Use BLOCK_ENTRY_PC in place of most uses of BLOCK_START
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h" /* for overlay functions */
46 #include "inferior.h"
47 #include "target-float.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52 #include <algorithm>
53 #include "common/gdb_optional.h"
54
55 /* Standard set of definitions for printing, dumping, prefixifying,
56 * and evaluating expressions. */
57
58 const struct exp_descriptor exp_descriptor_standard =
59 {
60 print_subexp_standard,
61 operator_length_standard,
62 operator_check_standard,
63 op_name_standard,
64 dump_subexp_body_standard,
65 evaluate_subexp_standard
66 };
67 \f
68 /* Global variables declared in parser-defs.h (and commented there). */
69 const struct block *expression_context_block;
70 CORE_ADDR expression_context_pc;
71 innermost_block_tracker innermost_block;
72 int arglist_len;
73 static struct type_stack type_stack;
74 const char *lexptr;
75 const char *prev_lexptr;
76 int paren_depth;
77 int comma_terminates;
78
79 /* True if parsing an expression to attempt completion. */
80 int parse_completion;
81
82 /* The index of the last struct expression directly before a '.' or
83 '->'. This is set when parsing and is only used when completing a
84 field name. It is -1 if no dereference operation was found. */
85 static int expout_last_struct = -1;
86
87 /* If we are completing a tagged type name, this will be nonzero. */
88 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
89
90 /* The token for tagged type name completion. */
91 static gdb::unique_xmalloc_ptr<char> expout_completion_name;
92
93 \f
94 static unsigned int expressiondebug = 0;
95 static void
96 show_expressiondebug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
100 }
101
102
103 /* Non-zero if an expression parser should set yydebug. */
104 int parser_debug;
105
106 static void
107 show_parserdebug (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109 {
110 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
111 }
112
113
114 static int prefixify_subexp (struct expression *, struct expression *, int,
115 int);
116
117 static expression_up parse_exp_in_context (const char **, CORE_ADDR,
118 const struct block *, int,
119 int, int *);
120 static expression_up parse_exp_in_context_1 (const char **, CORE_ADDR,
121 const struct block *, int,
122 int, int *);
123
124 /* Documented at it's declaration. */
125
126 void
127 innermost_block_tracker::update (const struct block *b,
128 innermost_block_tracker_types t)
129 {
130 if ((m_types & t) != 0
131 && (m_innermost_block == NULL
132 || contained_in (b, m_innermost_block)))
133 m_innermost_block = b;
134 }
135
136 /* Data structure for saving values of arglist_len for function calls whose
137 arguments contain other function calls. */
138
139 static std::vector<int> *funcall_chain;
140
141 /* Begin counting arguments for a function call,
142 saving the data about any containing call. */
143
144 void
145 start_arglist (void)
146 {
147 funcall_chain->push_back (arglist_len);
148 arglist_len = 0;
149 }
150
151 /* Return the number of arguments in a function call just terminated,
152 and restore the data for the containing function call. */
153
154 int
155 end_arglist (void)
156 {
157 int val = arglist_len;
158 arglist_len = funcall_chain->back ();
159 funcall_chain->pop_back ();
160 return val;
161 }
162
163 \f
164
165 /* See definition in parser-defs.h. */
166
167 parser_state::parser_state (size_t initial_size,
168 const struct language_defn *lang,
169 struct gdbarch *gdbarch)
170 : expout_size (initial_size),
171 expout (XNEWVAR (expression,
172 (sizeof (expression)
173 + EXP_ELEM_TO_BYTES (expout_size)))),
174 expout_ptr (0)
175 {
176 expout->language_defn = lang;
177 expout->gdbarch = gdbarch;
178 }
179
180 expression_up
181 parser_state::release ()
182 {
183 /* Record the actual number of expression elements, and then
184 reallocate the expression memory so that we free up any
185 excess elements. */
186
187 expout->nelts = expout_ptr;
188 expout.reset (XRESIZEVAR (expression, expout.release (),
189 (sizeof (expression)
190 + EXP_ELEM_TO_BYTES (expout_ptr))));
191
192 return std::move (expout);
193 }
194
195 /* This page contains the functions for adding data to the struct expression
196 being constructed. */
197
198 /* Add one element to the end of the expression. */
199
200 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
201 a register through here. */
202
203 static void
204 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
205 {
206 if (ps->expout_ptr >= ps->expout_size)
207 {
208 ps->expout_size *= 2;
209 ps->expout.reset (XRESIZEVAR (expression, ps->expout.release (),
210 (sizeof (expression)
211 + EXP_ELEM_TO_BYTES (ps->expout_size))));
212 }
213 ps->expout->elts[ps->expout_ptr++] = *expelt;
214 }
215
216 void
217 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
218 {
219 union exp_element tmp;
220
221 memset (&tmp, 0, sizeof (union exp_element));
222 tmp.opcode = expelt;
223 write_exp_elt (ps, &tmp);
224 }
225
226 void
227 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
228 {
229 union exp_element tmp;
230
231 memset (&tmp, 0, sizeof (union exp_element));
232 tmp.symbol = expelt;
233 write_exp_elt (ps, &tmp);
234 }
235
236 void
237 write_exp_elt_msym (struct parser_state *ps, minimal_symbol *expelt)
238 {
239 union exp_element tmp;
240
241 memset (&tmp, 0, sizeof (union exp_element));
242 tmp.msymbol = expelt;
243 write_exp_elt (ps, &tmp);
244 }
245
246 void
247 write_exp_elt_block (struct parser_state *ps, const struct block *b)
248 {
249 union exp_element tmp;
250
251 memset (&tmp, 0, sizeof (union exp_element));
252 tmp.block = b;
253 write_exp_elt (ps, &tmp);
254 }
255
256 void
257 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
258 {
259 union exp_element tmp;
260
261 memset (&tmp, 0, sizeof (union exp_element));
262 tmp.objfile = objfile;
263 write_exp_elt (ps, &tmp);
264 }
265
266 void
267 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
268 {
269 union exp_element tmp;
270
271 memset (&tmp, 0, sizeof (union exp_element));
272 tmp.longconst = expelt;
273 write_exp_elt (ps, &tmp);
274 }
275
276 void
277 write_exp_elt_floatcst (struct parser_state *ps, const gdb_byte expelt[16])
278 {
279 union exp_element tmp;
280 int index;
281
282 for (index = 0; index < 16; index++)
283 tmp.floatconst[index] = expelt[index];
284
285 write_exp_elt (ps, &tmp);
286 }
287
288 void
289 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
290 {
291 union exp_element tmp;
292
293 memset (&tmp, 0, sizeof (union exp_element));
294 tmp.type = expelt;
295 write_exp_elt (ps, &tmp);
296 }
297
298 void
299 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
300 {
301 union exp_element tmp;
302
303 memset (&tmp, 0, sizeof (union exp_element));
304 tmp.internalvar = expelt;
305 write_exp_elt (ps, &tmp);
306 }
307
308 /* Add a string constant to the end of the expression.
309
310 String constants are stored by first writing an expression element
311 that contains the length of the string, then stuffing the string
312 constant itself into however many expression elements are needed
313 to hold it, and then writing another expression element that contains
314 the length of the string. I.e. an expression element at each end of
315 the string records the string length, so you can skip over the
316 expression elements containing the actual string bytes from either
317 end of the string. Note that this also allows gdb to handle
318 strings with embedded null bytes, as is required for some languages.
319
320 Don't be fooled by the fact that the string is null byte terminated,
321 this is strictly for the convenience of debugging gdb itself.
322 Gdb does not depend up the string being null terminated, since the
323 actual length is recorded in expression elements at each end of the
324 string. The null byte is taken into consideration when computing how
325 many expression elements are required to hold the string constant, of
326 course. */
327
328
329 void
330 write_exp_string (struct parser_state *ps, struct stoken str)
331 {
332 int len = str.length;
333 size_t lenelt;
334 char *strdata;
335
336 /* Compute the number of expression elements required to hold the string
337 (including a null byte terminator), along with one expression element
338 at each end to record the actual string length (not including the
339 null byte terminator). */
340
341 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
342
343 increase_expout_size (ps, lenelt);
344
345 /* Write the leading length expression element (which advances the current
346 expression element index), then write the string constant followed by a
347 terminating null byte, and then write the trailing length expression
348 element. */
349
350 write_exp_elt_longcst (ps, (LONGEST) len);
351 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
352 memcpy (strdata, str.ptr, len);
353 *(strdata + len) = '\0';
354 ps->expout_ptr += lenelt - 2;
355 write_exp_elt_longcst (ps, (LONGEST) len);
356 }
357
358 /* Add a vector of string constants to the end of the expression.
359
360 This adds an OP_STRING operation, but encodes the contents
361 differently from write_exp_string. The language is expected to
362 handle evaluation of this expression itself.
363
364 After the usual OP_STRING header, TYPE is written into the
365 expression as a long constant. The interpretation of this field is
366 up to the language evaluator.
367
368 Next, each string in VEC is written. The length is written as a
369 long constant, followed by the contents of the string. */
370
371 void
372 write_exp_string_vector (struct parser_state *ps, int type,
373 struct stoken_vector *vec)
374 {
375 int i, len;
376 size_t n_slots;
377
378 /* Compute the size. We compute the size in number of slots to
379 avoid issues with string padding. */
380 n_slots = 0;
381 for (i = 0; i < vec->len; ++i)
382 {
383 /* One slot for the length of this element, plus the number of
384 slots needed for this string. */
385 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
386 }
387
388 /* One more slot for the type of the string. */
389 ++n_slots;
390
391 /* Now compute a phony string length. */
392 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
393
394 n_slots += 4;
395 increase_expout_size (ps, n_slots);
396
397 write_exp_elt_opcode (ps, OP_STRING);
398 write_exp_elt_longcst (ps, len);
399 write_exp_elt_longcst (ps, type);
400
401 for (i = 0; i < vec->len; ++i)
402 {
403 write_exp_elt_longcst (ps, vec->tokens[i].length);
404 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
405 vec->tokens[i].length);
406 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
407 }
408
409 write_exp_elt_longcst (ps, len);
410 write_exp_elt_opcode (ps, OP_STRING);
411 }
412
413 /* Add a bitstring constant to the end of the expression.
414
415 Bitstring constants are stored by first writing an expression element
416 that contains the length of the bitstring (in bits), then stuffing the
417 bitstring constant itself into however many expression elements are
418 needed to hold it, and then writing another expression element that
419 contains the length of the bitstring. I.e. an expression element at
420 each end of the bitstring records the bitstring length, so you can skip
421 over the expression elements containing the actual bitstring bytes from
422 either end of the bitstring. */
423
424 void
425 write_exp_bitstring (struct parser_state *ps, struct stoken str)
426 {
427 int bits = str.length; /* length in bits */
428 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
429 size_t lenelt;
430 char *strdata;
431
432 /* Compute the number of expression elements required to hold the bitstring,
433 along with one expression element at each end to record the actual
434 bitstring length in bits. */
435
436 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
437
438 increase_expout_size (ps, lenelt);
439
440 /* Write the leading length expression element (which advances the current
441 expression element index), then write the bitstring constant, and then
442 write the trailing length expression element. */
443
444 write_exp_elt_longcst (ps, (LONGEST) bits);
445 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
446 memcpy (strdata, str.ptr, len);
447 ps->expout_ptr += lenelt - 2;
448 write_exp_elt_longcst (ps, (LONGEST) bits);
449 }
450
451 /* Return the type of MSYMBOL, a minimal symbol of OBJFILE. If
452 ADDRESS_P is not NULL, set it to the MSYMBOL's resolved
453 address. */
454
455 type *
456 find_minsym_type_and_address (minimal_symbol *msymbol,
457 struct objfile *objfile,
458 CORE_ADDR *address_p)
459 {
460 bound_minimal_symbol bound_msym = {msymbol, objfile};
461 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
462 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
463
464 bool is_tls = (section != NULL
465 && section->the_bfd_section->flags & SEC_THREAD_LOCAL);
466
467 /* The minimal symbol might point to a function descriptor;
468 resolve it to the actual code address instead. */
469 CORE_ADDR addr;
470 if (is_tls)
471 {
472 /* Addresses of TLS symbols are really offsets into a
473 per-objfile/per-thread storage block. */
474 addr = MSYMBOL_VALUE_RAW_ADDRESS (bound_msym.minsym);
475 }
476 else if (msymbol_is_function (objfile, msymbol, &addr))
477 {
478 if (addr != BMSYMBOL_VALUE_ADDRESS (bound_msym))
479 {
480 /* This means we resolved a function descriptor, and we now
481 have an address for a code/text symbol instead of a data
482 symbol. */
483 if (MSYMBOL_TYPE (msymbol) == mst_data_gnu_ifunc)
484 type = mst_text_gnu_ifunc;
485 else
486 type = mst_text;
487 section = NULL;
488 }
489 }
490 else
491 addr = BMSYMBOL_VALUE_ADDRESS (bound_msym);
492
493 if (overlay_debugging)
494 addr = symbol_overlayed_address (addr, section);
495
496 if (is_tls)
497 {
498 /* Skip translation if caller does not need the address. */
499 if (address_p != NULL)
500 *address_p = target_translate_tls_address (objfile, addr);
501 return objfile_type (objfile)->nodebug_tls_symbol;
502 }
503
504 if (address_p != NULL)
505 *address_p = addr;
506
507 switch (type)
508 {
509 case mst_text:
510 case mst_file_text:
511 case mst_solib_trampoline:
512 return objfile_type (objfile)->nodebug_text_symbol;
513
514 case mst_text_gnu_ifunc:
515 return objfile_type (objfile)->nodebug_text_gnu_ifunc_symbol;
516
517 case mst_data:
518 case mst_file_data:
519 case mst_bss:
520 case mst_file_bss:
521 return objfile_type (objfile)->nodebug_data_symbol;
522
523 case mst_slot_got_plt:
524 return objfile_type (objfile)->nodebug_got_plt_symbol;
525
526 default:
527 return objfile_type (objfile)->nodebug_unknown_symbol;
528 }
529 }
530
531 /* Add the appropriate elements for a minimal symbol to the end of
532 the expression. */
533
534 void
535 write_exp_msymbol (struct parser_state *ps,
536 struct bound_minimal_symbol bound_msym)
537 {
538 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
539 write_exp_elt_objfile (ps, bound_msym.objfile);
540 write_exp_elt_msym (ps, bound_msym.minsym);
541 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
542 }
543
544 /* Mark the current index as the starting location of a structure
545 expression. This is used when completing on field names. */
546
547 void
548 mark_struct_expression (struct parser_state *ps)
549 {
550 gdb_assert (parse_completion
551 && expout_tag_completion_type == TYPE_CODE_UNDEF);
552 expout_last_struct = ps->expout_ptr;
553 }
554
555 /* Indicate that the current parser invocation is completing a tag.
556 TAG is the type code of the tag, and PTR and LENGTH represent the
557 start of the tag name. */
558
559 void
560 mark_completion_tag (enum type_code tag, const char *ptr, int length)
561 {
562 gdb_assert (parse_completion
563 && expout_tag_completion_type == TYPE_CODE_UNDEF
564 && expout_completion_name == NULL
565 && expout_last_struct == -1);
566 gdb_assert (tag == TYPE_CODE_UNION
567 || tag == TYPE_CODE_STRUCT
568 || tag == TYPE_CODE_ENUM);
569 expout_tag_completion_type = tag;
570 expout_completion_name.reset (xstrndup (ptr, length));
571 }
572
573 \f
574 /* Recognize tokens that start with '$'. These include:
575
576 $regname A native register name or a "standard
577 register name".
578
579 $variable A convenience variable with a name chosen
580 by the user.
581
582 $digits Value history with index <digits>, starting
583 from the first value which has index 1.
584
585 $$digits Value history with index <digits> relative
586 to the last value. I.e. $$0 is the last
587 value, $$1 is the one previous to that, $$2
588 is the one previous to $$1, etc.
589
590 $ | $0 | $$0 The last value in the value history.
591
592 $$ An abbreviation for the second to the last
593 value in the value history, I.e. $$1 */
594
595 void
596 write_dollar_variable (struct parser_state *ps, struct stoken str)
597 {
598 struct block_symbol sym;
599 struct bound_minimal_symbol msym;
600 struct internalvar *isym = NULL;
601
602 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
603 and $$digits (equivalent to $<-digits> if you could type that). */
604
605 int negate = 0;
606 int i = 1;
607 /* Double dollar means negate the number and add -1 as well.
608 Thus $$ alone means -1. */
609 if (str.length >= 2 && str.ptr[1] == '$')
610 {
611 negate = 1;
612 i = 2;
613 }
614 if (i == str.length)
615 {
616 /* Just dollars (one or two). */
617 i = -negate;
618 goto handle_last;
619 }
620 /* Is the rest of the token digits? */
621 for (; i < str.length; i++)
622 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
623 break;
624 if (i == str.length)
625 {
626 i = atoi (str.ptr + 1 + negate);
627 if (negate)
628 i = -i;
629 goto handle_last;
630 }
631
632 /* Handle tokens that refer to machine registers:
633 $ followed by a register name. */
634 i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
635 str.ptr + 1, str.length - 1);
636 if (i >= 0)
637 goto handle_register;
638
639 /* Any names starting with $ are probably debugger internal variables. */
640
641 isym = lookup_only_internalvar (copy_name (str) + 1);
642 if (isym)
643 {
644 write_exp_elt_opcode (ps, OP_INTERNALVAR);
645 write_exp_elt_intern (ps, isym);
646 write_exp_elt_opcode (ps, OP_INTERNALVAR);
647 return;
648 }
649
650 /* On some systems, such as HP-UX and hppa-linux, certain system routines
651 have names beginning with $ or $$. Check for those, first. */
652
653 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
654 VAR_DOMAIN, NULL);
655 if (sym.symbol)
656 {
657 write_exp_elt_opcode (ps, OP_VAR_VALUE);
658 write_exp_elt_block (ps, sym.block);
659 write_exp_elt_sym (ps, sym.symbol);
660 write_exp_elt_opcode (ps, OP_VAR_VALUE);
661 return;
662 }
663 msym = lookup_bound_minimal_symbol (copy_name (str));
664 if (msym.minsym)
665 {
666 write_exp_msymbol (ps, msym);
667 return;
668 }
669
670 /* Any other names are assumed to be debugger internal variables. */
671
672 write_exp_elt_opcode (ps, OP_INTERNALVAR);
673 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
674 write_exp_elt_opcode (ps, OP_INTERNALVAR);
675 return;
676 handle_last:
677 write_exp_elt_opcode (ps, OP_LAST);
678 write_exp_elt_longcst (ps, (LONGEST) i);
679 write_exp_elt_opcode (ps, OP_LAST);
680 return;
681 handle_register:
682 write_exp_elt_opcode (ps, OP_REGISTER);
683 str.length--;
684 str.ptr++;
685 write_exp_string (ps, str);
686 write_exp_elt_opcode (ps, OP_REGISTER);
687 innermost_block.update (expression_context_block,
688 INNERMOST_BLOCK_FOR_REGISTERS);
689 return;
690 }
691
692
693 const char *
694 find_template_name_end (const char *p)
695 {
696 int depth = 1;
697 int just_seen_right = 0;
698 int just_seen_colon = 0;
699 int just_seen_space = 0;
700
701 if (!p || (*p != '<'))
702 return 0;
703
704 while (*++p)
705 {
706 switch (*p)
707 {
708 case '\'':
709 case '\"':
710 case '{':
711 case '}':
712 /* In future, may want to allow these?? */
713 return 0;
714 case '<':
715 depth++; /* start nested template */
716 if (just_seen_colon || just_seen_right || just_seen_space)
717 return 0; /* but not after : or :: or > or space */
718 break;
719 case '>':
720 if (just_seen_colon || just_seen_right)
721 return 0; /* end a (nested?) template */
722 just_seen_right = 1; /* but not after : or :: */
723 if (--depth == 0) /* also disallow >>, insist on > > */
724 return ++p; /* if outermost ended, return */
725 break;
726 case ':':
727 if (just_seen_space || (just_seen_colon > 1))
728 return 0; /* nested class spec coming up */
729 just_seen_colon++; /* we allow :: but not :::: */
730 break;
731 case ' ':
732 break;
733 default:
734 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
735 (*p >= 'A' && *p <= 'Z') ||
736 (*p >= '0' && *p <= '9') ||
737 (*p == '_') || (*p == ',') || /* commas for template args */
738 (*p == '&') || (*p == '*') || /* pointer and ref types */
739 (*p == '(') || (*p == ')') || /* function types */
740 (*p == '[') || (*p == ']'))) /* array types */
741 return 0;
742 }
743 if (*p != ' ')
744 just_seen_space = 0;
745 if (*p != ':')
746 just_seen_colon = 0;
747 if (*p != '>')
748 just_seen_right = 0;
749 }
750 return 0;
751 }
752 \f
753
754 /* Return a null-terminated temporary copy of the name of a string token.
755
756 Tokens that refer to names do so with explicit pointer and length,
757 so they can share the storage that lexptr is parsing.
758 When it is necessary to pass a name to a function that expects
759 a null-terminated string, the substring is copied out
760 into a separate block of storage.
761
762 N.B. A single buffer is reused on each call. */
763
764 char *
765 copy_name (struct stoken token)
766 {
767 /* A temporary buffer for identifiers, so we can null-terminate them.
768 We allocate this with xrealloc. parse_exp_1 used to allocate with
769 alloca, using the size of the whole expression as a conservative
770 estimate of the space needed. However, macro expansion can
771 introduce names longer than the original expression; there's no
772 practical way to know beforehand how large that might be. */
773 static char *namecopy;
774 static size_t namecopy_size;
775
776 /* Make sure there's enough space for the token. */
777 if (namecopy_size < token.length + 1)
778 {
779 namecopy_size = token.length + 1;
780 namecopy = (char *) xrealloc (namecopy, token.length + 1);
781 }
782
783 memcpy (namecopy, token.ptr, token.length);
784 namecopy[token.length] = 0;
785
786 return namecopy;
787 }
788 \f
789
790 /* See comments on parser-defs.h. */
791
792 int
793 prefixify_expression (struct expression *expr)
794 {
795 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
796 struct expression *temp;
797 int inpos = expr->nelts, outpos = 0;
798
799 temp = (struct expression *) alloca (len);
800
801 /* Copy the original expression into temp. */
802 memcpy (temp, expr, len);
803
804 return prefixify_subexp (temp, expr, inpos, outpos);
805 }
806
807 /* Return the number of exp_elements in the postfix subexpression
808 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
809
810 static int
811 length_of_subexp (struct expression *expr, int endpos)
812 {
813 int oplen, args;
814
815 operator_length (expr, endpos, &oplen, &args);
816
817 while (args > 0)
818 {
819 oplen += length_of_subexp (expr, endpos - oplen);
820 args--;
821 }
822
823 return oplen;
824 }
825
826 /* Sets *OPLENP to the length of the operator whose (last) index is
827 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
828 operator takes. */
829
830 void
831 operator_length (const struct expression *expr, int endpos, int *oplenp,
832 int *argsp)
833 {
834 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
835 oplenp, argsp);
836 }
837
838 /* Default value for operator_length in exp_descriptor vectors. */
839
840 void
841 operator_length_standard (const struct expression *expr, int endpos,
842 int *oplenp, int *argsp)
843 {
844 int oplen = 1;
845 int args = 0;
846 enum range_type range_type;
847 int i;
848
849 if (endpos < 1)
850 error (_("?error in operator_length_standard"));
851
852 i = (int) expr->elts[endpos - 1].opcode;
853
854 switch (i)
855 {
856 /* C++ */
857 case OP_SCOPE:
858 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
859 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
860 break;
861
862 case OP_LONG:
863 case OP_FLOAT:
864 case OP_VAR_VALUE:
865 case OP_VAR_MSYM_VALUE:
866 oplen = 4;
867 break;
868
869 case OP_FUNC_STATIC_VAR:
870 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
871 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
872 args = 1;
873 break;
874
875 case OP_TYPE:
876 case OP_BOOL:
877 case OP_LAST:
878 case OP_INTERNALVAR:
879 case OP_VAR_ENTRY_VALUE:
880 oplen = 3;
881 break;
882
883 case OP_COMPLEX:
884 oplen = 3;
885 args = 2;
886 break;
887
888 case OP_FUNCALL:
889 case OP_F77_UNDETERMINED_ARGLIST:
890 oplen = 3;
891 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
892 break;
893
894 case TYPE_INSTANCE:
895 oplen = 5 + longest_to_int (expr->elts[endpos - 2].longconst);
896 args = 1;
897 break;
898
899 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
900 oplen = 4;
901 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
902 break;
903
904 case UNOP_MAX:
905 case UNOP_MIN:
906 oplen = 3;
907 break;
908
909 case UNOP_CAST_TYPE:
910 case UNOP_DYNAMIC_CAST:
911 case UNOP_REINTERPRET_CAST:
912 case UNOP_MEMVAL_TYPE:
913 oplen = 1;
914 args = 2;
915 break;
916
917 case BINOP_VAL:
918 case UNOP_CAST:
919 case UNOP_MEMVAL:
920 oplen = 3;
921 args = 1;
922 break;
923
924 case UNOP_ABS:
925 case UNOP_CAP:
926 case UNOP_CHR:
927 case UNOP_FLOAT:
928 case UNOP_HIGH:
929 case UNOP_ODD:
930 case UNOP_ORD:
931 case UNOP_TRUNC:
932 case OP_TYPEOF:
933 case OP_DECLTYPE:
934 case OP_TYPEID:
935 oplen = 1;
936 args = 1;
937 break;
938
939 case OP_ADL_FUNC:
940 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
941 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
942 oplen++;
943 oplen++;
944 break;
945
946 case STRUCTOP_STRUCT:
947 case STRUCTOP_PTR:
948 args = 1;
949 /* fall through */
950 case OP_REGISTER:
951 case OP_M2_STRING:
952 case OP_STRING:
953 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
954 NSString constant. */
955 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
956 case OP_NAME:
957 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
958 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
959 break;
960
961 case OP_ARRAY:
962 oplen = 4;
963 args = longest_to_int (expr->elts[endpos - 2].longconst);
964 args -= longest_to_int (expr->elts[endpos - 3].longconst);
965 args += 1;
966 break;
967
968 case TERNOP_COND:
969 case TERNOP_SLICE:
970 args = 3;
971 break;
972
973 /* Modula-2 */
974 case MULTI_SUBSCRIPT:
975 oplen = 3;
976 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
977 break;
978
979 case BINOP_ASSIGN_MODIFY:
980 oplen = 3;
981 args = 2;
982 break;
983
984 /* C++ */
985 case OP_THIS:
986 oplen = 2;
987 break;
988
989 case OP_RANGE:
990 oplen = 3;
991 range_type = (enum range_type)
992 longest_to_int (expr->elts[endpos - 2].longconst);
993
994 switch (range_type)
995 {
996 case LOW_BOUND_DEFAULT:
997 case LOW_BOUND_DEFAULT_EXCLUSIVE:
998 case HIGH_BOUND_DEFAULT:
999 args = 1;
1000 break;
1001 case BOTH_BOUND_DEFAULT:
1002 args = 0;
1003 break;
1004 case NONE_BOUND_DEFAULT:
1005 case NONE_BOUND_DEFAULT_EXCLUSIVE:
1006 args = 2;
1007 break;
1008 }
1009
1010 break;
1011
1012 default:
1013 args = 1 + (i < (int) BINOP_END);
1014 }
1015
1016 *oplenp = oplen;
1017 *argsp = args;
1018 }
1019
1020 /* Copy the subexpression ending just before index INEND in INEXPR
1021 into OUTEXPR, starting at index OUTBEG.
1022 In the process, convert it from suffix to prefix form.
1023 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1024 Otherwise, it returns the index of the subexpression which is the
1025 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1026
1027 static int
1028 prefixify_subexp (struct expression *inexpr,
1029 struct expression *outexpr, int inend, int outbeg)
1030 {
1031 int oplen;
1032 int args;
1033 int i;
1034 int *arglens;
1035 int result = -1;
1036
1037 operator_length (inexpr, inend, &oplen, &args);
1038
1039 /* Copy the final operator itself, from the end of the input
1040 to the beginning of the output. */
1041 inend -= oplen;
1042 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1043 EXP_ELEM_TO_BYTES (oplen));
1044 outbeg += oplen;
1045
1046 if (expout_last_struct == inend)
1047 result = outbeg - oplen;
1048
1049 /* Find the lengths of the arg subexpressions. */
1050 arglens = (int *) alloca (args * sizeof (int));
1051 for (i = args - 1; i >= 0; i--)
1052 {
1053 oplen = length_of_subexp (inexpr, inend);
1054 arglens[i] = oplen;
1055 inend -= oplen;
1056 }
1057
1058 /* Now copy each subexpression, preserving the order of
1059 the subexpressions, but prefixifying each one.
1060 In this loop, inend starts at the beginning of
1061 the expression this level is working on
1062 and marches forward over the arguments.
1063 outbeg does similarly in the output. */
1064 for (i = 0; i < args; i++)
1065 {
1066 int r;
1067
1068 oplen = arglens[i];
1069 inend += oplen;
1070 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1071 if (r != -1)
1072 {
1073 /* Return immediately. We probably have only parsed a
1074 partial expression, so we don't want to try to reverse
1075 the other operands. */
1076 return r;
1077 }
1078 outbeg += oplen;
1079 }
1080
1081 return result;
1082 }
1083 \f
1084 /* Read an expression from the string *STRINGPTR points to,
1085 parse it, and return a pointer to a struct expression that we malloc.
1086 Use block BLOCK as the lexical context for variable names;
1087 if BLOCK is zero, use the block of the selected stack frame.
1088 Meanwhile, advance *STRINGPTR to point after the expression,
1089 at the first nonwhite character that is not part of the expression
1090 (possibly a null character).
1091
1092 If COMMA is nonzero, stop if a comma is reached. */
1093
1094 expression_up
1095 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1096 int comma)
1097 {
1098 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1099 }
1100
1101 static expression_up
1102 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1103 const struct block *block,
1104 int comma, int void_context_p, int *out_subexp)
1105 {
1106 return parse_exp_in_context_1 (stringptr, pc, block, comma,
1107 void_context_p, out_subexp);
1108 }
1109
1110 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1111 no value is expected from the expression.
1112 OUT_SUBEXP is set when attempting to complete a field name; in this
1113 case it is set to the index of the subexpression on the
1114 left-hand-side of the struct op. If not doing such completion, it
1115 is left untouched. */
1116
1117 static expression_up
1118 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1119 const struct block *block,
1120 int comma, int void_context_p, int *out_subexp)
1121 {
1122 const struct language_defn *lang = NULL;
1123 int subexp;
1124
1125 lexptr = *stringptr;
1126 prev_lexptr = NULL;
1127
1128 paren_depth = 0;
1129 type_stack.depth = 0;
1130 expout_last_struct = -1;
1131 expout_tag_completion_type = TYPE_CODE_UNDEF;
1132 expout_completion_name.reset ();
1133
1134 comma_terminates = comma;
1135
1136 if (lexptr == 0 || *lexptr == 0)
1137 error_no_arg (_("expression to compute"));
1138
1139 std::vector<int> funcalls;
1140 scoped_restore save_funcall_chain = make_scoped_restore (&funcall_chain,
1141 &funcalls);
1142
1143 expression_context_block = block;
1144
1145 /* If no context specified, try using the current frame, if any. */
1146 if (!expression_context_block)
1147 expression_context_block = get_selected_block (&expression_context_pc);
1148 else if (pc == 0)
1149 expression_context_pc = BLOCK_ENTRY_PC (expression_context_block);
1150 else
1151 expression_context_pc = pc;
1152
1153 /* Fall back to using the current source static context, if any. */
1154
1155 if (!expression_context_block)
1156 {
1157 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1158 if (cursal.symtab)
1159 expression_context_block
1160 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1161 STATIC_BLOCK);
1162 if (expression_context_block)
1163 expression_context_pc = BLOCK_ENTRY_PC (expression_context_block);
1164 }
1165
1166 if (language_mode == language_mode_auto && block != NULL)
1167 {
1168 /* Find the language associated to the given context block.
1169 Default to the current language if it can not be determined.
1170
1171 Note that using the language corresponding to the current frame
1172 can sometimes give unexpected results. For instance, this
1173 routine is often called several times during the inferior
1174 startup phase to re-parse breakpoint expressions after
1175 a new shared library has been loaded. The language associated
1176 to the current frame at this moment is not relevant for
1177 the breakpoint. Using it would therefore be silly, so it seems
1178 better to rely on the current language rather than relying on
1179 the current frame language to parse the expression. That's why
1180 we do the following language detection only if the context block
1181 has been specifically provided. */
1182 struct symbol *func = block_linkage_function (block);
1183
1184 if (func != NULL)
1185 lang = language_def (SYMBOL_LANGUAGE (func));
1186 if (lang == NULL || lang->la_language == language_unknown)
1187 lang = current_language;
1188 }
1189 else
1190 lang = current_language;
1191
1192 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1193 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1194 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1195 to the value matching SELECTED_FRAME as set by get_current_arch. */
1196
1197 parser_state ps (10, lang, get_current_arch ());
1198
1199 scoped_restore_current_language lang_saver;
1200 set_language (lang->la_language);
1201
1202 TRY
1203 {
1204 lang->la_parser (&ps);
1205 }
1206 CATCH (except, RETURN_MASK_ALL)
1207 {
1208 if (! parse_completion)
1209 throw_exception (except);
1210 }
1211 END_CATCH
1212
1213 /* We have to operate on an "expression *", due to la_post_parser,
1214 which explains this funny-looking double release. */
1215 expression_up result = ps.release ();
1216
1217 /* Convert expression from postfix form as generated by yacc
1218 parser, to a prefix form. */
1219
1220 if (expressiondebug)
1221 dump_raw_expression (result.get (), gdb_stdlog,
1222 "before conversion to prefix form");
1223
1224 subexp = prefixify_expression (result.get ());
1225 if (out_subexp)
1226 *out_subexp = subexp;
1227
1228 lang->la_post_parser (&result, void_context_p);
1229
1230 if (expressiondebug)
1231 dump_prefix_expression (result.get (), gdb_stdlog);
1232
1233 *stringptr = lexptr;
1234 return result;
1235 }
1236
1237 /* Parse STRING as an expression, and complain if this fails
1238 to use up all of the contents of STRING. */
1239
1240 expression_up
1241 parse_expression (const char *string)
1242 {
1243 expression_up exp = parse_exp_1 (&string, 0, 0, 0);
1244 if (*string)
1245 error (_("Junk after end of expression."));
1246 return exp;
1247 }
1248
1249 /* Same as parse_expression, but using the given language (LANG)
1250 to parse the expression. */
1251
1252 expression_up
1253 parse_expression_with_language (const char *string, enum language lang)
1254 {
1255 gdb::optional<scoped_restore_current_language> lang_saver;
1256 if (current_language->la_language != lang)
1257 {
1258 lang_saver.emplace ();
1259 set_language (lang);
1260 }
1261
1262 return parse_expression (string);
1263 }
1264
1265 /* Parse STRING as an expression. If parsing ends in the middle of a
1266 field reference, return the type of the left-hand-side of the
1267 reference; furthermore, if the parsing ends in the field name,
1268 return the field name in *NAME. If the parsing ends in the middle
1269 of a field reference, but the reference is somehow invalid, throw
1270 an exception. In all other cases, return NULL. */
1271
1272 struct type *
1273 parse_expression_for_completion (const char *string,
1274 gdb::unique_xmalloc_ptr<char> *name,
1275 enum type_code *code)
1276 {
1277 expression_up exp;
1278 struct value *val;
1279 int subexp;
1280
1281 TRY
1282 {
1283 parse_completion = 1;
1284 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1285 }
1286 CATCH (except, RETURN_MASK_ERROR)
1287 {
1288 /* Nothing, EXP remains NULL. */
1289 }
1290 END_CATCH
1291
1292 parse_completion = 0;
1293 if (exp == NULL)
1294 return NULL;
1295
1296 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1297 {
1298 *code = expout_tag_completion_type;
1299 *name = std::move (expout_completion_name);
1300 return NULL;
1301 }
1302
1303 if (expout_last_struct == -1)
1304 return NULL;
1305
1306 const char *fieldname = extract_field_op (exp.get (), &subexp);
1307 if (fieldname == NULL)
1308 {
1309 name->reset ();
1310 return NULL;
1311 }
1312
1313 name->reset (xstrdup (fieldname));
1314 /* This might throw an exception. If so, we want to let it
1315 propagate. */
1316 val = evaluate_subexpression_type (exp.get (), subexp);
1317
1318 return value_type (val);
1319 }
1320
1321 /* A post-parser that does nothing. */
1322
1323 void
1324 null_post_parser (expression_up *exp, int void_context_p)
1325 {
1326 }
1327
1328 /* Parse floating point value P of length LEN.
1329 Return false if invalid, true if valid.
1330 The successfully parsed number is stored in DATA in
1331 target format for floating-point type TYPE.
1332
1333 NOTE: This accepts the floating point syntax that sscanf accepts. */
1334
1335 bool
1336 parse_float (const char *p, int len,
1337 const struct type *type, gdb_byte *data)
1338 {
1339 return target_float_from_string (data, type, std::string (p, len));
1340 }
1341 \f
1342 /* Stuff for maintaining a stack of types. Currently just used by C, but
1343 probably useful for any language which declares its types "backwards". */
1344
1345 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1346
1347 static void
1348 type_stack_reserve (struct type_stack *stack, int howmuch)
1349 {
1350 if (stack->depth + howmuch >= stack->size)
1351 {
1352 stack->size *= 2;
1353 if (stack->size < howmuch)
1354 stack->size = howmuch;
1355 stack->elements = XRESIZEVEC (union type_stack_elt, stack->elements,
1356 stack->size);
1357 }
1358 }
1359
1360 /* Ensure that there is a single open slot in the global type stack. */
1361
1362 static void
1363 check_type_stack_depth (void)
1364 {
1365 type_stack_reserve (&type_stack, 1);
1366 }
1367
1368 /* A helper function for insert_type and insert_type_address_space.
1369 This does work of expanding the type stack and inserting the new
1370 element, ELEMENT, into the stack at location SLOT. */
1371
1372 static void
1373 insert_into_type_stack (int slot, union type_stack_elt element)
1374 {
1375 check_type_stack_depth ();
1376
1377 if (slot < type_stack.depth)
1378 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1379 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1380 type_stack.elements[slot] = element;
1381 ++type_stack.depth;
1382 }
1383
1384 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1385 tp_pointer, tp_reference or tp_rvalue_reference, it is inserted at the
1386 bottom. If TP is a qualifier, it is inserted at slot 1 (just above a
1387 previous tp_pointer) if there is anything on the stack, or simply pushed
1388 if the stack is empty. Other values for TP are invalid. */
1389
1390 void
1391 insert_type (enum type_pieces tp)
1392 {
1393 union type_stack_elt element;
1394 int slot;
1395
1396 gdb_assert (tp == tp_pointer || tp == tp_reference
1397 || tp == tp_rvalue_reference || tp == tp_const
1398 || tp == tp_volatile);
1399
1400 /* If there is anything on the stack (we know it will be a
1401 tp_pointer), insert the qualifier above it. Otherwise, simply
1402 push this on the top of the stack. */
1403 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1404 slot = 1;
1405 else
1406 slot = 0;
1407
1408 element.piece = tp;
1409 insert_into_type_stack (slot, element);
1410 }
1411
1412 void
1413 push_type (enum type_pieces tp)
1414 {
1415 check_type_stack_depth ();
1416 type_stack.elements[type_stack.depth++].piece = tp;
1417 }
1418
1419 void
1420 push_type_int (int n)
1421 {
1422 check_type_stack_depth ();
1423 type_stack.elements[type_stack.depth++].int_val = n;
1424 }
1425
1426 /* Insert a tp_space_identifier and the corresponding address space
1427 value into the stack. STRING is the name of an address space, as
1428 recognized by address_space_name_to_int. If the stack is empty,
1429 the new elements are simply pushed. If the stack is not empty,
1430 this function assumes that the first item on the stack is a
1431 tp_pointer, and the new values are inserted above the first
1432 item. */
1433
1434 void
1435 insert_type_address_space (struct parser_state *pstate, char *string)
1436 {
1437 union type_stack_elt element;
1438 int slot;
1439
1440 /* If there is anything on the stack (we know it will be a
1441 tp_pointer), insert the address space qualifier above it.
1442 Otherwise, simply push this on the top of the stack. */
1443 if (type_stack.depth)
1444 slot = 1;
1445 else
1446 slot = 0;
1447
1448 element.piece = tp_space_identifier;
1449 insert_into_type_stack (slot, element);
1450 element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1451 string);
1452 insert_into_type_stack (slot, element);
1453 }
1454
1455 enum type_pieces
1456 pop_type (void)
1457 {
1458 if (type_stack.depth)
1459 return type_stack.elements[--type_stack.depth].piece;
1460 return tp_end;
1461 }
1462
1463 int
1464 pop_type_int (void)
1465 {
1466 if (type_stack.depth)
1467 return type_stack.elements[--type_stack.depth].int_val;
1468 /* "Can't happen". */
1469 return 0;
1470 }
1471
1472 /* Pop a type list element from the global type stack. */
1473
1474 static VEC (type_ptr) *
1475 pop_typelist (void)
1476 {
1477 gdb_assert (type_stack.depth);
1478 return type_stack.elements[--type_stack.depth].typelist_val;
1479 }
1480
1481 /* Pop a type_stack element from the global type stack. */
1482
1483 static struct type_stack *
1484 pop_type_stack (void)
1485 {
1486 gdb_assert (type_stack.depth);
1487 return type_stack.elements[--type_stack.depth].stack_val;
1488 }
1489
1490 /* Append the elements of the type stack FROM to the type stack TO.
1491 Always returns TO. */
1492
1493 struct type_stack *
1494 append_type_stack (struct type_stack *to, struct type_stack *from)
1495 {
1496 type_stack_reserve (to, from->depth);
1497
1498 memcpy (&to->elements[to->depth], &from->elements[0],
1499 from->depth * sizeof (union type_stack_elt));
1500 to->depth += from->depth;
1501
1502 return to;
1503 }
1504
1505 /* Push the type stack STACK as an element on the global type stack. */
1506
1507 void
1508 push_type_stack (struct type_stack *stack)
1509 {
1510 check_type_stack_depth ();
1511 type_stack.elements[type_stack.depth++].stack_val = stack;
1512 push_type (tp_type_stack);
1513 }
1514
1515 /* Copy the global type stack into a newly allocated type stack and
1516 return it. The global stack is cleared. The returned type stack
1517 must be freed with type_stack_cleanup. */
1518
1519 struct type_stack *
1520 get_type_stack (void)
1521 {
1522 struct type_stack *result = XNEW (struct type_stack);
1523
1524 *result = type_stack;
1525 type_stack.depth = 0;
1526 type_stack.size = 0;
1527 type_stack.elements = NULL;
1528
1529 return result;
1530 }
1531
1532 /* A cleanup function that destroys a single type stack. */
1533
1534 void
1535 type_stack_cleanup (void *arg)
1536 {
1537 struct type_stack *stack = (struct type_stack *) arg;
1538
1539 xfree (stack->elements);
1540 xfree (stack);
1541 }
1542
1543 /* Push a function type with arguments onto the global type stack.
1544 LIST holds the argument types. If the final item in LIST is NULL,
1545 then the function will be varargs. */
1546
1547 void
1548 push_typelist (VEC (type_ptr) *list)
1549 {
1550 check_type_stack_depth ();
1551 type_stack.elements[type_stack.depth++].typelist_val = list;
1552 push_type (tp_function_with_arguments);
1553 }
1554
1555 /* Pop the type stack and return a type_instance_flags that
1556 corresponds the const/volatile qualifiers on the stack. This is
1557 called by the C++ parser when parsing methods types, and as such no
1558 other kind of type in the type stack is expected. */
1559
1560 type_instance_flags
1561 follow_type_instance_flags ()
1562 {
1563 type_instance_flags flags = 0;
1564
1565 for (;;)
1566 switch (pop_type ())
1567 {
1568 case tp_end:
1569 return flags;
1570 case tp_const:
1571 flags |= TYPE_INSTANCE_FLAG_CONST;
1572 break;
1573 case tp_volatile:
1574 flags |= TYPE_INSTANCE_FLAG_VOLATILE;
1575 break;
1576 default:
1577 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1578 }
1579 }
1580
1581
1582 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1583 as modified by all the stuff on the stack. */
1584 struct type *
1585 follow_types (struct type *follow_type)
1586 {
1587 int done = 0;
1588 int make_const = 0;
1589 int make_volatile = 0;
1590 int make_addr_space = 0;
1591 int array_size;
1592
1593 while (!done)
1594 switch (pop_type ())
1595 {
1596 case tp_end:
1597 done = 1;
1598 if (make_const)
1599 follow_type = make_cv_type (make_const,
1600 TYPE_VOLATILE (follow_type),
1601 follow_type, 0);
1602 if (make_volatile)
1603 follow_type = make_cv_type (TYPE_CONST (follow_type),
1604 make_volatile,
1605 follow_type, 0);
1606 if (make_addr_space)
1607 follow_type = make_type_with_address_space (follow_type,
1608 make_addr_space);
1609 make_const = make_volatile = 0;
1610 make_addr_space = 0;
1611 break;
1612 case tp_const:
1613 make_const = 1;
1614 break;
1615 case tp_volatile:
1616 make_volatile = 1;
1617 break;
1618 case tp_space_identifier:
1619 make_addr_space = pop_type_int ();
1620 break;
1621 case tp_pointer:
1622 follow_type = lookup_pointer_type (follow_type);
1623 if (make_const)
1624 follow_type = make_cv_type (make_const,
1625 TYPE_VOLATILE (follow_type),
1626 follow_type, 0);
1627 if (make_volatile)
1628 follow_type = make_cv_type (TYPE_CONST (follow_type),
1629 make_volatile,
1630 follow_type, 0);
1631 if (make_addr_space)
1632 follow_type = make_type_with_address_space (follow_type,
1633 make_addr_space);
1634 make_const = make_volatile = 0;
1635 make_addr_space = 0;
1636 break;
1637 case tp_reference:
1638 follow_type = lookup_lvalue_reference_type (follow_type);
1639 goto process_reference;
1640 case tp_rvalue_reference:
1641 follow_type = lookup_rvalue_reference_type (follow_type);
1642 process_reference:
1643 if (make_const)
1644 follow_type = make_cv_type (make_const,
1645 TYPE_VOLATILE (follow_type),
1646 follow_type, 0);
1647 if (make_volatile)
1648 follow_type = make_cv_type (TYPE_CONST (follow_type),
1649 make_volatile,
1650 follow_type, 0);
1651 if (make_addr_space)
1652 follow_type = make_type_with_address_space (follow_type,
1653 make_addr_space);
1654 make_const = make_volatile = 0;
1655 make_addr_space = 0;
1656 break;
1657 case tp_array:
1658 array_size = pop_type_int ();
1659 /* FIXME-type-allocation: need a way to free this type when we are
1660 done with it. */
1661 follow_type =
1662 lookup_array_range_type (follow_type,
1663 0, array_size >= 0 ? array_size - 1 : 0);
1664 if (array_size < 0)
1665 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1666 = PROP_UNDEFINED;
1667 break;
1668 case tp_function:
1669 /* FIXME-type-allocation: need a way to free this type when we are
1670 done with it. */
1671 follow_type = lookup_function_type (follow_type);
1672 break;
1673
1674 case tp_function_with_arguments:
1675 {
1676 VEC (type_ptr) *args = pop_typelist ();
1677
1678 follow_type
1679 = lookup_function_type_with_arguments (follow_type,
1680 VEC_length (type_ptr, args),
1681 VEC_address (type_ptr,
1682 args));
1683 VEC_free (type_ptr, args);
1684 }
1685 break;
1686
1687 case tp_type_stack:
1688 {
1689 struct type_stack *stack = pop_type_stack ();
1690 /* Sort of ugly, but not really much worse than the
1691 alternatives. */
1692 struct type_stack save = type_stack;
1693
1694 type_stack = *stack;
1695 follow_type = follow_types (follow_type);
1696 gdb_assert (type_stack.depth == 0);
1697
1698 type_stack = save;
1699 }
1700 break;
1701 default:
1702 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1703 }
1704 return follow_type;
1705 }
1706 \f
1707 /* This function avoids direct calls to fprintf
1708 in the parser generated debug code. */
1709 void
1710 parser_fprintf (FILE *x, const char *y, ...)
1711 {
1712 va_list args;
1713
1714 va_start (args, y);
1715 if (x == stderr)
1716 vfprintf_unfiltered (gdb_stderr, y, args);
1717 else
1718 {
1719 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1720 vfprintf_unfiltered (gdb_stderr, y, args);
1721 }
1722 va_end (args);
1723 }
1724
1725 /* Implementation of the exp_descriptor method operator_check. */
1726
1727 int
1728 operator_check_standard (struct expression *exp, int pos,
1729 int (*objfile_func) (struct objfile *objfile,
1730 void *data),
1731 void *data)
1732 {
1733 const union exp_element *const elts = exp->elts;
1734 struct type *type = NULL;
1735 struct objfile *objfile = NULL;
1736
1737 /* Extended operators should have been already handled by exp_descriptor
1738 iterate method of its specific language. */
1739 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1740
1741 /* Track the callers of write_exp_elt_type for this table. */
1742
1743 switch (elts[pos].opcode)
1744 {
1745 case BINOP_VAL:
1746 case OP_COMPLEX:
1747 case OP_FLOAT:
1748 case OP_LONG:
1749 case OP_SCOPE:
1750 case OP_TYPE:
1751 case UNOP_CAST:
1752 case UNOP_MAX:
1753 case UNOP_MEMVAL:
1754 case UNOP_MIN:
1755 type = elts[pos + 1].type;
1756 break;
1757
1758 case TYPE_INSTANCE:
1759 {
1760 LONGEST arg, nargs = elts[pos + 2].longconst;
1761
1762 for (arg = 0; arg < nargs; arg++)
1763 {
1764 struct type *type = elts[pos + 3 + arg].type;
1765 struct objfile *objfile = TYPE_OBJFILE (type);
1766
1767 if (objfile && (*objfile_func) (objfile, data))
1768 return 1;
1769 }
1770 }
1771 break;
1772
1773 case OP_VAR_VALUE:
1774 {
1775 const struct block *const block = elts[pos + 1].block;
1776 const struct symbol *const symbol = elts[pos + 2].symbol;
1777
1778 /* Check objfile where the variable itself is placed.
1779 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1780 if ((*objfile_func) (symbol_objfile (symbol), data))
1781 return 1;
1782
1783 /* Check objfile where is placed the code touching the variable. */
1784 objfile = lookup_objfile_from_block (block);
1785
1786 type = SYMBOL_TYPE (symbol);
1787 }
1788 break;
1789 case OP_VAR_MSYM_VALUE:
1790 objfile = elts[pos + 1].objfile;
1791 break;
1792 }
1793
1794 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1795
1796 if (type && TYPE_OBJFILE (type)
1797 && (*objfile_func) (TYPE_OBJFILE (type), data))
1798 return 1;
1799 if (objfile && (*objfile_func) (objfile, data))
1800 return 1;
1801
1802 return 0;
1803 }
1804
1805 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1806 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1807 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1808 returns non-zero value then (any other) non-zero value is immediately
1809 returned to the caller. Otherwise zero is returned after iterating
1810 through whole EXP. */
1811
1812 static int
1813 exp_iterate (struct expression *exp,
1814 int (*objfile_func) (struct objfile *objfile, void *data),
1815 void *data)
1816 {
1817 int endpos;
1818
1819 for (endpos = exp->nelts; endpos > 0; )
1820 {
1821 int pos, args, oplen = 0;
1822
1823 operator_length (exp, endpos, &oplen, &args);
1824 gdb_assert (oplen > 0);
1825
1826 pos = endpos - oplen;
1827 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1828 objfile_func, data))
1829 return 1;
1830
1831 endpos = pos;
1832 }
1833
1834 return 0;
1835 }
1836
1837 /* Helper for exp_uses_objfile. */
1838
1839 static int
1840 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1841 {
1842 struct objfile *objfile = (struct objfile *) objfile_voidp;
1843
1844 if (exp_objfile->separate_debug_objfile_backlink)
1845 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1846
1847 return exp_objfile == objfile;
1848 }
1849
1850 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1851 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1852 file. */
1853
1854 int
1855 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1856 {
1857 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1858
1859 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1860 }
1861
1862 /* See definition in parser-defs.h. */
1863
1864 void
1865 increase_expout_size (struct parser_state *ps, size_t lenelt)
1866 {
1867 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1868 {
1869 ps->expout_size = std::max (ps->expout_size * 2,
1870 ps->expout_ptr + lenelt + 10);
1871 ps->expout.reset (XRESIZEVAR (expression,
1872 ps->expout.release (),
1873 (sizeof (struct expression)
1874 + EXP_ELEM_TO_BYTES (ps->expout_size))));
1875 }
1876 }
1877
1878 void
1879 _initialize_parse (void)
1880 {
1881 type_stack.size = 0;
1882 type_stack.depth = 0;
1883 type_stack.elements = NULL;
1884
1885 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1886 &expressiondebug,
1887 _("Set expression debugging."),
1888 _("Show expression debugging."),
1889 _("When non-zero, the internal representation "
1890 "of expressions will be printed."),
1891 NULL,
1892 show_expressiondebug,
1893 &setdebuglist, &showdebuglist);
1894 add_setshow_boolean_cmd ("parser", class_maintenance,
1895 &parser_debug,
1896 _("Set parser debugging."),
1897 _("Show parser debugging."),
1898 _("When non-zero, expression parser "
1899 "tracing will be enabled."),
1900 NULL,
1901 show_parserdebug,
1902 &setdebuglist, &showdebuglist);
1903 }
This page took 0.092154 seconds and 4 git commands to generate.