new for ptx
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1994 Free Software Foundation, Inc.
3 Modified from expread.y by the Department of Computer Science at the
4 State University of New York at Buffalo, 1991.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* Parse an expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result. */
30
31 #include "defs.h"
32 #include <string.h>
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "frame.h"
36 #include "expression.h"
37 #include "value.h"
38 #include "command.h"
39 #include "language.h"
40 #include "parser-defs.h"
41 \f
42 /* Global variables declared in parser-defs.h (and commented there). */
43 struct expression *expout;
44 int expout_size;
45 int expout_ptr;
46 struct block *expression_context_block;
47 struct block *innermost_block;
48 struct block *block_found;
49 int arglist_len;
50 union type_stack_elt *type_stack;
51 int type_stack_depth, type_stack_size;
52 char *lexptr;
53 char *namecopy;
54 int paren_depth;
55 int comma_terminates;
56 \f
57 static void
58 free_funcalls PARAMS ((void));
59
60 static void
61 prefixify_expression PARAMS ((struct expression *));
62
63 static int
64 length_of_subexp PARAMS ((struct expression *, int));
65
66 static void
67 prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int));
68
69 /* Data structure for saving values of arglist_len for function calls whose
70 arguments contain other function calls. */
71
72 struct funcall
73 {
74 struct funcall *next;
75 int arglist_len;
76 };
77
78 static struct funcall *funcall_chain;
79
80 /* Assign machine-independent names to certain registers
81 (unless overridden by the REGISTER_NAMES table) */
82
83 #ifdef NO_STD_REGS
84 unsigned num_std_regs = 0;
85 struct std_regs std_regs[1];
86 #else
87 struct std_regs std_regs[] = {
88
89 #ifdef PC_REGNUM
90 { "pc", PC_REGNUM },
91 #endif
92 #ifdef FP_REGNUM
93 { "fp", FP_REGNUM },
94 #endif
95 #ifdef SP_REGNUM
96 { "sp", SP_REGNUM },
97 #endif
98 #ifdef PS_REGNUM
99 { "ps", PS_REGNUM },
100 #endif
101
102 };
103
104 unsigned num_std_regs = (sizeof std_regs / sizeof std_regs[0]);
105
106 #endif
107
108
109 /* Begin counting arguments for a function call,
110 saving the data about any containing call. */
111
112 void
113 start_arglist ()
114 {
115 register struct funcall *new;
116
117 new = (struct funcall *) xmalloc (sizeof (struct funcall));
118 new->next = funcall_chain;
119 new->arglist_len = arglist_len;
120 arglist_len = 0;
121 funcall_chain = new;
122 }
123
124 /* Return the number of arguments in a function call just terminated,
125 and restore the data for the containing function call. */
126
127 int
128 end_arglist ()
129 {
130 register int val = arglist_len;
131 register struct funcall *call = funcall_chain;
132 funcall_chain = call->next;
133 arglist_len = call->arglist_len;
134 free ((PTR)call);
135 return val;
136 }
137
138 /* Free everything in the funcall chain.
139 Used when there is an error inside parsing. */
140
141 static void
142 free_funcalls ()
143 {
144 register struct funcall *call, *next;
145
146 for (call = funcall_chain; call; call = next)
147 {
148 next = call->next;
149 free ((PTR)call);
150 }
151 }
152 \f
153 /* This page contains the functions for adding data to the struct expression
154 being constructed. */
155
156 /* Add one element to the end of the expression. */
157
158 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
159 a register through here */
160
161 void
162 write_exp_elt (expelt)
163 union exp_element expelt;
164 {
165 if (expout_ptr >= expout_size)
166 {
167 expout_size *= 2;
168 expout = (struct expression *)
169 xrealloc ((char *) expout, sizeof (struct expression)
170 + EXP_ELEM_TO_BYTES (expout_size));
171 }
172 expout->elts[expout_ptr++] = expelt;
173 }
174
175 void
176 write_exp_elt_opcode (expelt)
177 enum exp_opcode expelt;
178 {
179 union exp_element tmp;
180
181 tmp.opcode = expelt;
182
183 write_exp_elt (tmp);
184 }
185
186 void
187 write_exp_elt_sym (expelt)
188 struct symbol *expelt;
189 {
190 union exp_element tmp;
191
192 tmp.symbol = expelt;
193
194 write_exp_elt (tmp);
195 }
196
197 void
198 write_exp_elt_block (b)
199 struct block *b;
200 {
201 union exp_element tmp;
202 tmp.block = b;
203 write_exp_elt (tmp);
204 }
205
206 void
207 write_exp_elt_longcst (expelt)
208 LONGEST expelt;
209 {
210 union exp_element tmp;
211
212 tmp.longconst = expelt;
213
214 write_exp_elt (tmp);
215 }
216
217 void
218 write_exp_elt_dblcst (expelt)
219 double expelt;
220 {
221 union exp_element tmp;
222
223 tmp.doubleconst = expelt;
224
225 write_exp_elt (tmp);
226 }
227
228 void
229 write_exp_elt_type (expelt)
230 struct type *expelt;
231 {
232 union exp_element tmp;
233
234 tmp.type = expelt;
235
236 write_exp_elt (tmp);
237 }
238
239 void
240 write_exp_elt_intern (expelt)
241 struct internalvar *expelt;
242 {
243 union exp_element tmp;
244
245 tmp.internalvar = expelt;
246
247 write_exp_elt (tmp);
248 }
249
250 /* Add a string constant to the end of the expression.
251
252 String constants are stored by first writing an expression element
253 that contains the length of the string, then stuffing the string
254 constant itself into however many expression elements are needed
255 to hold it, and then writing another expression element that contains
256 the length of the string. I.E. an expression element at each end of
257 the string records the string length, so you can skip over the
258 expression elements containing the actual string bytes from either
259 end of the string. Note that this also allows gdb to handle
260 strings with embedded null bytes, as is required for some languages.
261
262 Don't be fooled by the fact that the string is null byte terminated,
263 this is strictly for the convenience of debugging gdb itself. Gdb
264 Gdb does not depend up the string being null terminated, since the
265 actual length is recorded in expression elements at each end of the
266 string. The null byte is taken into consideration when computing how
267 many expression elements are required to hold the string constant, of
268 course. */
269
270
271 void
272 write_exp_string (str)
273 struct stoken str;
274 {
275 register int len = str.length;
276 register int lenelt;
277 register char *strdata;
278
279 /* Compute the number of expression elements required to hold the string
280 (including a null byte terminator), along with one expression element
281 at each end to record the actual string length (not including the
282 null byte terminator). */
283
284 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
285
286 /* Ensure that we have enough available expression elements to store
287 everything. */
288
289 if ((expout_ptr + lenelt) >= expout_size)
290 {
291 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
292 expout = (struct expression *)
293 xrealloc ((char *) expout, (sizeof (struct expression)
294 + EXP_ELEM_TO_BYTES (expout_size)));
295 }
296
297 /* Write the leading length expression element (which advances the current
298 expression element index), then write the string constant followed by a
299 terminating null byte, and then write the trailing length expression
300 element. */
301
302 write_exp_elt_longcst ((LONGEST) len);
303 strdata = (char *) &expout->elts[expout_ptr];
304 memcpy (strdata, str.ptr, len);
305 *(strdata + len) = '\0';
306 expout_ptr += lenelt - 2;
307 write_exp_elt_longcst ((LONGEST) len);
308 }
309
310 /* Add a bitstring constant to the end of the expression.
311
312 Bitstring constants are stored by first writing an expression element
313 that contains the length of the bitstring (in bits), then stuffing the
314 bitstring constant itself into however many expression elements are
315 needed to hold it, and then writing another expression element that
316 contains the length of the bitstring. I.E. an expression element at
317 each end of the bitstring records the bitstring length, so you can skip
318 over the expression elements containing the actual bitstring bytes from
319 either end of the bitstring. */
320
321 void
322 write_exp_bitstring (str)
323 struct stoken str;
324 {
325 register int bits = str.length; /* length in bits */
326 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
327 register int lenelt;
328 register char *strdata;
329
330 /* Compute the number of expression elements required to hold the bitstring,
331 along with one expression element at each end to record the actual
332 bitstring length in bits. */
333
334 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
335
336 /* Ensure that we have enough available expression elements to store
337 everything. */
338
339 if ((expout_ptr + lenelt) >= expout_size)
340 {
341 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
342 expout = (struct expression *)
343 xrealloc ((char *) expout, (sizeof (struct expression)
344 + EXP_ELEM_TO_BYTES (expout_size)));
345 }
346
347 /* Write the leading length expression element (which advances the current
348 expression element index), then write the bitstring constant, and then
349 write the trailing length expression element. */
350
351 write_exp_elt_longcst ((LONGEST) bits);
352 strdata = (char *) &expout->elts[expout_ptr];
353 memcpy (strdata, str.ptr, len);
354 expout_ptr += lenelt - 2;
355 write_exp_elt_longcst ((LONGEST) bits);
356 }
357
358 /* Type that corresponds to the address given in a minimal symbol. */
359
360 static struct type *msymbol_addr_type;
361
362 /* Add the appropriate elements for a minimal symbol to the end of
363 the expression. */
364
365 void
366 write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type)
367 struct minimal_symbol *msymbol;
368 struct type *text_symbol_type;
369 struct type *data_symbol_type;
370 {
371 write_exp_elt_opcode (OP_LONG);
372 write_exp_elt_type (msymbol_addr_type);
373 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
374 write_exp_elt_opcode (OP_LONG);
375
376 write_exp_elt_opcode (UNOP_MEMVAL);
377 switch (msymbol -> type)
378 {
379 case mst_text:
380 case mst_file_text:
381 case mst_solib_trampoline:
382 write_exp_elt_type (text_symbol_type);
383 break;
384
385 case mst_data:
386 case mst_file_data:
387 case mst_bss:
388 case mst_file_bss:
389 write_exp_elt_type (data_symbol_type);
390 break;
391
392 default:
393 write_exp_elt_type (builtin_type_char);
394 break;
395 }
396 write_exp_elt_opcode (UNOP_MEMVAL);
397 }
398 \f
399 /* Return a null-terminated temporary copy of the name
400 of a string token. */
401
402 char *
403 copy_name (token)
404 struct stoken token;
405 {
406 memcpy (namecopy, token.ptr, token.length);
407 namecopy[token.length] = 0;
408 return namecopy;
409 }
410 \f
411 /* Reverse an expression from suffix form (in which it is constructed)
412 to prefix form (in which we can conveniently print or execute it). */
413
414 static void
415 prefixify_expression (expr)
416 register struct expression *expr;
417 {
418 register int len =
419 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
420 register struct expression *temp;
421 register int inpos = expr->nelts, outpos = 0;
422
423 temp = (struct expression *) alloca (len);
424
425 /* Copy the original expression into temp. */
426 memcpy (temp, expr, len);
427
428 prefixify_subexp (temp, expr, inpos, outpos);
429 }
430
431 /* Return the number of exp_elements in the subexpression of EXPR
432 whose last exp_element is at index ENDPOS - 1 in EXPR. */
433
434 static int
435 length_of_subexp (expr, endpos)
436 register struct expression *expr;
437 register int endpos;
438 {
439 register int oplen = 1;
440 register int args = 0;
441 register int i;
442
443 if (endpos < 1)
444 error ("?error in length_of_subexp");
445
446 i = (int) expr->elts[endpos - 1].opcode;
447
448 switch (i)
449 {
450 /* C++ */
451 case OP_SCOPE:
452 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
453 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
454 break;
455
456 case OP_LONG:
457 case OP_DOUBLE:
458 case OP_VAR_VALUE:
459 oplen = 4;
460 break;
461
462 case OP_TYPE:
463 case OP_BOOL:
464 case OP_LAST:
465 case OP_REGISTER:
466 case OP_INTERNALVAR:
467 oplen = 3;
468 break;
469
470 case OP_FUNCALL:
471 oplen = 3;
472 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
473 break;
474
475 case UNOP_MAX:
476 case UNOP_MIN:
477 oplen = 3;
478 break;
479
480 case BINOP_VAL:
481 case UNOP_CAST:
482 case UNOP_MEMVAL:
483 oplen = 3;
484 args = 1;
485 break;
486
487 case UNOP_ABS:
488 case UNOP_CAP:
489 case UNOP_CHR:
490 case UNOP_FLOAT:
491 case UNOP_HIGH:
492 case UNOP_ODD:
493 case UNOP_ORD:
494 case UNOP_TRUNC:
495 oplen = 1;
496 args = 1;
497 break;
498
499 case STRUCTOP_STRUCT:
500 case STRUCTOP_PTR:
501 args = 1;
502 /* fall through */
503 case OP_M2_STRING:
504 case OP_STRING:
505 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
506 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
507 break;
508
509 case OP_BITSTRING:
510 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
511 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
512 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
513 break;
514
515 case OP_ARRAY:
516 oplen = 4;
517 args = longest_to_int (expr->elts[endpos - 2].longconst);
518 args -= longest_to_int (expr->elts[endpos - 3].longconst);
519 args += 1;
520 break;
521
522 case TERNOP_COND:
523 args = 3;
524 break;
525
526 /* Modula-2 */
527 case MULTI_SUBSCRIPT:
528 oplen=3;
529 args = 1 + longest_to_int (expr->elts[endpos- 2].longconst);
530 break;
531
532 case BINOP_ASSIGN_MODIFY:
533 oplen = 3;
534 args = 2;
535 break;
536
537 /* C++ */
538 case OP_THIS:
539 oplen = 2;
540 break;
541
542 default:
543 args = 1 + (i < (int) BINOP_END);
544 }
545
546 while (args > 0)
547 {
548 oplen += length_of_subexp (expr, endpos - oplen);
549 args--;
550 }
551
552 return oplen;
553 }
554
555 /* Copy the subexpression ending just before index INEND in INEXPR
556 into OUTEXPR, starting at index OUTBEG.
557 In the process, convert it from suffix to prefix form. */
558
559 static void
560 prefixify_subexp (inexpr, outexpr, inend, outbeg)
561 register struct expression *inexpr;
562 struct expression *outexpr;
563 register int inend;
564 int outbeg;
565 {
566 register int oplen = 1;
567 register int args = 0;
568 register int i;
569 int *arglens;
570 enum exp_opcode opcode;
571
572 /* Compute how long the last operation is (in OPLEN),
573 and also how many preceding subexpressions serve as
574 arguments for it (in ARGS). */
575
576 opcode = inexpr->elts[inend - 1].opcode;
577 switch (opcode)
578 {
579 /* C++ */
580 case OP_SCOPE:
581 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
582 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
583 break;
584
585 case OP_LONG:
586 case OP_DOUBLE:
587 case OP_VAR_VALUE:
588 oplen = 4;
589 break;
590
591 case OP_TYPE:
592 case OP_BOOL:
593 case OP_LAST:
594 case OP_REGISTER:
595 case OP_INTERNALVAR:
596 oplen = 3;
597 break;
598
599 case OP_FUNCALL:
600 oplen = 3;
601 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
602 break;
603
604 case UNOP_MIN:
605 case UNOP_MAX:
606 oplen = 3;
607 break;
608
609 case UNOP_CAST:
610 case UNOP_MEMVAL:
611 oplen = 3;
612 args = 1;
613 break;
614
615 case UNOP_ABS:
616 case UNOP_CAP:
617 case UNOP_CHR:
618 case UNOP_FLOAT:
619 case UNOP_HIGH:
620 case UNOP_ODD:
621 case UNOP_ORD:
622 case UNOP_TRUNC:
623 oplen=1;
624 args=1;
625 break;
626
627 case STRUCTOP_STRUCT:
628 case STRUCTOP_PTR:
629 args = 1;
630 /* fall through */
631 case OP_M2_STRING:
632 case OP_STRING:
633 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
634 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
635 break;
636
637 case OP_BITSTRING:
638 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
639 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
640 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
641 break;
642
643 case OP_ARRAY:
644 oplen = 4;
645 args = longest_to_int (inexpr->elts[inend - 2].longconst);
646 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
647 args += 1;
648 break;
649
650 case TERNOP_COND:
651 args = 3;
652 break;
653
654 case BINOP_ASSIGN_MODIFY:
655 oplen = 3;
656 args = 2;
657 break;
658
659 /* Modula-2 */
660 case MULTI_SUBSCRIPT:
661 oplen=3;
662 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
663 break;
664
665 /* C++ */
666 case OP_THIS:
667 oplen = 2;
668 break;
669
670 default:
671 args = 1 + ((int) opcode < (int) BINOP_END);
672 }
673
674 /* Copy the final operator itself, from the end of the input
675 to the beginning of the output. */
676 inend -= oplen;
677 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
678 EXP_ELEM_TO_BYTES (oplen));
679 outbeg += oplen;
680
681 /* Find the lengths of the arg subexpressions. */
682 arglens = (int *) alloca (args * sizeof (int));
683 for (i = args - 1; i >= 0; i--)
684 {
685 oplen = length_of_subexp (inexpr, inend);
686 arglens[i] = oplen;
687 inend -= oplen;
688 }
689
690 /* Now copy each subexpression, preserving the order of
691 the subexpressions, but prefixifying each one.
692 In this loop, inend starts at the beginning of
693 the expression this level is working on
694 and marches forward over the arguments.
695 outbeg does similarly in the output. */
696 for (i = 0; i < args; i++)
697 {
698 oplen = arglens[i];
699 inend += oplen;
700 prefixify_subexp (inexpr, outexpr, inend, outbeg);
701 outbeg += oplen;
702 }
703 }
704 \f
705 /* This page contains the two entry points to this file. */
706
707 /* Read an expression from the string *STRINGPTR points to,
708 parse it, and return a pointer to a struct expression that we malloc.
709 Use block BLOCK as the lexical context for variable names;
710 if BLOCK is zero, use the block of the selected stack frame.
711 Meanwhile, advance *STRINGPTR to point after the expression,
712 at the first nonwhite character that is not part of the expression
713 (possibly a null character).
714
715 If COMMA is nonzero, stop if a comma is reached. */
716
717 struct expression *
718 parse_exp_1 (stringptr, block, comma)
719 char **stringptr;
720 struct block *block;
721 int comma;
722 {
723 struct cleanup *old_chain;
724
725 lexptr = *stringptr;
726
727 paren_depth = 0;
728 type_stack_depth = 0;
729
730 comma_terminates = comma;
731
732 if (lexptr == 0 || *lexptr == 0)
733 error_no_arg ("expression to compute");
734
735 old_chain = make_cleanup (free_funcalls, 0);
736 funcall_chain = 0;
737
738 expression_context_block = block ? block : get_selected_block ();
739
740 namecopy = (char *) alloca (strlen (lexptr) + 1);
741 expout_size = 10;
742 expout_ptr = 0;
743 expout = (struct expression *)
744 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
745 expout->language_defn = current_language;
746 make_cleanup (free_current_contents, &expout);
747
748 if (current_language->la_parser ())
749 current_language->la_error (NULL);
750
751 discard_cleanups (old_chain);
752
753 /* Record the actual number of expression elements, and then
754 reallocate the expression memory so that we free up any
755 excess elements. */
756
757 expout->nelts = expout_ptr;
758 expout = (struct expression *)
759 xrealloc ((char *) expout,
760 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
761
762 /* Convert expression from postfix form as generated by yacc
763 parser, to a prefix form. */
764
765 DUMP_EXPRESSION (expout, gdb_stdout, "before conversion to prefix form");
766 prefixify_expression (expout);
767 DUMP_EXPRESSION (expout, gdb_stdout, "after conversion to prefix form");
768
769 *stringptr = lexptr;
770 return expout;
771 }
772
773 /* Parse STRING as an expression, and complain if this fails
774 to use up all of the contents of STRING. */
775
776 struct expression *
777 parse_expression (string)
778 char *string;
779 {
780 register struct expression *exp;
781 exp = parse_exp_1 (&string, 0, 0);
782 if (*string)
783 error ("Junk after end of expression.");
784 return exp;
785 }
786 \f
787 /* Stuff for maintaining a stack of types. Currently just used by C, but
788 probably useful for any language which declares its types "backwards". */
789
790 void
791 push_type (tp)
792 enum type_pieces tp;
793 {
794 if (type_stack_depth == type_stack_size)
795 {
796 type_stack_size *= 2;
797 type_stack = (union type_stack_elt *)
798 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
799 }
800 type_stack[type_stack_depth++].piece = tp;
801 }
802
803 void
804 push_type_int (n)
805 int n;
806 {
807 if (type_stack_depth == type_stack_size)
808 {
809 type_stack_size *= 2;
810 type_stack = (union type_stack_elt *)
811 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
812 }
813 type_stack[type_stack_depth++].int_val = n;
814 }
815
816 enum type_pieces
817 pop_type ()
818 {
819 if (type_stack_depth)
820 return type_stack[--type_stack_depth].piece;
821 return tp_end;
822 }
823
824 int
825 pop_type_int ()
826 {
827 if (type_stack_depth)
828 return type_stack[--type_stack_depth].int_val;
829 /* "Can't happen". */
830 return 0;
831 }
832
833 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
834 as modified by all the stuff on the stack. */
835 struct type *
836 follow_types (follow_type)
837 struct type *follow_type;
838 {
839 int done = 0;
840 int array_size;
841 struct type *range_type;
842
843 while (!done)
844 switch (pop_type ())
845 {
846 case tp_end:
847 done = 1;
848 break;
849 case tp_pointer:
850 follow_type = lookup_pointer_type (follow_type);
851 break;
852 case tp_reference:
853 follow_type = lookup_reference_type (follow_type);
854 break;
855 case tp_array:
856 array_size = pop_type_int ();
857 if (array_size != -1)
858 {
859 range_type =
860 create_range_type ((struct type *) NULL,
861 builtin_type_int, 0,
862 array_size - 1);
863 follow_type =
864 create_array_type ((struct type *) NULL,
865 follow_type, range_type);
866 }
867 else
868 follow_type = lookup_pointer_type (follow_type);
869 break;
870 case tp_function:
871 follow_type = lookup_function_type (follow_type);
872 break;
873 }
874 return follow_type;
875 }
876 \f
877 void
878 _initialize_parse ()
879 {
880 type_stack_size = 80;
881 type_stack_depth = 0;
882 type_stack = (union type_stack_elt *)
883 xmalloc (type_stack_size * sizeof (*type_stack));
884
885 /* We don't worry too much about what the name of this type is
886 because the name should rarely appear in output to the user. */
887
888 msymbol_addr_type =
889 init_type (TYPE_CODE_PTR, TARGET_PTR_BIT / HOST_CHAR_BIT, 0,
890 "void *", NULL);
891 }
This page took 0.04796 seconds and 4 git commands to generate.