2002-04-22 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2 Copyright 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4 Modified from expread.y by the Department of Computer Science at the
5 State University of New York at Buffalo, 1991.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* Parse an expression from text in a string,
25 and return the result as a struct expression pointer.
26 That structure contains arithmetic operations in reverse polish,
27 with constants represented by operations that are followed by special data.
28 See expression.h for the details of the format.
29 What is important here is that it can be built up sequentially
30 during the process of parsing; the lower levels of the tree always
31 come first in the result. */
32
33 #include <ctype.h>
34
35 #include "defs.h"
36 #include "gdb_string.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "frame.h"
40 #include "expression.h"
41 #include "value.h"
42 #include "command.h"
43 #include "language.h"
44 #include "parser-defs.h"
45 #include "gdbcmd.h"
46 #include "symfile.h" /* for overlay functions */
47 #include "inferior.h" /* for NUM_PSEUDO_REGS. NOTE: replace
48 with "gdbarch.h" when appropriate. */
49 #include "doublest.h"
50 #include "builtin-regs.h"
51 #include "gdb_assert.h"
52
53 \f
54 /* Symbols which architectures can redefine. */
55
56 /* Some systems have routines whose names start with `$'. Giving this
57 macro a non-zero value tells GDB's expression parser to check for
58 such routines when parsing tokens that begin with `$'.
59
60 On HP-UX, certain system routines (millicode) have names beginning
61 with `$' or `$$'. For example, `$$dyncall' is a millicode routine
62 that handles inter-space procedure calls on PA-RISC. */
63 #ifndef SYMBOLS_CAN_START_WITH_DOLLAR
64 #define SYMBOLS_CAN_START_WITH_DOLLAR (0)
65 #endif
66
67
68 \f
69 /* Global variables declared in parser-defs.h (and commented there). */
70 struct expression *expout;
71 int expout_size;
72 int expout_ptr;
73 struct block *expression_context_block;
74 struct block *innermost_block;
75 int arglist_len;
76 union type_stack_elt *type_stack;
77 int type_stack_depth, type_stack_size;
78 char *lexptr;
79 char *namecopy;
80 int paren_depth;
81 int comma_terminates;
82 \f
83 static int expressiondebug = 0;
84
85 extern int hp_som_som_object_present;
86
87 static void free_funcalls (void *ignore);
88
89 static void prefixify_expression (struct expression *);
90
91 static void
92 prefixify_subexp (struct expression *, struct expression *, int, int);
93
94 void _initialize_parse (void);
95
96 /* Data structure for saving values of arglist_len for function calls whose
97 arguments contain other function calls. */
98
99 struct funcall
100 {
101 struct funcall *next;
102 int arglist_len;
103 };
104
105 static struct funcall *funcall_chain;
106
107 /* The generic method for targets to specify how their registers are
108 named. The mapping can be derived from two sources: REGISTER_NAME;
109 or builtin regs. */
110
111 int
112 target_map_name_to_register (char *str, int len)
113 {
114 int i;
115
116 /* Search register name space. */
117 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
118 if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i))
119 && STREQN (str, REGISTER_NAME (i), len))
120 {
121 return i;
122 }
123
124 /* Try builtin registers. */
125 i = builtin_reg_map_name_to_regnum (str, len);
126 if (i >= 0)
127 {
128 gdb_assert (i >= NUM_REGS + NUM_PSEUDO_REGS);
129 return i;
130 }
131
132 /* Try builtin registers. */
133 i = builtin_reg_map_name_to_regnum (str, len);
134 if (i >= 0)
135 {
136 gdb_assert (i >= NUM_REGS + NUM_PSEUDO_REGS);
137 return i;
138 }
139
140 return -1;
141 }
142
143 /* Begin counting arguments for a function call,
144 saving the data about any containing call. */
145
146 void
147 start_arglist (void)
148 {
149 register struct funcall *new;
150
151 new = (struct funcall *) xmalloc (sizeof (struct funcall));
152 new->next = funcall_chain;
153 new->arglist_len = arglist_len;
154 arglist_len = 0;
155 funcall_chain = new;
156 }
157
158 /* Return the number of arguments in a function call just terminated,
159 and restore the data for the containing function call. */
160
161 int
162 end_arglist (void)
163 {
164 register int val = arglist_len;
165 register struct funcall *call = funcall_chain;
166 funcall_chain = call->next;
167 arglist_len = call->arglist_len;
168 xfree (call);
169 return val;
170 }
171
172 /* Free everything in the funcall chain.
173 Used when there is an error inside parsing. */
174
175 static void
176 free_funcalls (void *ignore)
177 {
178 register struct funcall *call, *next;
179
180 for (call = funcall_chain; call; call = next)
181 {
182 next = call->next;
183 xfree (call);
184 }
185 }
186 \f
187 /* This page contains the functions for adding data to the struct expression
188 being constructed. */
189
190 /* Add one element to the end of the expression. */
191
192 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
193 a register through here */
194
195 void
196 write_exp_elt (union exp_element expelt)
197 {
198 if (expout_ptr >= expout_size)
199 {
200 expout_size *= 2;
201 expout = (struct expression *)
202 xrealloc ((char *) expout, sizeof (struct expression)
203 + EXP_ELEM_TO_BYTES (expout_size));
204 }
205 expout->elts[expout_ptr++] = expelt;
206 }
207
208 void
209 write_exp_elt_opcode (enum exp_opcode expelt)
210 {
211 union exp_element tmp;
212
213 tmp.opcode = expelt;
214
215 write_exp_elt (tmp);
216 }
217
218 void
219 write_exp_elt_sym (struct symbol *expelt)
220 {
221 union exp_element tmp;
222
223 tmp.symbol = expelt;
224
225 write_exp_elt (tmp);
226 }
227
228 void
229 write_exp_elt_block (struct block *b)
230 {
231 union exp_element tmp;
232 tmp.block = b;
233 write_exp_elt (tmp);
234 }
235
236 void
237 write_exp_elt_longcst (LONGEST expelt)
238 {
239 union exp_element tmp;
240
241 tmp.longconst = expelt;
242
243 write_exp_elt (tmp);
244 }
245
246 void
247 write_exp_elt_dblcst (DOUBLEST expelt)
248 {
249 union exp_element tmp;
250
251 tmp.doubleconst = expelt;
252
253 write_exp_elt (tmp);
254 }
255
256 void
257 write_exp_elt_type (struct type *expelt)
258 {
259 union exp_element tmp;
260
261 tmp.type = expelt;
262
263 write_exp_elt (tmp);
264 }
265
266 void
267 write_exp_elt_intern (struct internalvar *expelt)
268 {
269 union exp_element tmp;
270
271 tmp.internalvar = expelt;
272
273 write_exp_elt (tmp);
274 }
275
276 /* Add a string constant to the end of the expression.
277
278 String constants are stored by first writing an expression element
279 that contains the length of the string, then stuffing the string
280 constant itself into however many expression elements are needed
281 to hold it, and then writing another expression element that contains
282 the length of the string. I.E. an expression element at each end of
283 the string records the string length, so you can skip over the
284 expression elements containing the actual string bytes from either
285 end of the string. Note that this also allows gdb to handle
286 strings with embedded null bytes, as is required for some languages.
287
288 Don't be fooled by the fact that the string is null byte terminated,
289 this is strictly for the convenience of debugging gdb itself. Gdb
290 Gdb does not depend up the string being null terminated, since the
291 actual length is recorded in expression elements at each end of the
292 string. The null byte is taken into consideration when computing how
293 many expression elements are required to hold the string constant, of
294 course. */
295
296
297 void
298 write_exp_string (struct stoken str)
299 {
300 register int len = str.length;
301 register int lenelt;
302 register char *strdata;
303
304 /* Compute the number of expression elements required to hold the string
305 (including a null byte terminator), along with one expression element
306 at each end to record the actual string length (not including the
307 null byte terminator). */
308
309 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
310
311 /* Ensure that we have enough available expression elements to store
312 everything. */
313
314 if ((expout_ptr + lenelt) >= expout_size)
315 {
316 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
317 expout = (struct expression *)
318 xrealloc ((char *) expout, (sizeof (struct expression)
319 + EXP_ELEM_TO_BYTES (expout_size)));
320 }
321
322 /* Write the leading length expression element (which advances the current
323 expression element index), then write the string constant followed by a
324 terminating null byte, and then write the trailing length expression
325 element. */
326
327 write_exp_elt_longcst ((LONGEST) len);
328 strdata = (char *) &expout->elts[expout_ptr];
329 memcpy (strdata, str.ptr, len);
330 *(strdata + len) = '\0';
331 expout_ptr += lenelt - 2;
332 write_exp_elt_longcst ((LONGEST) len);
333 }
334
335 /* Add a bitstring constant to the end of the expression.
336
337 Bitstring constants are stored by first writing an expression element
338 that contains the length of the bitstring (in bits), then stuffing the
339 bitstring constant itself into however many expression elements are
340 needed to hold it, and then writing another expression element that
341 contains the length of the bitstring. I.E. an expression element at
342 each end of the bitstring records the bitstring length, so you can skip
343 over the expression elements containing the actual bitstring bytes from
344 either end of the bitstring. */
345
346 void
347 write_exp_bitstring (struct stoken str)
348 {
349 register int bits = str.length; /* length in bits */
350 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
351 register int lenelt;
352 register char *strdata;
353
354 /* Compute the number of expression elements required to hold the bitstring,
355 along with one expression element at each end to record the actual
356 bitstring length in bits. */
357
358 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
359
360 /* Ensure that we have enough available expression elements to store
361 everything. */
362
363 if ((expout_ptr + lenelt) >= expout_size)
364 {
365 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
366 expout = (struct expression *)
367 xrealloc ((char *) expout, (sizeof (struct expression)
368 + EXP_ELEM_TO_BYTES (expout_size)));
369 }
370
371 /* Write the leading length expression element (which advances the current
372 expression element index), then write the bitstring constant, and then
373 write the trailing length expression element. */
374
375 write_exp_elt_longcst ((LONGEST) bits);
376 strdata = (char *) &expout->elts[expout_ptr];
377 memcpy (strdata, str.ptr, len);
378 expout_ptr += lenelt - 2;
379 write_exp_elt_longcst ((LONGEST) bits);
380 }
381
382 /* Add the appropriate elements for a minimal symbol to the end of
383 the expression. The rationale behind passing in text_symbol_type and
384 data_symbol_type was so that Modula-2 could pass in WORD for
385 data_symbol_type. Perhaps it still is useful to have those types vary
386 based on the language, but they no longer have names like "int", so
387 the initial rationale is gone. */
388
389 static struct type *msym_text_symbol_type;
390 static struct type *msym_data_symbol_type;
391 static struct type *msym_unknown_symbol_type;
392
393 void
394 write_exp_msymbol (struct minimal_symbol *msymbol,
395 struct type *text_symbol_type,
396 struct type *data_symbol_type)
397 {
398 CORE_ADDR addr;
399
400 write_exp_elt_opcode (OP_LONG);
401 /* Let's make the type big enough to hold a 64-bit address. */
402 write_exp_elt_type (builtin_type_CORE_ADDR);
403
404 addr = SYMBOL_VALUE_ADDRESS (msymbol);
405 if (overlay_debugging)
406 addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol));
407 write_exp_elt_longcst ((LONGEST) addr);
408
409 write_exp_elt_opcode (OP_LONG);
410
411 write_exp_elt_opcode (UNOP_MEMVAL);
412 switch (msymbol->type)
413 {
414 case mst_text:
415 case mst_file_text:
416 case mst_solib_trampoline:
417 write_exp_elt_type (msym_text_symbol_type);
418 break;
419
420 case mst_data:
421 case mst_file_data:
422 case mst_bss:
423 case mst_file_bss:
424 write_exp_elt_type (msym_data_symbol_type);
425 break;
426
427 default:
428 write_exp_elt_type (msym_unknown_symbol_type);
429 break;
430 }
431 write_exp_elt_opcode (UNOP_MEMVAL);
432 }
433 \f
434 /* Recognize tokens that start with '$'. These include:
435
436 $regname A native register name or a "standard
437 register name".
438
439 $variable A convenience variable with a name chosen
440 by the user.
441
442 $digits Value history with index <digits>, starting
443 from the first value which has index 1.
444
445 $$digits Value history with index <digits> relative
446 to the last value. I.E. $$0 is the last
447 value, $$1 is the one previous to that, $$2
448 is the one previous to $$1, etc.
449
450 $ | $0 | $$0 The last value in the value history.
451
452 $$ An abbreviation for the second to the last
453 value in the value history, I.E. $$1
454
455 */
456
457 void
458 write_dollar_variable (struct stoken str)
459 {
460 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
461 and $$digits (equivalent to $<-digits> if you could type that). */
462
463 int negate = 0;
464 int i = 1;
465 /* Double dollar means negate the number and add -1 as well.
466 Thus $$ alone means -1. */
467 if (str.length >= 2 && str.ptr[1] == '$')
468 {
469 negate = 1;
470 i = 2;
471 }
472 if (i == str.length)
473 {
474 /* Just dollars (one or two) */
475 i = -negate;
476 goto handle_last;
477 }
478 /* Is the rest of the token digits? */
479 for (; i < str.length; i++)
480 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
481 break;
482 if (i == str.length)
483 {
484 i = atoi (str.ptr + 1 + negate);
485 if (negate)
486 i = -i;
487 goto handle_last;
488 }
489
490 /* Handle tokens that refer to machine registers:
491 $ followed by a register name. */
492 i = target_map_name_to_register (str.ptr + 1, str.length - 1);
493 if (i >= 0)
494 goto handle_register;
495
496 if (SYMBOLS_CAN_START_WITH_DOLLAR)
497 {
498 struct symbol *sym = NULL;
499 struct minimal_symbol *msym = NULL;
500
501 /* On HP-UX, certain system routines (millicode) have names beginning
502 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
503 calls on PA-RISC. Check for those, first. */
504
505 /* This code is not enabled on non HP-UX systems, since worst case
506 symbol table lookup performance is awful, to put it mildly. */
507
508 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
509 VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL);
510 if (sym)
511 {
512 write_exp_elt_opcode (OP_VAR_VALUE);
513 write_exp_elt_block (block_found); /* set by lookup_symbol */
514 write_exp_elt_sym (sym);
515 write_exp_elt_opcode (OP_VAR_VALUE);
516 return;
517 }
518 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
519 if (msym)
520 {
521 write_exp_msymbol (msym,
522 lookup_function_type (builtin_type_int),
523 builtin_type_int);
524 return;
525 }
526 }
527
528 /* Any other names starting in $ are debugger internal variables. */
529
530 write_exp_elt_opcode (OP_INTERNALVAR);
531 write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
532 write_exp_elt_opcode (OP_INTERNALVAR);
533 return;
534 handle_last:
535 write_exp_elt_opcode (OP_LAST);
536 write_exp_elt_longcst ((LONGEST) i);
537 write_exp_elt_opcode (OP_LAST);
538 return;
539 handle_register:
540 write_exp_elt_opcode (OP_REGISTER);
541 write_exp_elt_longcst (i);
542 write_exp_elt_opcode (OP_REGISTER);
543 return;
544 }
545
546
547 /* Parse a string that is possibly a namespace / nested class
548 specification, i.e., something of the form A::B::C::x. Input
549 (NAME) is the entire string; LEN is the current valid length; the
550 output is a string, TOKEN, which points to the largest recognized
551 prefix which is a series of namespaces or classes. CLASS_PREFIX is
552 another output, which records whether a nested class spec was
553 recognized (= 1) or a fully qualified variable name was found (=
554 0). ARGPTR is side-effected (if non-NULL) to point to beyond the
555 string recognized and consumed by this routine.
556
557 The return value is a pointer to the symbol for the base class or
558 variable if found, or NULL if not found. Callers must check this
559 first -- if NULL, the outputs may not be correct.
560
561 This function is used c-exp.y. This is used specifically to get
562 around HP aCC (and possibly other compilers), which insists on
563 generating names with embedded colons for namespace or nested class
564 members.
565
566 (Argument LEN is currently unused. 1997-08-27)
567
568 Callers must free memory allocated for the output string TOKEN. */
569
570 static const char coloncolon[2] =
571 {':', ':'};
572
573 struct symbol *
574 parse_nested_classes_for_hpacc (char *name, int len, char **token,
575 int *class_prefix, char **argptr)
576 {
577 /* Comment below comes from decode_line_1 which has very similar
578 code, which is called for "break" command parsing. */
579
580 /* We have what looks like a class or namespace
581 scope specification (A::B), possibly with many
582 levels of namespaces or classes (A::B::C::D).
583
584 Some versions of the HP ANSI C++ compiler (as also possibly
585 other compilers) generate class/function/member names with
586 embedded double-colons if they are inside namespaces. To
587 handle this, we loop a few times, considering larger and
588 larger prefixes of the string as though they were single
589 symbols. So, if the initially supplied string is
590 A::B::C::D::foo, we have to look up "A", then "A::B",
591 then "A::B::C", then "A::B::C::D", and finally
592 "A::B::C::D::foo" as single, monolithic symbols, because
593 A, B, C or D may be namespaces.
594
595 Note that namespaces can nest only inside other
596 namespaces, and not inside classes. So we need only
597 consider *prefixes* of the string; there is no need to look up
598 "B::C" separately as a symbol in the previous example. */
599
600 register char *p;
601 char *start, *end;
602 char *prefix = NULL;
603 char *tmp;
604 struct symbol *sym_class = NULL;
605 struct symbol *sym_var = NULL;
606 struct type *t;
607 int prefix_len = 0;
608 int done = 0;
609 char *q;
610
611 /* Check for HP-compiled executable -- in other cases
612 return NULL, and caller must default to standard GDB
613 behaviour. */
614
615 if (!hp_som_som_object_present)
616 return (struct symbol *) NULL;
617
618 p = name;
619
620 /* Skip over whitespace and possible global "::" */
621 while (*p && (*p == ' ' || *p == '\t'))
622 p++;
623 if (p[0] == ':' && p[1] == ':')
624 p += 2;
625 while (*p && (*p == ' ' || *p == '\t'))
626 p++;
627
628 while (1)
629 {
630 /* Get to the end of the next namespace or class spec. */
631 /* If we're looking at some non-token, fail immediately */
632 start = p;
633 if (!(isalpha (*p) || *p == '$' || *p == '_'))
634 return (struct symbol *) NULL;
635 p++;
636 while (*p && (isalnum (*p) || *p == '$' || *p == '_'))
637 p++;
638
639 if (*p == '<')
640 {
641 /* If we have the start of a template specification,
642 scan right ahead to its end */
643 q = find_template_name_end (p);
644 if (q)
645 p = q;
646 }
647
648 end = p;
649
650 /* Skip over "::" and whitespace for next time around */
651 while (*p && (*p == ' ' || *p == '\t'))
652 p++;
653 if (p[0] == ':' && p[1] == ':')
654 p += 2;
655 while (*p && (*p == ' ' || *p == '\t'))
656 p++;
657
658 /* Done with tokens? */
659 if (!*p || !(isalpha (*p) || *p == '$' || *p == '_'))
660 done = 1;
661
662 tmp = (char *) alloca (prefix_len + end - start + 3);
663 if (prefix)
664 {
665 memcpy (tmp, prefix, prefix_len);
666 memcpy (tmp + prefix_len, coloncolon, 2);
667 memcpy (tmp + prefix_len + 2, start, end - start);
668 tmp[prefix_len + 2 + end - start] = '\000';
669 }
670 else
671 {
672 memcpy (tmp, start, end - start);
673 tmp[end - start] = '\000';
674 }
675
676 prefix = tmp;
677 prefix_len = strlen (prefix);
678
679 /* See if the prefix we have now is something we know about */
680
681 if (!done)
682 {
683 /* More tokens to process, so this must be a class/namespace */
684 sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
685 0, (struct symtab **) NULL);
686 }
687 else
688 {
689 /* No more tokens, so try as a variable first */
690 sym_var = lookup_symbol (prefix, 0, VAR_NAMESPACE,
691 0, (struct symtab **) NULL);
692 /* If failed, try as class/namespace */
693 if (!sym_var)
694 sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
695 0, (struct symtab **) NULL);
696 }
697
698 if (sym_var ||
699 (sym_class &&
700 (t = check_typedef (SYMBOL_TYPE (sym_class)),
701 (TYPE_CODE (t) == TYPE_CODE_STRUCT
702 || TYPE_CODE (t) == TYPE_CODE_UNION))))
703 {
704 /* We found a valid token */
705 *token = (char *) xmalloc (prefix_len + 1);
706 memcpy (*token, prefix, prefix_len);
707 (*token)[prefix_len] = '\000';
708 break;
709 }
710
711 /* No variable or class/namespace found, no more tokens */
712 if (done)
713 return (struct symbol *) NULL;
714 }
715
716 /* Out of loop, so we must have found a valid token */
717 if (sym_var)
718 *class_prefix = 0;
719 else
720 *class_prefix = 1;
721
722 if (argptr)
723 *argptr = done ? p : end;
724
725 return sym_var ? sym_var : sym_class; /* found */
726 }
727
728 char *
729 find_template_name_end (char *p)
730 {
731 int depth = 1;
732 int just_seen_right = 0;
733 int just_seen_colon = 0;
734 int just_seen_space = 0;
735
736 if (!p || (*p != '<'))
737 return 0;
738
739 while (*++p)
740 {
741 switch (*p)
742 {
743 case '\'':
744 case '\"':
745 case '{':
746 case '}':
747 /* In future, may want to allow these?? */
748 return 0;
749 case '<':
750 depth++; /* start nested template */
751 if (just_seen_colon || just_seen_right || just_seen_space)
752 return 0; /* but not after : or :: or > or space */
753 break;
754 case '>':
755 if (just_seen_colon || just_seen_right)
756 return 0; /* end a (nested?) template */
757 just_seen_right = 1; /* but not after : or :: */
758 if (--depth == 0) /* also disallow >>, insist on > > */
759 return ++p; /* if outermost ended, return */
760 break;
761 case ':':
762 if (just_seen_space || (just_seen_colon > 1))
763 return 0; /* nested class spec coming up */
764 just_seen_colon++; /* we allow :: but not :::: */
765 break;
766 case ' ':
767 break;
768 default:
769 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
770 (*p >= 'A' && *p <= 'Z') ||
771 (*p >= '0' && *p <= '9') ||
772 (*p == '_') || (*p == ',') || /* commas for template args */
773 (*p == '&') || (*p == '*') || /* pointer and ref types */
774 (*p == '(') || (*p == ')') || /* function types */
775 (*p == '[') || (*p == ']'))) /* array types */
776 return 0;
777 }
778 if (*p != ' ')
779 just_seen_space = 0;
780 if (*p != ':')
781 just_seen_colon = 0;
782 if (*p != '>')
783 just_seen_right = 0;
784 }
785 return 0;
786 }
787 \f
788
789
790 /* Return a null-terminated temporary copy of the name
791 of a string token. */
792
793 char *
794 copy_name (struct stoken token)
795 {
796 memcpy (namecopy, token.ptr, token.length);
797 namecopy[token.length] = 0;
798 return namecopy;
799 }
800 \f
801 /* Reverse an expression from suffix form (in which it is constructed)
802 to prefix form (in which we can conveniently print or execute it). */
803
804 static void
805 prefixify_expression (register struct expression *expr)
806 {
807 register int len =
808 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
809 register struct expression *temp;
810 register int inpos = expr->nelts, outpos = 0;
811
812 temp = (struct expression *) alloca (len);
813
814 /* Copy the original expression into temp. */
815 memcpy (temp, expr, len);
816
817 prefixify_subexp (temp, expr, inpos, outpos);
818 }
819
820 /* Return the number of exp_elements in the subexpression of EXPR
821 whose last exp_element is at index ENDPOS - 1 in EXPR. */
822
823 int
824 length_of_subexp (register struct expression *expr, register int endpos)
825 {
826 register int oplen = 1;
827 register int args = 0;
828 register int i;
829
830 if (endpos < 1)
831 error ("?error in length_of_subexp");
832
833 i = (int) expr->elts[endpos - 1].opcode;
834
835 switch (i)
836 {
837 /* C++ */
838 case OP_SCOPE:
839 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
840 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
841 break;
842
843 case OP_LONG:
844 case OP_DOUBLE:
845 case OP_VAR_VALUE:
846 oplen = 4;
847 break;
848
849 case OP_TYPE:
850 case OP_BOOL:
851 case OP_LAST:
852 case OP_REGISTER:
853 case OP_INTERNALVAR:
854 oplen = 3;
855 break;
856
857 case OP_COMPLEX:
858 oplen = 1;
859 args = 2;
860 break;
861
862 case OP_FUNCALL:
863 case OP_F77_UNDETERMINED_ARGLIST:
864 oplen = 3;
865 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
866 break;
867
868 case UNOP_MAX:
869 case UNOP_MIN:
870 oplen = 3;
871 break;
872
873 case BINOP_VAL:
874 case UNOP_CAST:
875 case UNOP_MEMVAL:
876 oplen = 3;
877 args = 1;
878 break;
879
880 case UNOP_ABS:
881 case UNOP_CAP:
882 case UNOP_CHR:
883 case UNOP_FLOAT:
884 case UNOP_HIGH:
885 case UNOP_ODD:
886 case UNOP_ORD:
887 case UNOP_TRUNC:
888 oplen = 1;
889 args = 1;
890 break;
891
892 case OP_LABELED:
893 case STRUCTOP_STRUCT:
894 case STRUCTOP_PTR:
895 args = 1;
896 /* fall through */
897 case OP_M2_STRING:
898 case OP_STRING:
899 case OP_NAME:
900 case OP_EXPRSTRING:
901 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
902 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
903 break;
904
905 case OP_BITSTRING:
906 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
907 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
908 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
909 break;
910
911 case OP_ARRAY:
912 oplen = 4;
913 args = longest_to_int (expr->elts[endpos - 2].longconst);
914 args -= longest_to_int (expr->elts[endpos - 3].longconst);
915 args += 1;
916 break;
917
918 case TERNOP_COND:
919 case TERNOP_SLICE:
920 case TERNOP_SLICE_COUNT:
921 args = 3;
922 break;
923
924 /* Modula-2 */
925 case MULTI_SUBSCRIPT:
926 oplen = 3;
927 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
928 break;
929
930 case BINOP_ASSIGN_MODIFY:
931 oplen = 3;
932 args = 2;
933 break;
934
935 /* C++ */
936 case OP_THIS:
937 oplen = 2;
938 break;
939
940 default:
941 args = 1 + (i < (int) BINOP_END);
942 }
943
944 while (args > 0)
945 {
946 oplen += length_of_subexp (expr, endpos - oplen);
947 args--;
948 }
949
950 return oplen;
951 }
952
953 /* Copy the subexpression ending just before index INEND in INEXPR
954 into OUTEXPR, starting at index OUTBEG.
955 In the process, convert it from suffix to prefix form. */
956
957 static void
958 prefixify_subexp (register struct expression *inexpr,
959 struct expression *outexpr, register int inend, int outbeg)
960 {
961 register int oplen = 1;
962 register int args = 0;
963 register int i;
964 int *arglens;
965 enum exp_opcode opcode;
966
967 /* Compute how long the last operation is (in OPLEN),
968 and also how many preceding subexpressions serve as
969 arguments for it (in ARGS). */
970
971 opcode = inexpr->elts[inend - 1].opcode;
972 switch (opcode)
973 {
974 /* C++ */
975 case OP_SCOPE:
976 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
977 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
978 break;
979
980 case OP_LONG:
981 case OP_DOUBLE:
982 case OP_VAR_VALUE:
983 oplen = 4;
984 break;
985
986 case OP_TYPE:
987 case OP_BOOL:
988 case OP_LAST:
989 case OP_REGISTER:
990 case OP_INTERNALVAR:
991 oplen = 3;
992 break;
993
994 case OP_COMPLEX:
995 oplen = 1;
996 args = 2;
997 break;
998
999 case OP_FUNCALL:
1000 case OP_F77_UNDETERMINED_ARGLIST:
1001 oplen = 3;
1002 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
1003 break;
1004
1005 case UNOP_MIN:
1006 case UNOP_MAX:
1007 oplen = 3;
1008 break;
1009
1010 case UNOP_CAST:
1011 case UNOP_MEMVAL:
1012 oplen = 3;
1013 args = 1;
1014 break;
1015
1016 case UNOP_ABS:
1017 case UNOP_CAP:
1018 case UNOP_CHR:
1019 case UNOP_FLOAT:
1020 case UNOP_HIGH:
1021 case UNOP_ODD:
1022 case UNOP_ORD:
1023 case UNOP_TRUNC:
1024 oplen = 1;
1025 args = 1;
1026 break;
1027
1028 case STRUCTOP_STRUCT:
1029 case STRUCTOP_PTR:
1030 case OP_LABELED:
1031 args = 1;
1032 /* fall through */
1033 case OP_M2_STRING:
1034 case OP_STRING:
1035 case OP_NAME:
1036 case OP_EXPRSTRING:
1037 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1038 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
1039 break;
1040
1041 case OP_BITSTRING:
1042 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1043 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1044 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
1045 break;
1046
1047 case OP_ARRAY:
1048 oplen = 4;
1049 args = longest_to_int (inexpr->elts[inend - 2].longconst);
1050 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
1051 args += 1;
1052 break;
1053
1054 case TERNOP_COND:
1055 case TERNOP_SLICE:
1056 case TERNOP_SLICE_COUNT:
1057 args = 3;
1058 break;
1059
1060 case BINOP_ASSIGN_MODIFY:
1061 oplen = 3;
1062 args = 2;
1063 break;
1064
1065 /* Modula-2 */
1066 case MULTI_SUBSCRIPT:
1067 oplen = 3;
1068 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
1069 break;
1070
1071 /* C++ */
1072 case OP_THIS:
1073 oplen = 2;
1074 break;
1075
1076 default:
1077 args = 1 + ((int) opcode < (int) BINOP_END);
1078 }
1079
1080 /* Copy the final operator itself, from the end of the input
1081 to the beginning of the output. */
1082 inend -= oplen;
1083 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1084 EXP_ELEM_TO_BYTES (oplen));
1085 outbeg += oplen;
1086
1087 /* Find the lengths of the arg subexpressions. */
1088 arglens = (int *) alloca (args * sizeof (int));
1089 for (i = args - 1; i >= 0; i--)
1090 {
1091 oplen = length_of_subexp (inexpr, inend);
1092 arglens[i] = oplen;
1093 inend -= oplen;
1094 }
1095
1096 /* Now copy each subexpression, preserving the order of
1097 the subexpressions, but prefixifying each one.
1098 In this loop, inend starts at the beginning of
1099 the expression this level is working on
1100 and marches forward over the arguments.
1101 outbeg does similarly in the output. */
1102 for (i = 0; i < args; i++)
1103 {
1104 oplen = arglens[i];
1105 inend += oplen;
1106 prefixify_subexp (inexpr, outexpr, inend, outbeg);
1107 outbeg += oplen;
1108 }
1109 }
1110 \f
1111 /* This page contains the two entry points to this file. */
1112
1113 /* Read an expression from the string *STRINGPTR points to,
1114 parse it, and return a pointer to a struct expression that we malloc.
1115 Use block BLOCK as the lexical context for variable names;
1116 if BLOCK is zero, use the block of the selected stack frame.
1117 Meanwhile, advance *STRINGPTR to point after the expression,
1118 at the first nonwhite character that is not part of the expression
1119 (possibly a null character).
1120
1121 If COMMA is nonzero, stop if a comma is reached. */
1122
1123 struct expression *
1124 parse_exp_1 (char **stringptr, struct block *block, int comma)
1125 {
1126 struct cleanup *old_chain;
1127
1128 lexptr = *stringptr;
1129
1130 paren_depth = 0;
1131 type_stack_depth = 0;
1132
1133 comma_terminates = comma;
1134
1135 if (lexptr == 0 || *lexptr == 0)
1136 error_no_arg ("expression to compute");
1137
1138 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1139 funcall_chain = 0;
1140
1141 expression_context_block = block ? block : get_selected_block (0);
1142
1143 namecopy = (char *) alloca (strlen (lexptr) + 1);
1144 expout_size = 10;
1145 expout_ptr = 0;
1146 expout = (struct expression *)
1147 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
1148 expout->language_defn = current_language;
1149 make_cleanup (free_current_contents, &expout);
1150
1151 if (current_language->la_parser ())
1152 current_language->la_error (NULL);
1153
1154 discard_cleanups (old_chain);
1155
1156 /* Record the actual number of expression elements, and then
1157 reallocate the expression memory so that we free up any
1158 excess elements. */
1159
1160 expout->nelts = expout_ptr;
1161 expout = (struct expression *)
1162 xrealloc ((char *) expout,
1163 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
1164
1165 /* Convert expression from postfix form as generated by yacc
1166 parser, to a prefix form. */
1167
1168 if (expressiondebug)
1169 dump_prefix_expression (expout, gdb_stdlog,
1170 "before conversion to prefix form");
1171
1172 prefixify_expression (expout);
1173
1174 if (expressiondebug)
1175 dump_postfix_expression (expout, gdb_stdlog,
1176 "after conversion to prefix form");
1177
1178 *stringptr = lexptr;
1179 return expout;
1180 }
1181
1182 /* Parse STRING as an expression, and complain if this fails
1183 to use up all of the contents of STRING. */
1184
1185 struct expression *
1186 parse_expression (char *string)
1187 {
1188 register struct expression *exp;
1189 exp = parse_exp_1 (&string, 0, 0);
1190 if (*string)
1191 error ("Junk after end of expression.");
1192 return exp;
1193 }
1194 \f
1195 /* Stuff for maintaining a stack of types. Currently just used by C, but
1196 probably useful for any language which declares its types "backwards". */
1197
1198 static void
1199 check_type_stack_depth (void)
1200 {
1201 if (type_stack_depth == type_stack_size)
1202 {
1203 type_stack_size *= 2;
1204 type_stack = (union type_stack_elt *)
1205 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1206 }
1207 }
1208
1209 void
1210 push_type (enum type_pieces tp)
1211 {
1212 check_type_stack_depth ();
1213 type_stack[type_stack_depth++].piece = tp;
1214 }
1215
1216 void
1217 push_type_int (int n)
1218 {
1219 check_type_stack_depth ();
1220 type_stack[type_stack_depth++].int_val = n;
1221 }
1222
1223 void
1224 push_type_address_space (char *string)
1225 {
1226 push_type_int (address_space_name_to_int (string));
1227 }
1228
1229 enum type_pieces
1230 pop_type (void)
1231 {
1232 if (type_stack_depth)
1233 return type_stack[--type_stack_depth].piece;
1234 return tp_end;
1235 }
1236
1237 int
1238 pop_type_int (void)
1239 {
1240 if (type_stack_depth)
1241 return type_stack[--type_stack_depth].int_val;
1242 /* "Can't happen". */
1243 return 0;
1244 }
1245
1246 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1247 as modified by all the stuff on the stack. */
1248 struct type *
1249 follow_types (struct type *follow_type)
1250 {
1251 int done = 0;
1252 int make_const = 0;
1253 int make_volatile = 0;
1254 int make_addr_space = 0;
1255 int array_size;
1256 struct type *range_type;
1257
1258 while (!done)
1259 switch (pop_type ())
1260 {
1261 case tp_end:
1262 done = 1;
1263 if (make_const)
1264 follow_type = make_cv_type (make_const,
1265 TYPE_VOLATILE (follow_type),
1266 follow_type, 0);
1267 if (make_volatile)
1268 follow_type = make_cv_type (TYPE_CONST (follow_type),
1269 make_volatile,
1270 follow_type, 0);
1271 if (make_addr_space)
1272 follow_type = make_type_with_address_space (follow_type,
1273 make_addr_space);
1274 make_const = make_volatile = 0;
1275 make_addr_space = 0;
1276 break;
1277 case tp_const:
1278 make_const = 1;
1279 break;
1280 case tp_volatile:
1281 make_volatile = 1;
1282 break;
1283 case tp_space_identifier:
1284 make_addr_space = pop_type_int ();
1285 break;
1286 case tp_pointer:
1287 follow_type = lookup_pointer_type (follow_type);
1288 if (make_const)
1289 follow_type = make_cv_type (make_const,
1290 TYPE_VOLATILE (follow_type),
1291 follow_type, 0);
1292 if (make_volatile)
1293 follow_type = make_cv_type (TYPE_CONST (follow_type),
1294 make_volatile,
1295 follow_type, 0);
1296 if (make_addr_space)
1297 follow_type = make_type_with_address_space (follow_type,
1298 make_addr_space);
1299 make_const = make_volatile = 0;
1300 make_addr_space = 0;
1301 break;
1302 case tp_reference:
1303 follow_type = lookup_reference_type (follow_type);
1304 if (make_const)
1305 follow_type = make_cv_type (make_const,
1306 TYPE_VOLATILE (follow_type),
1307 follow_type, 0);
1308 if (make_volatile)
1309 follow_type = make_cv_type (TYPE_CONST (follow_type),
1310 make_volatile,
1311 follow_type, 0);
1312 if (make_addr_space)
1313 follow_type = make_type_with_address_space (follow_type,
1314 make_addr_space);
1315 make_const = make_volatile = 0;
1316 make_addr_space = 0;
1317 break;
1318 case tp_array:
1319 array_size = pop_type_int ();
1320 /* FIXME-type-allocation: need a way to free this type when we are
1321 done with it. */
1322 range_type =
1323 create_range_type ((struct type *) NULL,
1324 builtin_type_int, 0,
1325 array_size >= 0 ? array_size - 1 : 0);
1326 follow_type =
1327 create_array_type ((struct type *) NULL,
1328 follow_type, range_type);
1329 if (array_size < 0)
1330 TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type)
1331 = BOUND_CANNOT_BE_DETERMINED;
1332 break;
1333 case tp_function:
1334 /* FIXME-type-allocation: need a way to free this type when we are
1335 done with it. */
1336 follow_type = lookup_function_type (follow_type);
1337 break;
1338 }
1339 return follow_type;
1340 }
1341 \f
1342 static void build_parse (void);
1343 static void
1344 build_parse (void)
1345 {
1346 int i;
1347
1348 msym_text_symbol_type =
1349 init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
1350 TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
1351 msym_data_symbol_type =
1352 init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
1353 "<data variable, no debug info>", NULL);
1354 msym_unknown_symbol_type =
1355 init_type (TYPE_CODE_INT, 1, 0,
1356 "<variable (not text or data), no debug info>",
1357 NULL);
1358 }
1359
1360 void
1361 _initialize_parse (void)
1362 {
1363 type_stack_size = 80;
1364 type_stack_depth = 0;
1365 type_stack = (union type_stack_elt *)
1366 xmalloc (type_stack_size * sizeof (*type_stack));
1367
1368 build_parse ();
1369
1370 /* FIXME - For the moment, handle types by swapping them in and out.
1371 Should be using the per-architecture data-pointer and a large
1372 struct. */
1373 register_gdbarch_swap (&msym_text_symbol_type, sizeof (msym_text_symbol_type), NULL);
1374 register_gdbarch_swap (&msym_data_symbol_type, sizeof (msym_data_symbol_type), NULL);
1375 register_gdbarch_swap (&msym_unknown_symbol_type, sizeof (msym_unknown_symbol_type), NULL);
1376
1377 register_gdbarch_swap (NULL, 0, build_parse);
1378
1379 add_show_from_set (
1380 add_set_cmd ("expression", class_maintenance, var_zinteger,
1381 (char *) &expressiondebug,
1382 "Set expression debugging.\n\
1383 When non-zero, the internal representation of expressions will be printed.",
1384 &setdebuglist),
1385 &showdebuglist);
1386 }
This page took 0.092864 seconds and 4 git commands to generate.