }
1098
1099 return result;
1100 }
1101 \f
1102 /* Read an expression from the string *STRINGPTR points to,
1103 parse it, and return a pointer to a struct expression that we malloc.
1104 Use block BLOCK as the lexical context for variable names;
1105 if BLOCK is zero, use the block of the selected stack frame.
1106 Meanwhile, advance *STRINGPTR to point after the expression,
1107 at the first nonwhite character that is not part of the expression
1108 (possibly a null character).
1109
1110 If COMMA is nonzero, stop if a comma is reached. */
1111
1112 struct expression *
1113 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1114 int comma)
1115 {
1116 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1117 }
1118
1119 static struct expression *
1120 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1121 const struct block *block,
1122 int comma, int void_context_p, int *out_subexp)
1123 {
1124 return parse_exp_in_context_1 (stringptr, pc, block, comma,
1125 void_context_p, out_subexp);
1126 }
1127
1128 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1129 no value is expected from the expression.
1130 OUT_SUBEXP is set when attempting to complete a field name; in this
1131 case it is set to the index of the subexpression on the
1132 left-hand-side of the struct op. If not doing such completion, it
1133 is left untouched. */
1134
1135 static struct expression *
1136 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1137 const struct block *block,
1138 int comma, int void_context_p, int *out_subexp)
1139 {
1140 volatile struct gdb_exception except;
1141 struct cleanup *old_chain, *inner_chain;
1142 const struct language_defn *lang = NULL;
1143 struct parser_state ps;
1144 int subexp;
1145
1146 lexptr = *stringptr;
1147 prev_lexptr = NULL;
1148
1149 paren_depth = 0;
1150 type_stack.depth = 0;
1151 expout_last_struct = -1;
1152 expout_tag_completion_type = TYPE_CODE_UNDEF;
1153 xfree (expout_completion_name);
1154 expout_completion_name = NULL;
1155
1156 comma_terminates = comma;
1157
1158 if (lexptr == 0 || *lexptr == 0)
1159 error_no_arg (_("expression to compute"));
1160
1161 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1162 funcall_chain = 0;
1163
1164 expression_context_block = block;
1165
1166 /* If no context specified, try using the current frame, if any. */
1167 if (!expression_context_block)
1168 expression_context_block = get_selected_block (&expression_context_pc);
1169 else if (pc == 0)
1170 expression_context_pc = BLOCK_START (expression_context_block);
1171 else
1172 expression_context_pc = pc;
1173
1174 /* Fall back to using the current source static context, if any. */
1175
1176 if (!expression_context_block)
1177 {
1178 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1179 if (cursal.symtab)
1180 expression_context_block
1181 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1182 if (expression_context_block)
1183 expression_context_pc = BLOCK_START (expression_context_block);
1184 }
1185
1186 if (language_mode == language_mode_auto && block != NULL)
1187 {
1188 /* Find the language associated to the given context block.
1189 Default to the current language if it can not be determined.
1190
1191 Note that using the language corresponding to the current frame
1192 can sometimes give unexpected results. For instance, this
1193 routine is often called several times during the inferior
1194 startup phase to re-parse breakpoint expressions after
1195 a new shared library has been loaded. The language associated
1196 to the current frame at this moment is not relevant for
1197 the breakpoint. Using it would therefore be silly, so it seems
1198 better to rely on the current language rather than relying on
1199 the current frame language to parse the expression. That's why
1200 we do the following language detection only if the context block
1201 has been specifically provided. */
1202 struct symbol *func = block_linkage_function (block);
1203
1204 if (func != NULL)
1205 lang = language_def (SYMBOL_LANGUAGE (func));
1206 if (lang == NULL || lang->la_language == language_unknown)
1207 lang = current_language;
1208 }
1209 else
1210 lang = current_language;
1211
1212 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1213 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1214 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1215 to the value matching SELECTED_FRAME as set by get_current_arch. */
1216
1217 initialize_expout (&ps, 10, lang, get_current_arch ());
1218 inner_chain = make_cleanup_restore_current_language ();
1219 set_language (lang->la_language);
1220
1221 TRY_CATCH (except, RETURN_MASK_ALL)
1222 {
1223 if (lang->la_parser (&ps))
1224 lang->la_error (NULL);
1225 }
1226 if (except.reason < 0)
1227 {
1228 if (! parse_completion)
1229 {
1230 xfree (ps.expout);
1231 throw_exception (except);
1232 }
1233 }
1234
1235 reallocate_expout (&ps);
1236
1237 /* Convert expression from postfix form as generated by yacc
1238 parser, to a prefix form. */
1239
1240 if (expressiondebug)
1241 dump_raw_expression (ps.expout, gdb_stdlog,
1242 "before conversion to prefix form");
1243
1244 subexp = prefixify_expression (ps.expout);
1245 if (out_subexp)
1246 *out_subexp = subexp;
1247
1248 lang->la_post_parser (&ps.expout, void_context_p);
1249
1250 if (expressiondebug)
1251 dump_prefix_expression (ps.expout, gdb_stdlog);
1252
1253 do_cleanups (inner_chain);
1254 discard_cleanups (old_chain);
1255
1256 *stringptr = lexptr;
1257 return ps.expout;
1258 }
1259
1260 /* Parse STRING as an expression, and complain if this fails
1261 to use up all of the contents of STRING. */
1262
1263 struct expression *
1264 parse_expression (const char *string)
1265 {
1266 struct expression *exp;
1267
1268 exp = parse_exp_1 (&string, 0, 0, 0);
1269 if (*string)
1270 error (_("Junk after end of expression."));
1271 return exp;
1272 }
1273
1274 /* Parse STRING as an expression. If parsing ends in the middle of a
1275 field reference, return the type of the left-hand-side of the
1276 reference; furthermore, if the parsing ends in the field name,
1277 return the field name in *NAME. If the parsing ends in the middle
1278 of a field reference, but the reference is somehow invalid, throw
1279 an exception. In all other cases, return NULL. Returned non-NULL
1280 *NAME must be freed by the caller. */
1281
1282 struct type *
1283 parse_expression_for_completion (const char *string, char **name,
1284 enum type_code *code)
1285 {
1286 struct expression *exp = NULL;
1287 struct value *val;
1288 int subexp;
1289 volatile struct gdb_exception except;
1290
1291 TRY_CATCH (except, RETURN_MASK_ERROR)
1292 {
1293 parse_completion = 1;
1294 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1295 }
1296 parse_completion = 0;
1297 if (except.reason < 0 || ! exp)
1298 return NULL;
1299
1300 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1301 {
1302 *code = expout_tag_completion_type;
1303 *name = expout_completion_name;
1304 expout_completion_name = NULL;
1305 return NULL;
1306 }
1307
1308 if (expout_last_struct == -1)
1309 {
1310 xfree (exp);
1311 return NULL;
1312 }
1313
1314 *name = extract_field_op (exp, &subexp);
1315 if (!*name)
1316 {
1317 xfree (exp);
1318 return NULL;
1319 }
1320
1321 /* This might throw an exception. If so, we want to let it
1322 propagate. */
1323 val = evaluate_subexpression_type (exp, subexp);
1324 /* (*NAME) is a part of the EXP memory block freed below. */
1325 *name = xstrdup (*name);
1326 xfree (exp);
1327
1328 return value_type (val);
1329 }
1330
1331 /* A post-parser that does nothing. */
1332
1333 void
1334 null_post_parser (struct expression **exp, int void_context_p)
1335 {
1336 }
1337
1338 /* Parse floating point value P of length LEN.
1339 Return 0 (false) if invalid, 1 (true) if valid.
1340 The successfully parsed number is stored in D.
1341 *SUFFIX points to the suffix of the number in P.
1342
1343 NOTE: This accepts the floating point syntax that sscanf accepts. */
1344
1345 int
1346 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1347 {
1348 char *copy;
1349 int n, num;
1350
1351 copy = xmalloc (len + 1);
1352 memcpy (copy, p, len);
1353 copy[len] = 0;
1354
1355 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1356 xfree (copy);
1357
1358 /* The sscanf man page suggests not making any assumptions on the effect
1359 of %n on the result, so we don't.
1360 That is why we simply test num == 0. */
1361 if (num == 0)
1362 return 0;
1363
1364 *suffix = p + n;
1365 return 1;
1366 }
1367
1368 /* Parse floating point value P of length LEN, using the C syntax for floats.
1369 Return 0 (false) if invalid, 1 (true) if valid.
1370 The successfully parsed number is stored in *D.
1371 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1372
1373 int
1374 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1375 DOUBLEST *d, struct type **t)
1376 {
1377 const char *suffix;
1378 int suffix_len;
1379 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1380
1381 if (! parse_float (p, len, d, &suffix))
1382 return 0;
1383
1384 suffix_len = p + len - suffix;
1385
1386 if (suffix_len == 0)
1387 *t = builtin_types->builtin_double;
1388 else if (suffix_len == 1)
1389 {
1390 /* Handle suffixes: 'f' for float, 'l' for long double. */
1391 if (tolower (*suffix) == 'f')
1392 *t = builtin_types->builtin_float;
1393 else if (tolower (*suffix) == 'l')
1394 *t = builtin_types->builtin_long_double;
1395 else
1396 return 0;
1397 }
1398 else
1399 return 0;
1400
1401 return 1;
1402 }
1403 \f
1404 /* Stuff for maintaining a stack of types. Currently just used by C, but
1405 probably useful for any language which declares its types "backwards". */
1406
1407 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1408
1409 static void
1410 type_stack_reserve (struct type_stack *stack, int howmuch)
1411 {
1412 if (stack->depth + howmuch >= stack->size)
1413 {
1414 stack->size *= 2;
1415 if (stack->size < howmuch)
1416 stack->size = howmuch;
1417 stack->elements = xrealloc (stack->elements,
1418 stack->size * sizeof (union type_stack_elt));
1419 }
1420 }
1421
1422 /* Ensure that there is a single open slot in the global type stack. */
1423
1424 static void
1425 check_type_stack_depth (void)
1426 {
1427 type_stack_reserve (&type_stack, 1);
1428 }
1429
1430 /* A helper function for insert_type and insert_type_address_space.
1431 This does work of expanding the type stack and inserting the new
1432 element, ELEMENT, into the stack at location SLOT. */
1433
1434 static void
1435 insert_into_type_stack (int slot, union type_stack_elt element)
1436 {
1437 check_type_stack_depth ();
1438
1439 if (slot < type_stack.depth)
1440 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1441 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1442 type_stack.elements[slot] = element;
1443 ++type_stack.depth;
1444 }
1445
1446 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1447 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1448 a qualifier, it is inserted at slot 1 (just above a previous
1449 tp_pointer) if there is anything on the stack, or simply pushed if
1450 the stack is empty. Other values for TP are invalid. */
1451
1452 void
1453 insert_type (enum type_pieces tp)
1454 {
1455 union type_stack_elt element;
1456 int slot;
1457
1458 gdb_assert (tp == tp_pointer || tp == tp_reference
1459 || tp == tp_const || tp == tp_volatile);
1460
1461 /* If there is anything on the stack (we know it will be a
1462 tp_pointer), insert the qualifier above it. Otherwise, simply
1463 push this on the top of the stack. */
1464 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1465 slot = 1;
1466 else
1467 slot = 0;
1468
1469 element.piece = tp;
1470 insert_into_type_stack (slot, element);
1471 }
1472
1473 void
1474 push_type (enum type_pieces tp)
1475 {
1476 check_type_stack_depth ();
1477 type_stack.elements[type_stack.depth++].piece = tp;
1478 }
1479
1480 void
1481 push_type_int (int n)
1482 {
1483 check_type_stack_depth ();
1484 type_stack.elements[type_stack.depth++].int_val = n;
1485 }
1486
1487 /* Insert a tp_space_identifier and the corresponding address space
1488 value into the stack. STRING is the name of an address space, as
1489 recognized by address_space_name_to_int. If the stack is empty,
1490 the new elements are simply pushed. If the stack is not empty,
1491 this function assumes that the first item on the stack is a
1492 tp_pointer, and the new values are inserted above the first
1493 item. */
1494
1495 void
1496 insert_type_address_space (struct parser_state *pstate, char *string)
1497 {
1498 union type_stack_elt element;
1499 int slot;
1500
1501 /* If there is anything on the stack (we know it will be a
1502 tp_pointer), insert the address space qualifier above it.
1503 Otherwise, simply push this on the top of the stack. */
1504 if (type_stack.depth)
1505 slot = 1;
1506 else
1507 slot = 0;
1508
1509 element.piece = tp_space_identifier;
1510 insert_into_type_stack (slot, element);
1511 element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1512 string);
1513 insert_into_type_stack (slot, element);
1514 }
1515
1516 enum type_pieces
1517 pop_type (void)
1518 {
1519 if (type_stack.depth)
1520 return type_stack.elements[--type_stack.depth].piece;
1521 return tp_end;
1522 }
1523
1524 int
1525 pop_type_int (void)
1526 {
1527 if (type_stack.depth)
1528 return type_stack.elements[--type_stack.depth].int_val;
1529 /* "Can't happen". */
1530 return 0;
1531 }
1532
1533 /* Pop a type list element from the global type stack. */
1534
1535 static VEC (type_ptr) *
1536 pop_typelist (void)
1537 {
1538 gdb_assert (type_stack.depth);
1539 return type_stack.elements[--type_stack.depth].typelist_val;
1540 }
1541
1542 /* Pop a type_stack element from the global type stack. */
1543
1544 static struct type_stack *
1545 pop_type_stack (void)
1546 {
1547 gdb_assert (type_stack.depth);
1548 return type_stack.elements[--type_stack.depth].stack_val;
1549 }
1550
1551 /* Append the elements of the type stack FROM to the type stack TO.
1552 Always returns TO. */
1553
1554 struct type_stack *
1555 append_type_stack (struct type_stack *to, struct type_stack *from)
1556 {
1557 type_stack_reserve (to, from->depth);
1558
1559 memcpy (&to->elements[to->depth], &from->elements[0],
1560 from->depth * sizeof (union type_stack_elt));
1561 to->depth += from->depth;
1562
1563 return to;
1564 }
1565
1566 /* Push the type stack STACK as an element on the global type stack. */
1567
1568 void
1569 push_type_stack (struct type_stack *stack)
1570 {
1571 check_type_stack_depth ();
1572 type_stack.elements[type_stack.depth++].stack_val = stack;
1573 push_type (tp_type_stack);
1574 }
1575
1576 /* Copy the global type stack into a newly allocated type stack and
1577 return it. The global stack is cleared. The returned type stack
1578 must be freed with type_stack_cleanup. */
1579
1580 struct type_stack *
1581 get_type_stack (void)
1582 {
1583 struct type_stack *result = XNEW (struct type_stack);
1584
1585 *result = type_stack;
1586 type_stack.depth = 0;
1587 type_stack.size = 0;
1588 type_stack.elements = NULL;
1589
1590 return result;
1591 }
1592
1593 /* A cleanup function that destroys a single type stack. */
1594
1595 void
1596 type_stack_cleanup (void *arg)
1597 {
1598 struct type_stack *stack = arg;
1599
1600 xfree (stack->elements);
1601 xfree (stack);
1602 }
1603
1604 /* Push a function type with arguments onto the global type stack.
1605 LIST holds the argument types. If the final item in LIST is NULL,
1606 then the function will be varargs. */
1607
1608 void
1609 push_typelist (VEC (type_ptr) *list)
1610 {
1611 check_type_stack_depth ();
1612 type_stack.elements[type_stack.depth++].typelist_val = list;
1613 push_type (tp_function_with_arguments);
1614 }
1615
1616 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1617 as modified by all the stuff on the stack. */
1618 struct type *
1619 follow_types (struct type *follow_type)
1620 {
1621 int done = 0;
1622 int make_const = 0;
1623 int make_volatile = 0;
1624 int make_addr_space = 0;
1625 int array_size;
1626
1627 while (!done)
1628 switch (pop_type ())
1629 {
1630 case tp_end:
1631 done = 1;
1632 if (make_const)
1633 follow_type = make_cv_type (make_const,
1634 TYPE_VOLATILE (follow_type),
1635 follow_type, 0);
1636 if (make_volatile)
1637 follow_type = make_cv_type (TYPE_CONST (follow_type),
1638 make_volatile,
1639 follow_type, 0);
1640 if (make_addr_space)
1641 follow_type = make_type_with_address_space (follow_type,
1642 make_addr_space);
1643 make_const = make_volatile = 0;
1644 make_addr_space = 0;
1645 break;
1646 case tp_const:
1647 make_const = 1;
1648 break;
1649 case tp_volatile:
1650 make_volatile = 1;
1651 break;
1652 case tp_space_identifier:
1653 make_addr_space = pop_type_int ();
1654 break;
1655 case tp_pointer:
1656 follow_type = lookup_pointer_type (follow_type);
1657 if (make_const)
1658 follow_type = make_cv_type (make_const,
1659 TYPE_VOLATILE (follow_type),
1660 follow_type, 0);
1661 if (make_volatile)
1662 follow_type = make_cv_type (TYPE_CONST (follow_type),
1663 make_volatile,
1664 follow_type, 0);
1665 if (make_addr_space)
1666 follow_type = make_type_with_address_space (follow_type,
1667 make_addr_space);
1668 make_const = make_volatile = 0;
1669 make_addr_space = 0;
1670 break;
1671 case tp_reference:
1672 follow_type = lookup_reference_type (follow_type);
1673 if (make_const)
1674 follow_type = make_cv_type (make_const,
1675 TYPE_VOLATILE (follow_type),
1676 follow_type, 0);
1677 if (make_volatile)
1678 follow_type = make_cv_type (TYPE_CONST (follow_type),
1679 make_volatile,
1680 follow_type, 0);
1681 if (make_addr_space)
1682 follow_type = make_type_with_address_space (follow_type,
1683 make_addr_space);
1684 make_const = make_volatile = 0;
1685 make_addr_space = 0;
1686 break;
1687 case tp_array:
1688 array_size = pop_type_int ();
1689 /* FIXME-type-allocation: need a way to free this type when we are
1690 done with it. */
1691 follow_type =
1692 lookup_array_range_type (follow_type,
1693 0, array_size >= 0 ? array_size - 1 : 0);
1694 if (array_size < 0)
1695 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1696 = PROP_UNDEFINED;
1697 break;
1698 case tp_function:
1699 /* FIXME-type-allocation: need a way to free this type when we are
1700 done with it. */
1701 follow_type = lookup_function_type (follow_type);
1702 break;
1703
1704 case tp_function_with_arguments:
1705 {
1706 VEC (type_ptr) *args = pop_typelist ();
1707
1708 follow_type
1709 = lookup_function_type_with_arguments (follow_type,
1710 VEC_length (type_ptr, args),
1711 VEC_address (type_ptr,
1712 args));
1713 VEC_free (type_ptr, args);
1714 }
1715 break;
1716
1717 case tp_type_stack:
1718 {
1719 struct type_stack *stack = pop_type_stack ();
1720 /* Sort of ugly, but not really much worse than the
1721 alternatives. */
1722 struct type_stack save = type_stack;
1723
1724 type_stack = *stack;
1725 follow_type = follow_types (follow_type);
1726 gdb_assert (type_stack.depth == 0);
1727
1728 type_stack = save;
1729 }
1730 break;
1731 default:
1732 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1733 }
1734 return follow_type;
1735 }
1736 \f
1737 /* This function avoids direct calls to fprintf
1738 in the parser generated debug code. */
1739 void
1740 parser_fprintf (FILE *x, const char *y, ...)
1741 {
1742 va_list args;
1743
1744 va_start (args, y);
1745 if (x == stderr)
1746 vfprintf_unfiltered (gdb_stderr, y, args);
1747 else
1748 {
1749 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1750 vfprintf_unfiltered (gdb_stderr, y, args);
1751 }
1752 va_end (args);
1753 }
1754
1755 /* Implementation of the exp_descriptor method operator_check. */
1756
1757 int
1758 operator_check_standard (struct expression *exp, int pos,
1759 int (*objfile_func) (struct objfile *objfile,
1760 void *data),
1761 void *data)
1762 {
1763 const union exp_element *const elts = exp->elts;
1764 struct type *type = NULL;
1765 struct objfile *objfile = NULL;
1766
1767 /* Extended operators should have been already handled by exp_descriptor
1768 iterate method of its specific language. */
1769 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1770
1771 /* Track the callers of write_exp_elt_type for this table. */
1772
1773 switch (elts[pos].opcode)
1774 {
1775 case BINOP_VAL:
1776 case OP_COMPLEX:
1777 case OP_DECFLOAT:
1778 case OP_DOUBLE:
1779 case OP_LONG:
1780 case OP_SCOPE:
1781 case OP_TYPE:
1782 case UNOP_CAST:
1783 case UNOP_MAX:
1784 case UNOP_MEMVAL:
1785 case UNOP_MIN:
1786 type = elts[pos + 1].type;
1787 break;
1788
1789 case TYPE_INSTANCE:
1790 {
1791 LONGEST arg, nargs = elts[pos + 1].longconst;
1792
1793 for (arg = 0; arg < nargs; arg++)
1794 {
1795 struct type *type = elts[pos + 2 + arg].type;
1796 struct objfile *objfile = TYPE_OBJFILE (type);
1797
1798 if (objfile && (*objfile_func) (objfile, data))
1799 return 1;
1800 }
1801 }
1802 break;
1803
1804 case UNOP_MEMVAL_TLS:
1805 objfile = elts[pos + 1].objfile;
1806 type = elts[pos + 2].type;
1807 break;
1808
1809 case OP_VAR_VALUE:
1810 {
1811 const struct block *const block = elts[pos + 1].block;
1812 const struct symbol *const symbol = elts[pos + 2].symbol;
1813
1814 /* Check objfile where the variable itself is placed.
1815 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1816 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1817 return 1;
1818
1819 /* Check objfile where is placed the code touching the variable. */
1820 objfile = lookup_objfile_from_block (block);
1821
1822 type = SYMBOL_TYPE (symbol);
1823 }
1824 break;
1825 }
1826
1827 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1828
1829 if (type && TYPE_OBJFILE (type)
1830 && (*objfile_func) (TYPE_OBJFILE (type), data))
1831 return 1;
1832 if (objfile && (*objfile_func) (objfile, data))
1833 return 1;
1834
1835 return 0;
1836 }
1837
1838 /* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP.
1839 The functions are never called with NULL OBJFILE. Functions get passed an
1840 arbitrary caller supplied DATA pointer. If any of the functions returns
1841 non-zero value then (any other) non-zero value is immediately returned to
1842 the caller. Otherwise zero is returned after iterating through whole EXP.
1843 */
1844
1845 static int
1846 exp_iterate (struct expression *exp,
1847 int (*objfile_func) (struct objfile *objfile, void *data),
1848 void *data)
1849 {
1850 int endpos;
1851
1852 for (endpos = exp->nelts; endpos > 0; )
1853 {
1854 int pos, args, oplen = 0;
1855
1856 operator_length (exp, endpos, &oplen, &args);
1857 gdb_assert (oplen > 0);
1858
1859 pos = endpos - oplen;
1860 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1861 objfile_func, data))
1862 return 1;
1863
1864 endpos = pos;
1865 }
1866
1867 return 0;
1868 }
1869
1870 /* Helper for exp_uses_objfile. */
1871
1872 static int
1873 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1874 {
1875 struct objfile *objfile = objfile_voidp;
1876
1877 if (exp_objfile->separate_debug_objfile_backlink)
1878 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1879
1880 return exp_objfile == objfile;
1881 }
1882
1883 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1884 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1885 file. */
1886
1887 int
1888 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1889 {
1890 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1891
1892 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1893 }
1894
1895 /* See definition in parser-defs.h. */
1896
1897 void
1898 increase_expout_size (struct parser_state *ps, size_t lenelt)
1899 {
1900 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1901 {
1902 ps->expout_size = max (ps->expout_size * 2,
1903 ps->expout_ptr + lenelt + 10);
1904 ps->expout = (struct expression *)
1905 xrealloc (ps->expout, (sizeof (struct expression)
1906 + EXP_ELEM_TO_BYTES (ps->expout_size)));
1907 }
1908 }
1909
1910 void
1911 _initialize_parse (void)
1912 {
1913 type_stack.size = 0;
1914 type_stack.depth = 0;
1915 type_stack.elements = NULL;
1916
1917 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1918 &expressiondebug,
1919 _("Set expression debugging."),
1920 _("Show expression debugging."),
1921 _("When non-zero, the internal representation "
1922 "of expressions will be printed."),
1923 NULL,
1924 show_expressiondebug,
1925 &setdebuglist, &showdebuglist);
1926 add_setshow_boolean_cmd ("parser", class_maintenance,
1927 &parser_debug,
1928 _("Set parser debugging."),
1929 _("Show parser debugging."),
1930 _("When non-zero, expression parser "
1931 "tracing will be enabled."),
1932 NULL,
1933 show_parserdebug,
1934 &setdebuglist, &showdebuglist);
1935 }
This page took 0.151409 seconds and 4 git commands to generate.