[Ada] Make the symbol cache per-program-space.
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include <string.h>
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "frame.h"
39 #include "expression.h"
40 #include "value.h"
41 #include "command.h"
42 #include "language.h"
43 #include "f-lang.h"
44 #include "parser-defs.h"
45 #include "gdbcmd.h"
46 #include "symfile.h" /* for overlay functions */
47 #include "inferior.h"
48 #include "doublest.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "source.h"
52 #include "objfiles.h"
53 #include "exceptions.h"
54 #include "user-regs.h"
55
56 /* Standard set of definitions for printing, dumping, prefixifying,
57 * and evaluating expressions. */
58
59 const struct exp_descriptor exp_descriptor_standard =
60 {
61 print_subexp_standard,
62 operator_length_standard,
63 operator_check_standard,
64 op_name_standard,
65 dump_subexp_body_standard,
66 evaluate_subexp_standard
67 };
68 \f
69 /* Global variables declared in parser-defs.h (and commented there). */
70 struct expression *expout;
71 int expout_size;
72 int expout_ptr;
73 const struct block *expression_context_block;
74 CORE_ADDR expression_context_pc;
75 const struct block *innermost_block;
76 int arglist_len;
77 static struct type_stack type_stack;
78 const char *lexptr;
79 const char *prev_lexptr;
80 int paren_depth;
81 int comma_terminates;
82
83 /* True if parsing an expression to attempt completion. */
84 int parse_completion;
85
86 /* The index of the last struct expression directly before a '.' or
87 '->'. This is set when parsing and is only used when completing a
88 field name. It is -1 if no dereference operation was found. */
89 static int expout_last_struct = -1;
90
91 /* If we are completing a tagged type name, this will be nonzero. */
92 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
93
94 /* The token for tagged type name completion. */
95 static char *expout_completion_name;
96
97 \f
98 static unsigned int expressiondebug = 0;
99 static void
100 show_expressiondebug (struct ui_file *file, int from_tty,
101 struct cmd_list_element *c, const char *value)
102 {
103 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
104 }
105
106
107 /* Non-zero if an expression parser should set yydebug. */
108 int parser_debug;
109
110 static void
111 show_parserdebug (struct ui_file *file, int from_tty,
112 struct cmd_list_element *c, const char *value)
113 {
114 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
115 }
116
117
118 static void free_funcalls (void *ignore);
119
120 static int prefixify_subexp (struct expression *, struct expression *, int,
121 int);
122
123 static struct expression *parse_exp_in_context (const char **, CORE_ADDR,
124 const struct block *, int,
125 int, int *);
126 static struct expression *parse_exp_in_context_1 (const char **, CORE_ADDR,
127 const struct block *, int,
128 int, int *);
129
130 void _initialize_parse (void);
131
132 /* Data structure for saving values of arglist_len for function calls whose
133 arguments contain other function calls. */
134
135 struct funcall
136 {
137 struct funcall *next;
138 int arglist_len;
139 };
140
141 static struct funcall *funcall_chain;
142
143 /* Begin counting arguments for a function call,
144 saving the data about any containing call. */
145
146 void
147 start_arglist (void)
148 {
149 struct funcall *new;
150
151 new = (struct funcall *) xmalloc (sizeof (struct funcall));
152 new->next = funcall_chain;
153 new->arglist_len = arglist_len;
154 arglist_len = 0;
155 funcall_chain = new;
156 }
157
158 /* Return the number of arguments in a function call just terminated,
159 and restore the data for the containing function call. */
160
161 int
162 end_arglist (void)
163 {
164 int val = arglist_len;
165 struct funcall *call = funcall_chain;
166
167 funcall_chain = call->next;
168 arglist_len = call->arglist_len;
169 xfree (call);
170 return val;
171 }
172
173 /* Free everything in the funcall chain.
174 Used when there is an error inside parsing. */
175
176 static void
177 free_funcalls (void *ignore)
178 {
179 struct funcall *call, *next;
180
181 for (call = funcall_chain; call; call = next)
182 {
183 next = call->next;
184 xfree (call);
185 }
186 }
187 \f
188 /* This page contains the functions for adding data to the struct expression
189 being constructed. */
190
191 /* See definition in parser-defs.h. */
192
193 void
194 initialize_expout (int initial_size, const struct language_defn *lang,
195 struct gdbarch *gdbarch)
196 {
197 expout_size = initial_size;
198 expout_ptr = 0;
199 expout = xmalloc (sizeof (struct expression)
200 + EXP_ELEM_TO_BYTES (expout_size));
201 expout->language_defn = lang;
202 expout->gdbarch = gdbarch;
203 }
204
205 /* See definition in parser-defs.h. */
206
207 void
208 reallocate_expout (void)
209 {
210 /* Record the actual number of expression elements, and then
211 reallocate the expression memory so that we free up any
212 excess elements. */
213
214 expout->nelts = expout_ptr;
215 expout = xrealloc ((char *) expout,
216 sizeof (struct expression)
217 + EXP_ELEM_TO_BYTES (expout_ptr));
218 }
219
220 /* Add one element to the end of the expression. */
221
222 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
223 a register through here. */
224
225 static void
226 write_exp_elt (const union exp_element *expelt)
227 {
228 if (expout_ptr >= expout_size)
229 {
230 expout_size *= 2;
231 expout = (struct expression *)
232 xrealloc ((char *) expout, sizeof (struct expression)
233 + EXP_ELEM_TO_BYTES (expout_size));
234 }
235 expout->elts[expout_ptr++] = *expelt;
236 }
237
238 void
239 write_exp_elt_opcode (enum exp_opcode expelt)
240 {
241 union exp_element tmp;
242
243 memset (&tmp, 0, sizeof (union exp_element));
244 tmp.opcode = expelt;
245 write_exp_elt (&tmp);
246 }
247
248 void
249 write_exp_elt_sym (struct symbol *expelt)
250 {
251 union exp_element tmp;
252
253 memset (&tmp, 0, sizeof (union exp_element));
254 tmp.symbol = expelt;
255 write_exp_elt (&tmp);
256 }
257
258 void
259 write_exp_elt_block (const struct block *b)
260 {
261 union exp_element tmp;
262
263 memset (&tmp, 0, sizeof (union exp_element));
264 tmp.block = b;
265 write_exp_elt (&tmp);
266 }
267
268 void
269 write_exp_elt_objfile (struct objfile *objfile)
270 {
271 union exp_element tmp;
272
273 memset (&tmp, 0, sizeof (union exp_element));
274 tmp.objfile = objfile;
275 write_exp_elt (&tmp);
276 }
277
278 void
279 write_exp_elt_longcst (LONGEST expelt)
280 {
281 union exp_element tmp;
282
283 memset (&tmp, 0, sizeof (union exp_element));
284 tmp.longconst = expelt;
285 write_exp_elt (&tmp);
286 }
287
288 void
289 write_exp_elt_dblcst (DOUBLEST expelt)
290 {
291 union exp_element tmp;
292
293 memset (&tmp, 0, sizeof (union exp_element));
294 tmp.doubleconst = expelt;
295 write_exp_elt (&tmp);
296 }
297
298 void
299 write_exp_elt_decfloatcst (gdb_byte expelt[16])
300 {
301 union exp_element tmp;
302 int index;
303
304 for (index = 0; index < 16; index++)
305 tmp.decfloatconst[index] = expelt[index];
306
307 write_exp_elt (&tmp);
308 }
309
310 void
311 write_exp_elt_type (struct type *expelt)
312 {
313 union exp_element tmp;
314
315 memset (&tmp, 0, sizeof (union exp_element));
316 tmp.type = expelt;
317 write_exp_elt (&tmp);
318 }
319
320 void
321 write_exp_elt_intern (struct internalvar *expelt)
322 {
323 union exp_element tmp;
324
325 memset (&tmp, 0, sizeof (union exp_element));
326 tmp.internalvar = expelt;
327 write_exp_elt (&tmp);
328 }
329
330 /* Add a string constant to the end of the expression.
331
332 String constants are stored by first writing an expression element
333 that contains the length of the string, then stuffing the string
334 constant itself into however many expression elements are needed
335 to hold it, and then writing another expression element that contains
336 the length of the string. I.e. an expression element at each end of
337 the string records the string length, so you can skip over the
338 expression elements containing the actual string bytes from either
339 end of the string. Note that this also allows gdb to handle
340 strings with embedded null bytes, as is required for some languages.
341
342 Don't be fooled by the fact that the string is null byte terminated,
343 this is strictly for the convenience of debugging gdb itself.
344 Gdb does not depend up the string being null terminated, since the
345 actual length is recorded in expression elements at each end of the
346 string. The null byte is taken into consideration when computing how
347 many expression elements are required to hold the string constant, of
348 course. */
349
350
351 void
352 write_exp_string (struct stoken str)
353 {
354 int len = str.length;
355 int lenelt;
356 char *strdata;
357
358 /* Compute the number of expression elements required to hold the string
359 (including a null byte terminator), along with one expression element
360 at each end to record the actual string length (not including the
361 null byte terminator). */
362
363 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
364
365 /* Ensure that we have enough available expression elements to store
366 everything. */
367
368 if ((expout_ptr + lenelt) >= expout_size)
369 {
370 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
371 expout = (struct expression *)
372 xrealloc ((char *) expout, (sizeof (struct expression)
373 + EXP_ELEM_TO_BYTES (expout_size)));
374 }
375
376 /* Write the leading length expression element (which advances the current
377 expression element index), then write the string constant followed by a
378 terminating null byte, and then write the trailing length expression
379 element. */
380
381 write_exp_elt_longcst ((LONGEST) len);
382 strdata = (char *) &expout->elts[expout_ptr];
383 memcpy (strdata, str.ptr, len);
384 *(strdata + len) = '\0';
385 expout_ptr += lenelt - 2;
386 write_exp_elt_longcst ((LONGEST) len);
387 }
388
389 /* Add a vector of string constants to the end of the expression.
390
391 This adds an OP_STRING operation, but encodes the contents
392 differently from write_exp_string. The language is expected to
393 handle evaluation of this expression itself.
394
395 After the usual OP_STRING header, TYPE is written into the
396 expression as a long constant. The interpretation of this field is
397 up to the language evaluator.
398
399 Next, each string in VEC is written. The length is written as a
400 long constant, followed by the contents of the string. */
401
402 void
403 write_exp_string_vector (int type, struct stoken_vector *vec)
404 {
405 int i, n_slots, len;
406
407 /* Compute the size. We compute the size in number of slots to
408 avoid issues with string padding. */
409 n_slots = 0;
410 for (i = 0; i < vec->len; ++i)
411 {
412 /* One slot for the length of this element, plus the number of
413 slots needed for this string. */
414 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
415 }
416
417 /* One more slot for the type of the string. */
418 ++n_slots;
419
420 /* Now compute a phony string length. */
421 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
422
423 n_slots += 4;
424 if ((expout_ptr + n_slots) >= expout_size)
425 {
426 expout_size = max (expout_size * 2, expout_ptr + n_slots + 10);
427 expout = (struct expression *)
428 xrealloc ((char *) expout, (sizeof (struct expression)
429 + EXP_ELEM_TO_BYTES (expout_size)));
430 }
431
432 write_exp_elt_opcode (OP_STRING);
433 write_exp_elt_longcst (len);
434 write_exp_elt_longcst (type);
435
436 for (i = 0; i < vec->len; ++i)
437 {
438 write_exp_elt_longcst (vec->tokens[i].length);
439 memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr,
440 vec->tokens[i].length);
441 expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
442 }
443
444 write_exp_elt_longcst (len);
445 write_exp_elt_opcode (OP_STRING);
446 }
447
448 /* Add a bitstring constant to the end of the expression.
449
450 Bitstring constants are stored by first writing an expression element
451 that contains the length of the bitstring (in bits), then stuffing the
452 bitstring constant itself into however many expression elements are
453 needed to hold it, and then writing another expression element that
454 contains the length of the bitstring. I.e. an expression element at
455 each end of the bitstring records the bitstring length, so you can skip
456 over the expression elements containing the actual bitstring bytes from
457 either end of the bitstring. */
458
459 void
460 write_exp_bitstring (struct stoken str)
461 {
462 int bits = str.length; /* length in bits */
463 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
464 int lenelt;
465 char *strdata;
466
467 /* Compute the number of expression elements required to hold the bitstring,
468 along with one expression element at each end to record the actual
469 bitstring length in bits. */
470
471 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
472
473 /* Ensure that we have enough available expression elements to store
474 everything. */
475
476 if ((expout_ptr + lenelt) >= expout_size)
477 {
478 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
479 expout = (struct expression *)
480 xrealloc ((char *) expout, (sizeof (struct expression)
481 + EXP_ELEM_TO_BYTES (expout_size)));
482 }
483
484 /* Write the leading length expression element (which advances the current
485 expression element index), then write the bitstring constant, and then
486 write the trailing length expression element. */
487
488 write_exp_elt_longcst ((LONGEST) bits);
489 strdata = (char *) &expout->elts[expout_ptr];
490 memcpy (strdata, str.ptr, len);
491 expout_ptr += lenelt - 2;
492 write_exp_elt_longcst ((LONGEST) bits);
493 }
494
495 /* Add the appropriate elements for a minimal symbol to the end of
496 the expression. */
497
498 void
499 write_exp_msymbol (struct bound_minimal_symbol bound_msym)
500 {
501 struct minimal_symbol *msymbol = bound_msym.minsym;
502 struct objfile *objfile = bound_msym.objfile;
503 struct gdbarch *gdbarch = get_objfile_arch (objfile);
504
505 CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol);
506 struct obj_section *section = SYMBOL_OBJ_SECTION (objfile, msymbol);
507 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
508 CORE_ADDR pc;
509
510 /* The minimal symbol might point to a function descriptor;
511 resolve it to the actual code address instead. */
512 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
513 if (pc != addr)
514 {
515 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
516
517 /* In this case, assume we have a code symbol instead of
518 a data symbol. */
519
520 if (ifunc_msym.minsym != NULL
521 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
522 && SYMBOL_VALUE_ADDRESS (ifunc_msym.minsym) == pc)
523 {
524 /* A function descriptor has been resolved but PC is still in the
525 STT_GNU_IFUNC resolver body (such as because inferior does not
526 run to be able to call it). */
527
528 type = mst_text_gnu_ifunc;
529 }
530 else
531 type = mst_text;
532 section = NULL;
533 addr = pc;
534 }
535
536 if (overlay_debugging)
537 addr = symbol_overlayed_address (addr, section);
538
539 write_exp_elt_opcode (OP_LONG);
540 /* Let's make the type big enough to hold a 64-bit address. */
541 write_exp_elt_type (objfile_type (objfile)->builtin_core_addr);
542 write_exp_elt_longcst ((LONGEST) addr);
543 write_exp_elt_opcode (OP_LONG);
544
545 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
546 {
547 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
548 write_exp_elt_objfile (objfile);
549 write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol);
550 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
551 return;
552 }
553
554 write_exp_elt_opcode (UNOP_MEMVAL);
555 switch (type)
556 {
557 case mst_text:
558 case mst_file_text:
559 case mst_solib_trampoline:
560 write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol);
561 break;
562
563 case mst_text_gnu_ifunc:
564 write_exp_elt_type (objfile_type (objfile)
565 ->nodebug_text_gnu_ifunc_symbol);
566 break;
567
568 case mst_data:
569 case mst_file_data:
570 case mst_bss:
571 case mst_file_bss:
572 write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol);
573 break;
574
575 case mst_slot_got_plt:
576 write_exp_elt_type (objfile_type (objfile)->nodebug_got_plt_symbol);
577 break;
578
579 default:
580 write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol);
581 break;
582 }
583 write_exp_elt_opcode (UNOP_MEMVAL);
584 }
585
586 /* Mark the current index as the starting location of a structure
587 expression. This is used when completing on field names. */
588
589 void
590 mark_struct_expression (void)
591 {
592 gdb_assert (parse_completion
593 && expout_tag_completion_type == TYPE_CODE_UNDEF);
594 expout_last_struct = expout_ptr;
595 }
596
597 /* Indicate that the current parser invocation is completing a tag.
598 TAG is the type code of the tag, and PTR and LENGTH represent the
599 start of the tag name. */
600
601 void
602 mark_completion_tag (enum type_code tag, const char *ptr, int length)
603 {
604 gdb_assert (parse_completion
605 && expout_tag_completion_type == TYPE_CODE_UNDEF
606 && expout_completion_name == NULL
607 && expout_last_struct == -1);
608 gdb_assert (tag == TYPE_CODE_UNION
609 || tag == TYPE_CODE_STRUCT
610 || tag == TYPE_CODE_CLASS
611 || tag == TYPE_CODE_ENUM);
612 expout_tag_completion_type = tag;
613 expout_completion_name = xmalloc (length + 1);
614 memcpy (expout_completion_name, ptr, length);
615 expout_completion_name[length] = '\0';
616 }
617
618 \f
619 /* Recognize tokens that start with '$'. These include:
620
621 $regname A native register name or a "standard
622 register name".
623
624 $variable A convenience variable with a name chosen
625 by the user.
626
627 $digits Value history with index <digits>, starting
628 from the first value which has index 1.
629
630 $$digits Value history with index <digits> relative
631 to the last value. I.e. $$0 is the last
632 value, $$1 is the one previous to that, $$2
633 is the one previous to $$1, etc.
634
635 $ | $0 | $$0 The last value in the value history.
636
637 $$ An abbreviation for the second to the last
638 value in the value history, I.e. $$1 */
639
640 void
641 write_dollar_variable (struct stoken str)
642 {
643 struct symbol *sym = NULL;
644 struct bound_minimal_symbol msym;
645 struct internalvar *isym = NULL;
646
647 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
648 and $$digits (equivalent to $<-digits> if you could type that). */
649
650 int negate = 0;
651 int i = 1;
652 /* Double dollar means negate the number and add -1 as well.
653 Thus $$ alone means -1. */
654 if (str.length >= 2 && str.ptr[1] == '$')
655 {
656 negate = 1;
657 i = 2;
658 }
659 if (i == str.length)
660 {
661 /* Just dollars (one or two). */
662 i = -negate;
663 goto handle_last;
664 }
665 /* Is the rest of the token digits? */
666 for (; i < str.length; i++)
667 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
668 break;
669 if (i == str.length)
670 {
671 i = atoi (str.ptr + 1 + negate);
672 if (negate)
673 i = -i;
674 goto handle_last;
675 }
676
677 /* Handle tokens that refer to machine registers:
678 $ followed by a register name. */
679 i = user_reg_map_name_to_regnum (parse_gdbarch,
680 str.ptr + 1, str.length - 1);
681 if (i >= 0)
682 goto handle_register;
683
684 /* Any names starting with $ are probably debugger internal variables. */
685
686 isym = lookup_only_internalvar (copy_name (str) + 1);
687 if (isym)
688 {
689 write_exp_elt_opcode (OP_INTERNALVAR);
690 write_exp_elt_intern (isym);
691 write_exp_elt_opcode (OP_INTERNALVAR);
692 return;
693 }
694
695 /* On some systems, such as HP-UX and hppa-linux, certain system routines
696 have names beginning with $ or $$. Check for those, first. */
697
698 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
699 VAR_DOMAIN, NULL);
700 if (sym)
701 {
702 write_exp_elt_opcode (OP_VAR_VALUE);
703 write_exp_elt_block (block_found); /* set by lookup_symbol */
704 write_exp_elt_sym (sym);
705 write_exp_elt_opcode (OP_VAR_VALUE);
706 return;
707 }
708 msym = lookup_bound_minimal_symbol (copy_name (str));
709 if (msym.minsym)
710 {
711 write_exp_msymbol (msym);
712 return;
713 }
714
715 /* Any other names are assumed to be debugger internal variables. */
716
717 write_exp_elt_opcode (OP_INTERNALVAR);
718 write_exp_elt_intern (create_internalvar (copy_name (str) + 1));
719 write_exp_elt_opcode (OP_INTERNALVAR);
720 return;
721 handle_last:
722 write_exp_elt_opcode (OP_LAST);
723 write_exp_elt_longcst ((LONGEST) i);
724 write_exp_elt_opcode (OP_LAST);
725 return;
726 handle_register:
727 write_exp_elt_opcode (OP_REGISTER);
728 str.length--;
729 str.ptr++;
730 write_exp_string (str);
731 write_exp_elt_opcode (OP_REGISTER);
732 return;
733 }
734
735
736 const char *
737 find_template_name_end (const char *p)
738 {
739 int depth = 1;
740 int just_seen_right = 0;
741 int just_seen_colon = 0;
742 int just_seen_space = 0;
743
744 if (!p || (*p != '<'))
745 return 0;
746
747 while (*++p)
748 {
749 switch (*p)
750 {
751 case '\'':
752 case '\"':
753 case '{':
754 case '}':
755 /* In future, may want to allow these?? */
756 return 0;
757 case '<':
758 depth++; /* start nested template */
759 if (just_seen_colon || just_seen_right || just_seen_space)
760 return 0; /* but not after : or :: or > or space */
761 break;
762 case '>':
763 if (just_seen_colon || just_seen_right)
764 return 0; /* end a (nested?) template */
765 just_seen_right = 1; /* but not after : or :: */
766 if (--depth == 0) /* also disallow >>, insist on > > */
767 return ++p; /* if outermost ended, return */
768 break;
769 case ':':
770 if (just_seen_space || (just_seen_colon > 1))
771 return 0; /* nested class spec coming up */
772 just_seen_colon++; /* we allow :: but not :::: */
773 break;
774 case ' ':
775 break;
776 default:
777 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
778 (*p >= 'A' && *p <= 'Z') ||
779 (*p >= '0' && *p <= '9') ||
780 (*p == '_') || (*p == ',') || /* commas for template args */
781 (*p == '&') || (*p == '*') || /* pointer and ref types */
782 (*p == '(') || (*p == ')') || /* function types */
783 (*p == '[') || (*p == ']'))) /* array types */
784 return 0;
785 }
786 if (*p != ' ')
787 just_seen_space = 0;
788 if (*p != ':')
789 just_seen_colon = 0;
790 if (*p != '>')
791 just_seen_right = 0;
792 }
793 return 0;
794 }
795 \f
796
797 /* Return a null-terminated temporary copy of the name of a string token.
798
799 Tokens that refer to names do so with explicit pointer and length,
800 so they can share the storage that lexptr is parsing.
801 When it is necessary to pass a name to a function that expects
802 a null-terminated string, the substring is copied out
803 into a separate block of storage.
804
805 N.B. A single buffer is reused on each call. */
806
807 char *
808 copy_name (struct stoken token)
809 {
810 /* A temporary buffer for identifiers, so we can null-terminate them.
811 We allocate this with xrealloc. parse_exp_1 used to allocate with
812 alloca, using the size of the whole expression as a conservative
813 estimate of the space needed. However, macro expansion can
814 introduce names longer than the original expression; there's no
815 practical way to know beforehand how large that might be. */
816 static char *namecopy;
817 static size_t namecopy_size;
818
819 /* Make sure there's enough space for the token. */
820 if (namecopy_size < token.length + 1)
821 {
822 namecopy_size = token.length + 1;
823 namecopy = xrealloc (namecopy, token.length + 1);
824 }
825
826 memcpy (namecopy, token.ptr, token.length);
827 namecopy[token.length] = 0;
828
829 return namecopy;
830 }
831 \f
832
833 /* See comments on parser-defs.h. */
834
835 int
836 prefixify_expression (struct expression *expr)
837 {
838 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
839 struct expression *temp;
840 int inpos = expr->nelts, outpos = 0;
841
842 temp = (struct expression *) alloca (len);
843
844 /* Copy the original expression into temp. */
845 memcpy (temp, expr, len);
846
847 return prefixify_subexp (temp, expr, inpos, outpos);
848 }
849
850 /* Return the number of exp_elements in the postfix subexpression
851 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
852
853 int
854 length_of_subexp (struct expression *expr, int endpos)
855 {
856 int oplen, args;
857
858 operator_length (expr, endpos, &oplen, &args);
859
860 while (args > 0)
861 {
862 oplen += length_of_subexp (expr, endpos - oplen);
863 args--;
864 }
865
866 return oplen;
867 }
868
869 /* Sets *OPLENP to the length of the operator whose (last) index is
870 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
871 operator takes. */
872
873 void
874 operator_length (const struct expression *expr, int endpos, int *oplenp,
875 int *argsp)
876 {
877 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
878 oplenp, argsp);
879 }
880
881 /* Default value for operator_length in exp_descriptor vectors. */
882
883 void
884 operator_length_standard (const struct expression *expr, int endpos,
885 int *oplenp, int *argsp)
886 {
887 int oplen = 1;
888 int args = 0;
889 enum f90_range_type range_type;
890 int i;
891
892 if (endpos < 1)
893 error (_("?error in operator_length_standard"));
894
895 i = (int) expr->elts[endpos - 1].opcode;
896
897 switch (i)
898 {
899 /* C++ */
900 case OP_SCOPE:
901 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
902 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
903 break;
904
905 case OP_LONG:
906 case OP_DOUBLE:
907 case OP_DECFLOAT:
908 case OP_VAR_VALUE:
909 oplen = 4;
910 break;
911
912 case OP_TYPE:
913 case OP_BOOL:
914 case OP_LAST:
915 case OP_INTERNALVAR:
916 case OP_VAR_ENTRY_VALUE:
917 oplen = 3;
918 break;
919
920 case OP_COMPLEX:
921 oplen = 3;
922 args = 2;
923 break;
924
925 case OP_FUNCALL:
926 case OP_F77_UNDETERMINED_ARGLIST:
927 oplen = 3;
928 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
929 break;
930
931 case TYPE_INSTANCE:
932 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
933 args = 1;
934 break;
935
936 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
937 oplen = 4;
938 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
939 break;
940
941 case UNOP_MAX:
942 case UNOP_MIN:
943 oplen = 3;
944 break;
945
946 case UNOP_CAST_TYPE:
947 case UNOP_DYNAMIC_CAST:
948 case UNOP_REINTERPRET_CAST:
949 case UNOP_MEMVAL_TYPE:
950 oplen = 1;
951 args = 2;
952 break;
953
954 case BINOP_VAL:
955 case UNOP_CAST:
956 case UNOP_MEMVAL:
957 oplen = 3;
958 args = 1;
959 break;
960
961 case UNOP_MEMVAL_TLS:
962 oplen = 4;
963 args = 1;
964 break;
965
966 case UNOP_ABS:
967 case UNOP_CAP:
968 case UNOP_CHR:
969 case UNOP_FLOAT:
970 case UNOP_HIGH:
971 case UNOP_ODD:
972 case UNOP_ORD:
973 case UNOP_TRUNC:
974 case OP_TYPEOF:
975 case OP_DECLTYPE:
976 case OP_TYPEID:
977 oplen = 1;
978 args = 1;
979 break;
980
981 case OP_ADL_FUNC:
982 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
983 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
984 oplen++;
985 oplen++;
986 break;
987
988 case STRUCTOP_STRUCT:
989 case STRUCTOP_PTR:
990 args = 1;
991 /* fall through */
992 case OP_REGISTER:
993 case OP_M2_STRING:
994 case OP_STRING:
995 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
996 NSString constant. */
997 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
998 case OP_NAME:
999 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
1000 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
1001 break;
1002
1003 case OP_ARRAY:
1004 oplen = 4;
1005 args = longest_to_int (expr->elts[endpos - 2].longconst);
1006 args -= longest_to_int (expr->elts[endpos - 3].longconst);
1007 args += 1;
1008 break;
1009
1010 case TERNOP_COND:
1011 case TERNOP_SLICE:
1012 args = 3;
1013 break;
1014
1015 /* Modula-2 */
1016 case MULTI_SUBSCRIPT:
1017 oplen = 3;
1018 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
1019 break;
1020
1021 case BINOP_ASSIGN_MODIFY:
1022 oplen = 3;
1023 args = 2;
1024 break;
1025
1026 /* C++ */
1027 case OP_THIS:
1028 oplen = 2;
1029 break;
1030
1031 case OP_F90_RANGE:
1032 oplen = 3;
1033
1034 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1035 switch (range_type)
1036 {
1037 case LOW_BOUND_DEFAULT:
1038 case HIGH_BOUND_DEFAULT:
1039 args = 1;
1040 break;
1041 case BOTH_BOUND_DEFAULT:
1042 args = 0;
1043 break;
1044 case NONE_BOUND_DEFAULT:
1045 args = 2;
1046 break;
1047 }
1048
1049 break;
1050
1051 default:
1052 args = 1 + (i < (int) BINOP_END);
1053 }
1054
1055 *oplenp = oplen;
1056 *argsp = args;
1057 }
1058
1059 /* Copy the subexpression ending just before index INEND in INEXPR
1060 into OUTEXPR, starting at index OUTBEG.
1061 In the process, convert it from suffix to prefix form.
1062 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1063 Otherwise, it returns the index of the subexpression which is the
1064 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1065
1066 static int
1067 prefixify_subexp (struct expression *inexpr,
1068 struct expression *outexpr, int inend, int outbeg)
1069 {
1070 int oplen;
1071 int args;
1072 int i;
1073 int *arglens;
1074 int result = -1;
1075
1076 operator_length (inexpr, inend, &oplen, &args);
1077
1078 /* Copy the final operator itself, from the end of the input
1079 to the beginning of the output. */
1080 inend -= oplen;
1081 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1082 EXP_ELEM_TO_BYTES (oplen));
1083 outbeg += oplen;
1084
1085 if (expout_last_struct == inend)
1086 result = outbeg - oplen;
1087
1088 /* Find the lengths of the arg subexpressions. */
1089 arglens = (int *) alloca (args * sizeof (int));
1090 for (i = args - 1; i >= 0; i--)
1091 {
1092 oplen = length_of_subexp (inexpr, inend);
1093 arglens[i] = oplen;
1094 inend -= oplen;
1095 }
1096
1097 /* Now copy each subexpression, preserving the order of
1098 the subexpressions, but prefixifying each one.
1099 In this loop, inend starts at the beginning of
1100 the expression this level is working on
1101 and marches forward over the arguments.
1102 outbeg does similarly in the output. */
1103 for (i = 0; i < args; i++)
1104 {
1105 int r;
1106
1107 oplen = arglens[i];
1108 inend += oplen;
1109 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1110 if (r != -1)
1111 {
1112 /* Return immediately. We probably have only parsed a
1113 partial expression, so we don't want to try to reverse
1114 the other operands. */
1115 return r;
1116 }
1117 outbeg += oplen;
1118 }
1119
1120 return result;
1121 }
1122 \f
1123 /* Read an expression from the string *STRINGPTR points to,
1124 parse it, and return a pointer to a struct expression that we malloc.
1125 Use block BLOCK as the lexical context for variable names;
1126 if BLOCK is zero, use the block of the selected stack frame.
1127 Meanwhile, advance *STRINGPTR to point after the expression,
1128 at the first nonwhite character that is not part of the expression
1129 (possibly a null character).
1130
1131 If COMMA is nonzero, stop if a comma is reached. */
1132
1133 struct expression *
1134 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1135 int comma)
1136 {
1137 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1138 }
1139
1140 static struct expression *
1141 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1142 const struct block *block,
1143 int comma, int void_context_p, int *out_subexp)
1144 {
1145 return parse_exp_in_context_1 (stringptr, pc, block, comma,
1146 void_context_p, out_subexp);
1147 }
1148
1149 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1150 no value is expected from the expression.
1151 OUT_SUBEXP is set when attempting to complete a field name; in this
1152 case it is set to the index of the subexpression on the
1153 left-hand-side of the struct op. If not doing such completion, it
1154 is left untouched. */
1155
1156 static struct expression *
1157 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1158 const struct block *block,
1159 int comma, int void_context_p, int *out_subexp)
1160 {
1161 volatile struct gdb_exception except;
1162 struct cleanup *old_chain, *inner_chain;
1163 const struct language_defn *lang = NULL;
1164 int subexp;
1165
1166 lexptr = *stringptr;
1167 prev_lexptr = NULL;
1168
1169 paren_depth = 0;
1170 type_stack.depth = 0;
1171 expout_last_struct = -1;
1172 expout_tag_completion_type = TYPE_CODE_UNDEF;
1173 xfree (expout_completion_name);
1174 expout_completion_name = NULL;
1175
1176 comma_terminates = comma;
1177
1178 if (lexptr == 0 || *lexptr == 0)
1179 error_no_arg (_("expression to compute"));
1180
1181 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1182 funcall_chain = 0;
1183
1184 expression_context_block = block;
1185
1186 /* If no context specified, try using the current frame, if any. */
1187 if (!expression_context_block)
1188 expression_context_block = get_selected_block (&expression_context_pc);
1189 else if (pc == 0)
1190 expression_context_pc = BLOCK_START (expression_context_block);
1191 else
1192 expression_context_pc = pc;
1193
1194 /* Fall back to using the current source static context, if any. */
1195
1196 if (!expression_context_block)
1197 {
1198 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1199 if (cursal.symtab)
1200 expression_context_block
1201 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1202 if (expression_context_block)
1203 expression_context_pc = BLOCK_START (expression_context_block);
1204 }
1205
1206 if (language_mode == language_mode_auto && block != NULL)
1207 {
1208 /* Find the language associated to the given context block.
1209 Default to the current language if it can not be determined.
1210
1211 Note that using the language corresponding to the current frame
1212 can sometimes give unexpected results. For instance, this
1213 routine is often called several times during the inferior
1214 startup phase to re-parse breakpoint expressions after
1215 a new shared library has been loaded. The language associated
1216 to the current frame at this moment is not relevant for
1217 the breakpoint. Using it would therefore be silly, so it seems
1218 better to rely on the current language rather than relying on
1219 the current frame language to parse the expression. That's why
1220 we do the following language detection only if the context block
1221 has been specifically provided. */
1222 struct symbol *func = block_linkage_function (block);
1223
1224 if (func != NULL)
1225 lang = language_def (SYMBOL_LANGUAGE (func));
1226 if (lang == NULL || lang->la_language == language_unknown)
1227 lang = current_language;
1228 }
1229 else
1230 lang = current_language;
1231
1232 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1233 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1234 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1235 to the value matching SELECTED_FRAME as set by get_current_arch. */
1236 initialize_expout (10, lang, get_current_arch ());
1237 inner_chain = make_cleanup_restore_current_language ();
1238 set_language (lang->la_language);
1239
1240 TRY_CATCH (except, RETURN_MASK_ALL)
1241 {
1242 if (lang->la_parser ())
1243 lang->la_error (NULL);
1244 }
1245 if (except.reason < 0)
1246 {
1247 if (! parse_completion)
1248 {
1249 xfree (expout);
1250 throw_exception (except);
1251 }
1252 }
1253
1254 reallocate_expout ();
1255
1256 /* Convert expression from postfix form as generated by yacc
1257 parser, to a prefix form. */
1258
1259 if (expressiondebug)
1260 dump_raw_expression (expout, gdb_stdlog,
1261 "before conversion to prefix form");
1262
1263 subexp = prefixify_expression (expout);
1264 if (out_subexp)
1265 *out_subexp = subexp;
1266
1267 lang->la_post_parser (&expout, void_context_p);
1268
1269 if (expressiondebug)
1270 dump_prefix_expression (expout, gdb_stdlog);
1271
1272 do_cleanups (inner_chain);
1273 discard_cleanups (old_chain);
1274
1275 *stringptr = lexptr;
1276 return expout;
1277 }
1278
1279 /* Parse STRING as an expression, and complain if this fails
1280 to use up all of the contents of STRING. */
1281
1282 struct expression *
1283 parse_expression (const char *string)
1284 {
1285 struct expression *exp;
1286
1287 exp = parse_exp_1 (&string, 0, 0, 0);
1288 if (*string)
1289 error (_("Junk after end of expression."));
1290 return exp;
1291 }
1292
1293 /* Parse STRING as an expression. If parsing ends in the middle of a
1294 field reference, return the type of the left-hand-side of the
1295 reference; furthermore, if the parsing ends in the field name,
1296 return the field name in *NAME. If the parsing ends in the middle
1297 of a field reference, but the reference is somehow invalid, throw
1298 an exception. In all other cases, return NULL. Returned non-NULL
1299 *NAME must be freed by the caller. */
1300
1301 struct type *
1302 parse_expression_for_completion (const char *string, char **name,
1303 enum type_code *code)
1304 {
1305 struct expression *exp = NULL;
1306 struct value *val;
1307 int subexp;
1308 volatile struct gdb_exception except;
1309
1310 TRY_CATCH (except, RETURN_MASK_ERROR)
1311 {
1312 parse_completion = 1;
1313 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1314 }
1315 parse_completion = 0;
1316 if (except.reason < 0 || ! exp)
1317 return NULL;
1318
1319 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1320 {
1321 *code = expout_tag_completion_type;
1322 *name = expout_completion_name;
1323 expout_completion_name = NULL;
1324 return NULL;
1325 }
1326
1327 if (expout_last_struct == -1)
1328 {
1329 xfree (exp);
1330 return NULL;
1331 }
1332
1333 *name = extract_field_op (exp, &subexp);
1334 if (!*name)
1335 {
1336 xfree (exp);
1337 return NULL;
1338 }
1339
1340 /* This might throw an exception. If so, we want to let it
1341 propagate. */
1342 val = evaluate_subexpression_type (exp, subexp);
1343 /* (*NAME) is a part of the EXP memory block freed below. */
1344 *name = xstrdup (*name);
1345 xfree (exp);
1346
1347 return value_type (val);
1348 }
1349
1350 /* A post-parser that does nothing. */
1351
1352 void
1353 null_post_parser (struct expression **exp, int void_context_p)
1354 {
1355 }
1356
1357 /* Parse floating point value P of length LEN.
1358 Return 0 (false) if invalid, 1 (true) if valid.
1359 The successfully parsed number is stored in D.
1360 *SUFFIX points to the suffix of the number in P.
1361
1362 NOTE: This accepts the floating point syntax that sscanf accepts. */
1363
1364 int
1365 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1366 {
1367 char *copy;
1368 int n, num;
1369
1370 copy = xmalloc (len + 1);
1371 memcpy (copy, p, len);
1372 copy[len] = 0;
1373
1374 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1375 xfree (copy);
1376
1377 /* The sscanf man page suggests not making any assumptions on the effect
1378 of %n on the result, so we don't.
1379 That is why we simply test num == 0. */
1380 if (num == 0)
1381 return 0;
1382
1383 *suffix = p + n;
1384 return 1;
1385 }
1386
1387 /* Parse floating point value P of length LEN, using the C syntax for floats.
1388 Return 0 (false) if invalid, 1 (true) if valid.
1389 The successfully parsed number is stored in *D.
1390 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1391
1392 int
1393 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1394 DOUBLEST *d, struct type **t)
1395 {
1396 const char *suffix;
1397 int suffix_len;
1398 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1399
1400 if (! parse_float (p, len, d, &suffix))
1401 return 0;
1402
1403 suffix_len = p + len - suffix;
1404
1405 if (suffix_len == 0)
1406 *t = builtin_types->builtin_double;
1407 else if (suffix_len == 1)
1408 {
1409 /* Handle suffixes: 'f' for float, 'l' for long double. */
1410 if (tolower (*suffix) == 'f')
1411 *t = builtin_types->builtin_float;
1412 else if (tolower (*suffix) == 'l')
1413 *t = builtin_types->builtin_long_double;
1414 else
1415 return 0;
1416 }
1417 else
1418 return 0;
1419
1420 return 1;
1421 }
1422 \f
1423 /* Stuff for maintaining a stack of types. Currently just used by C, but
1424 probably useful for any language which declares its types "backwards". */
1425
1426 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1427
1428 static void
1429 type_stack_reserve (struct type_stack *stack, int howmuch)
1430 {
1431 if (stack->depth + howmuch >= stack->size)
1432 {
1433 stack->size *= 2;
1434 if (stack->size < howmuch)
1435 stack->size = howmuch;
1436 stack->elements = xrealloc (stack->elements,
1437 stack->size * sizeof (union type_stack_elt));
1438 }
1439 }
1440
1441 /* Ensure that there is a single open slot in the global type stack. */
1442
1443 static void
1444 check_type_stack_depth (void)
1445 {
1446 type_stack_reserve (&type_stack, 1);
1447 }
1448
1449 /* A helper function for insert_type and insert_type_address_space.
1450 This does work of expanding the type stack and inserting the new
1451 element, ELEMENT, into the stack at location SLOT. */
1452
1453 static void
1454 insert_into_type_stack (int slot, union type_stack_elt element)
1455 {
1456 check_type_stack_depth ();
1457
1458 if (slot < type_stack.depth)
1459 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1460 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1461 type_stack.elements[slot] = element;
1462 ++type_stack.depth;
1463 }
1464
1465 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1466 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1467 a qualifier, it is inserted at slot 1 (just above a previous
1468 tp_pointer) if there is anything on the stack, or simply pushed if
1469 the stack is empty. Other values for TP are invalid. */
1470
1471 void
1472 insert_type (enum type_pieces tp)
1473 {
1474 union type_stack_elt element;
1475 int slot;
1476
1477 gdb_assert (tp == tp_pointer || tp == tp_reference
1478 || tp == tp_const || tp == tp_volatile);
1479
1480 /* If there is anything on the stack (we know it will be a
1481 tp_pointer), insert the qualifier above it. Otherwise, simply
1482 push this on the top of the stack. */
1483 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1484 slot = 1;
1485 else
1486 slot = 0;
1487
1488 element.piece = tp;
1489 insert_into_type_stack (slot, element);
1490 }
1491
1492 void
1493 push_type (enum type_pieces tp)
1494 {
1495 check_type_stack_depth ();
1496 type_stack.elements[type_stack.depth++].piece = tp;
1497 }
1498
1499 void
1500 push_type_int (int n)
1501 {
1502 check_type_stack_depth ();
1503 type_stack.elements[type_stack.depth++].int_val = n;
1504 }
1505
1506 /* Insert a tp_space_identifier and the corresponding address space
1507 value into the stack. STRING is the name of an address space, as
1508 recognized by address_space_name_to_int. If the stack is empty,
1509 the new elements are simply pushed. If the stack is not empty,
1510 this function assumes that the first item on the stack is a
1511 tp_pointer, and the new values are inserted above the first
1512 item. */
1513
1514 void
1515 insert_type_address_space (char *string)
1516 {
1517 union type_stack_elt element;
1518 int slot;
1519
1520 /* If there is anything on the stack (we know it will be a
1521 tp_pointer), insert the address space qualifier above it.
1522 Otherwise, simply push this on the top of the stack. */
1523 if (type_stack.depth)
1524 slot = 1;
1525 else
1526 slot = 0;
1527
1528 element.piece = tp_space_identifier;
1529 insert_into_type_stack (slot, element);
1530 element.int_val = address_space_name_to_int (parse_gdbarch, string);
1531 insert_into_type_stack (slot, element);
1532 }
1533
1534 enum type_pieces
1535 pop_type (void)
1536 {
1537 if (type_stack.depth)
1538 return type_stack.elements[--type_stack.depth].piece;
1539 return tp_end;
1540 }
1541
1542 int
1543 pop_type_int (void)
1544 {
1545 if (type_stack.depth)
1546 return type_stack.elements[--type_stack.depth].int_val;
1547 /* "Can't happen". */
1548 return 0;
1549 }
1550
1551 /* Pop a type list element from the global type stack. */
1552
1553 static VEC (type_ptr) *
1554 pop_typelist (void)
1555 {
1556 gdb_assert (type_stack.depth);
1557 return type_stack.elements[--type_stack.depth].typelist_val;
1558 }
1559
1560 /* Pop a type_stack element from the global type stack. */
1561
1562 static struct type_stack *
1563 pop_type_stack (void)
1564 {
1565 gdb_assert (type_stack.depth);
1566 return type_stack.elements[--type_stack.depth].stack_val;
1567 }
1568
1569 /* Append the elements of the type stack FROM to the type stack TO.
1570 Always returns TO. */
1571
1572 struct type_stack *
1573 append_type_stack (struct type_stack *to, struct type_stack *from)
1574 {
1575 type_stack_reserve (to, from->depth);
1576
1577 memcpy (&to->elements[to->depth], &from->elements[0],
1578 from->depth * sizeof (union type_stack_elt));
1579 to->depth += from->depth;
1580
1581 return to;
1582 }
1583
1584 /* Push the type stack STACK as an element on the global type stack. */
1585
1586 void
1587 push_type_stack (struct type_stack *stack)
1588 {
1589 check_type_stack_depth ();
1590 type_stack.elements[type_stack.depth++].stack_val = stack;
1591 push_type (tp_type_stack);
1592 }
1593
1594 /* Copy the global type stack into a newly allocated type stack and
1595 return it. The global stack is cleared. The returned type stack
1596 must be freed with type_stack_cleanup. */
1597
1598 struct type_stack *
1599 get_type_stack (void)
1600 {
1601 struct type_stack *result = XNEW (struct type_stack);
1602
1603 *result = type_stack;
1604 type_stack.depth = 0;
1605 type_stack.size = 0;
1606 type_stack.elements = NULL;
1607
1608 return result;
1609 }
1610
1611 /* A cleanup function that destroys a single type stack. */
1612
1613 void
1614 type_stack_cleanup (void *arg)
1615 {
1616 struct type_stack *stack = arg;
1617
1618 xfree (stack->elements);
1619 xfree (stack);
1620 }
1621
1622 /* Push a function type with arguments onto the global type stack.
1623 LIST holds the argument types. If the final item in LIST is NULL,
1624 then the function will be varargs. */
1625
1626 void
1627 push_typelist (VEC (type_ptr) *list)
1628 {
1629 check_type_stack_depth ();
1630 type_stack.elements[type_stack.depth++].typelist_val = list;
1631 push_type (tp_function_with_arguments);
1632 }
1633
1634 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1635 as modified by all the stuff on the stack. */
1636 struct type *
1637 follow_types (struct type *follow_type)
1638 {
1639 int done = 0;
1640 int make_const = 0;
1641 int make_volatile = 0;
1642 int make_addr_space = 0;
1643 int array_size;
1644
1645 while (!done)
1646 switch (pop_type ())
1647 {
1648 case tp_end:
1649 done = 1;
1650 if (make_const)
1651 follow_type = make_cv_type (make_const,
1652 TYPE_VOLATILE (follow_type),
1653 follow_type, 0);
1654 if (make_volatile)
1655 follow_type = make_cv_type (TYPE_CONST (follow_type),
1656 make_volatile,
1657 follow_type, 0);
1658 if (make_addr_space)
1659 follow_type = make_type_with_address_space (follow_type,
1660 make_addr_space);
1661 make_const = make_volatile = 0;
1662 make_addr_space = 0;
1663 break;
1664 case tp_const:
1665 make_const = 1;
1666 break;
1667 case tp_volatile:
1668 make_volatile = 1;
1669 break;
1670 case tp_space_identifier:
1671 make_addr_space = pop_type_int ();
1672 break;
1673 case tp_pointer:
1674 follow_type = lookup_pointer_type (follow_type);
1675 if (make_const)
1676 follow_type = make_cv_type (make_const,
1677 TYPE_VOLATILE (follow_type),
1678 follow_type, 0);
1679 if (make_volatile)
1680 follow_type = make_cv_type (TYPE_CONST (follow_type),
1681 make_volatile,
1682 follow_type, 0);
1683 if (make_addr_space)
1684 follow_type = make_type_with_address_space (follow_type,
1685 make_addr_space);
1686 make_const = make_volatile = 0;
1687 make_addr_space = 0;
1688 break;
1689 case tp_reference:
1690 follow_type = lookup_reference_type (follow_type);
1691 if (make_const)
1692 follow_type = make_cv_type (make_const,
1693 TYPE_VOLATILE (follow_type),
1694 follow_type, 0);
1695 if (make_volatile)
1696 follow_type = make_cv_type (TYPE_CONST (follow_type),
1697 make_volatile,
1698 follow_type, 0);
1699 if (make_addr_space)
1700 follow_type = make_type_with_address_space (follow_type,
1701 make_addr_space);
1702 make_const = make_volatile = 0;
1703 make_addr_space = 0;
1704 break;
1705 case tp_array:
1706 array_size = pop_type_int ();
1707 /* FIXME-type-allocation: need a way to free this type when we are
1708 done with it. */
1709 follow_type =
1710 lookup_array_range_type (follow_type,
1711 0, array_size >= 0 ? array_size - 1 : 0);
1712 if (array_size < 0)
1713 TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1;
1714 break;
1715 case tp_function:
1716 /* FIXME-type-allocation: need a way to free this type when we are
1717 done with it. */
1718 follow_type = lookup_function_type (follow_type);
1719 break;
1720
1721 case tp_function_with_arguments:
1722 {
1723 VEC (type_ptr) *args = pop_typelist ();
1724
1725 follow_type
1726 = lookup_function_type_with_arguments (follow_type,
1727 VEC_length (type_ptr, args),
1728 VEC_address (type_ptr,
1729 args));
1730 VEC_free (type_ptr, args);
1731 }
1732 break;
1733
1734 case tp_type_stack:
1735 {
1736 struct type_stack *stack = pop_type_stack ();
1737 /* Sort of ugly, but not really much worse than the
1738 alternatives. */
1739 struct type_stack save = type_stack;
1740
1741 type_stack = *stack;
1742 follow_type = follow_types (follow_type);
1743 gdb_assert (type_stack.depth == 0);
1744
1745 type_stack = save;
1746 }
1747 break;
1748 default:
1749 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1750 }
1751 return follow_type;
1752 }
1753 \f
1754 /* This function avoids direct calls to fprintf
1755 in the parser generated debug code. */
1756 void
1757 parser_fprintf (FILE *x, const char *y, ...)
1758 {
1759 va_list args;
1760
1761 va_start (args, y);
1762 if (x == stderr)
1763 vfprintf_unfiltered (gdb_stderr, y, args);
1764 else
1765 {
1766 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1767 vfprintf_unfiltered (gdb_stderr, y, args);
1768 }
1769 va_end (args);
1770 }
1771
1772 /* Implementation of the exp_descriptor method operator_check. */
1773
1774 int
1775 operator_check_standard (struct expression *exp, int pos,
1776 int (*objfile_func) (struct objfile *objfile,
1777 void *data),
1778 void *data)
1779 {
1780 const union exp_element *const elts = exp->elts;
1781 struct type *type = NULL;
1782 struct objfile *objfile = NULL;
1783
1784 /* Extended operators should have been already handled by exp_descriptor
1785 iterate method of its specific language. */
1786 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1787
1788 /* Track the callers of write_exp_elt_type for this table. */
1789
1790 switch (elts[pos].opcode)
1791 {
1792 case BINOP_VAL:
1793 case OP_COMPLEX:
1794 case OP_DECFLOAT:
1795 case OP_DOUBLE:
1796 case OP_LONG:
1797 case OP_SCOPE:
1798 case OP_TYPE:
1799 case UNOP_CAST:
1800 case UNOP_MAX:
1801 case UNOP_MEMVAL:
1802 case UNOP_MIN:
1803 type = elts[pos + 1].type;
1804 break;
1805
1806 case TYPE_INSTANCE:
1807 {
1808 LONGEST arg, nargs = elts[pos + 1].longconst;
1809
1810 for (arg = 0; arg < nargs; arg++)
1811 {
1812 struct type *type = elts[pos + 2 + arg].type;
1813 struct objfile *objfile = TYPE_OBJFILE (type);
1814
1815 if (objfile && (*objfile_func) (objfile, data))
1816 return 1;
1817 }
1818 }
1819 break;
1820
1821 case UNOP_MEMVAL_TLS:
1822 objfile = elts[pos + 1].objfile;
1823 type = elts[pos + 2].type;
1824 break;
1825
1826 case OP_VAR_VALUE:
1827 {
1828 const struct block *const block = elts[pos + 1].block;
1829 const struct symbol *const symbol = elts[pos + 2].symbol;
1830
1831 /* Check objfile where the variable itself is placed.
1832 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1833 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1834 return 1;
1835
1836 /* Check objfile where is placed the code touching the variable. */
1837 objfile = lookup_objfile_from_block (block);
1838
1839 type = SYMBOL_TYPE (symbol);
1840 }
1841 break;
1842 }
1843
1844 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1845
1846 if (type && TYPE_OBJFILE (type)
1847 && (*objfile_func) (TYPE_OBJFILE (type), data))
1848 return 1;
1849 if (objfile && (*objfile_func) (objfile, data))
1850 return 1;
1851
1852 return 0;
1853 }
1854
1855 /* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP.
1856 The functions are never called with NULL OBJFILE. Functions get passed an
1857 arbitrary caller supplied DATA pointer. If any of the functions returns
1858 non-zero value then (any other) non-zero value is immediately returned to
1859 the caller. Otherwise zero is returned after iterating through whole EXP.
1860 */
1861
1862 static int
1863 exp_iterate (struct expression *exp,
1864 int (*objfile_func) (struct objfile *objfile, void *data),
1865 void *data)
1866 {
1867 int endpos;
1868
1869 for (endpos = exp->nelts; endpos > 0; )
1870 {
1871 int pos, args, oplen = 0;
1872
1873 operator_length (exp, endpos, &oplen, &args);
1874 gdb_assert (oplen > 0);
1875
1876 pos = endpos - oplen;
1877 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1878 objfile_func, data))
1879 return 1;
1880
1881 endpos = pos;
1882 }
1883
1884 return 0;
1885 }
1886
1887 /* Helper for exp_uses_objfile. */
1888
1889 static int
1890 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1891 {
1892 struct objfile *objfile = objfile_voidp;
1893
1894 if (exp_objfile->separate_debug_objfile_backlink)
1895 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1896
1897 return exp_objfile == objfile;
1898 }
1899
1900 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1901 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1902 file. */
1903
1904 int
1905 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1906 {
1907 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1908
1909 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1910 }
1911
1912 void
1913 _initialize_parse (void)
1914 {
1915 type_stack.size = 0;
1916 type_stack.depth = 0;
1917 type_stack.elements = NULL;
1918
1919 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1920 &expressiondebug,
1921 _("Set expression debugging."),
1922 _("Show expression debugging."),
1923 _("When non-zero, the internal representation "
1924 "of expressions will be printed."),
1925 NULL,
1926 show_expressiondebug,
1927 &setdebuglist, &showdebuglist);
1928 add_setshow_boolean_cmd ("parser", class_maintenance,
1929 &parser_debug,
1930 _("Set parser debugging."),
1931 _("Show parser debugging."),
1932 _("When non-zero, expression parser "
1933 "tracing will be enabled."),
1934 NULL,
1935 show_parserdebug,
1936 &setdebuglist, &showdebuglist);
1937 }
This page took 0.093696 seconds and 4 git commands to generate.