Calling ifunc functions when target has no debug info but resolver has
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h" /* for overlay functions */
46 #include "inferior.h"
47 #include "target-float.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52 #include <algorithm>
53 #include "common/gdb_optional.h"
54
55 /* Standard set of definitions for printing, dumping, prefixifying,
56 * and evaluating expressions. */
57
58 const struct exp_descriptor exp_descriptor_standard =
59 {
60 print_subexp_standard,
61 operator_length_standard,
62 operator_check_standard,
63 op_name_standard,
64 dump_subexp_body_standard,
65 evaluate_subexp_standard
66 };
67 \f
68 /* Global variables declared in parser-defs.h (and commented there). */
69 const struct block *expression_context_block;
70 CORE_ADDR expression_context_pc;
71 innermost_block_tracker innermost_block;
72 int arglist_len;
73 static struct type_stack type_stack;
74 const char *lexptr;
75 const char *prev_lexptr;
76 int paren_depth;
77 int comma_terminates;
78
79 /* True if parsing an expression to attempt completion. */
80 int parse_completion;
81
82 /* The index of the last struct expression directly before a '.' or
83 '->'. This is set when parsing and is only used when completing a
84 field name. It is -1 if no dereference operation was found. */
85 static int expout_last_struct = -1;
86
87 /* If we are completing a tagged type name, this will be nonzero. */
88 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
89
90 /* The token for tagged type name completion. */
91 static gdb::unique_xmalloc_ptr<char> expout_completion_name;
92
93 \f
94 static unsigned int expressiondebug = 0;
95 static void
96 show_expressiondebug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
100 }
101
102
103 /* Non-zero if an expression parser should set yydebug. */
104 int parser_debug;
105
106 static void
107 show_parserdebug (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109 {
110 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
111 }
112
113
114 static int prefixify_subexp (struct expression *, struct expression *, int,
115 int);
116
117 static expression_up parse_exp_in_context (const char **, CORE_ADDR,
118 const struct block *, int,
119 int, int *);
120 static expression_up parse_exp_in_context_1 (const char **, CORE_ADDR,
121 const struct block *, int,
122 int, int *);
123
124 /* Documented at it's declaration. */
125
126 void
127 innermost_block_tracker::update (const struct block *b,
128 innermost_block_tracker_types t)
129 {
130 if ((m_types & t) != 0
131 && (m_innermost_block == NULL
132 || contained_in (b, m_innermost_block)))
133 m_innermost_block = b;
134 }
135
136 /* Data structure for saving values of arglist_len for function calls whose
137 arguments contain other function calls. */
138
139 static std::vector<int> *funcall_chain;
140
141 /* Begin counting arguments for a function call,
142 saving the data about any containing call. */
143
144 void
145 start_arglist (void)
146 {
147 funcall_chain->push_back (arglist_len);
148 arglist_len = 0;
149 }
150
151 /* Return the number of arguments in a function call just terminated,
152 and restore the data for the containing function call. */
153
154 int
155 end_arglist (void)
156 {
157 int val = arglist_len;
158 arglist_len = funcall_chain->back ();
159 funcall_chain->pop_back ();
160 return val;
161 }
162
163 \f
164
165 /* See definition in parser-defs.h. */
166
167 parser_state::parser_state (size_t initial_size,
168 const struct language_defn *lang,
169 struct gdbarch *gdbarch)
170 : expout_size (initial_size),
171 expout (XNEWVAR (expression,
172 (sizeof (expression)
173 + EXP_ELEM_TO_BYTES (expout_size)))),
174 expout_ptr (0)
175 {
176 expout->language_defn = lang;
177 expout->gdbarch = gdbarch;
178 }
179
180 expression_up
181 parser_state::release ()
182 {
183 /* Record the actual number of expression elements, and then
184 reallocate the expression memory so that we free up any
185 excess elements. */
186
187 expout->nelts = expout_ptr;
188 expout.reset (XRESIZEVAR (expression, expout.release (),
189 (sizeof (expression)
190 + EXP_ELEM_TO_BYTES (expout_ptr))));
191
192 return std::move (expout);
193 }
194
195 /* This page contains the functions for adding data to the struct expression
196 being constructed. */
197
198 /* Add one element to the end of the expression. */
199
200 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
201 a register through here. */
202
203 static void
204 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
205 {
206 if (ps->expout_ptr >= ps->expout_size)
207 {
208 ps->expout_size *= 2;
209 ps->expout.reset (XRESIZEVAR (expression, ps->expout.release (),
210 (sizeof (expression)
211 + EXP_ELEM_TO_BYTES (ps->expout_size))));
212 }
213 ps->expout->elts[ps->expout_ptr++] = *expelt;
214 }
215
216 void
217 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
218 {
219 union exp_element tmp;
220
221 memset (&tmp, 0, sizeof (union exp_element));
222 tmp.opcode = expelt;
223 write_exp_elt (ps, &tmp);
224 }
225
226 void
227 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
228 {
229 union exp_element tmp;
230
231 memset (&tmp, 0, sizeof (union exp_element));
232 tmp.symbol = expelt;
233 write_exp_elt (ps, &tmp);
234 }
235
236 void
237 write_exp_elt_msym (struct parser_state *ps, minimal_symbol *expelt)
238 {
239 union exp_element tmp;
240
241 memset (&tmp, 0, sizeof (union exp_element));
242 tmp.msymbol = expelt;
243 write_exp_elt (ps, &tmp);
244 }
245
246 void
247 write_exp_elt_block (struct parser_state *ps, const struct block *b)
248 {
249 union exp_element tmp;
250
251 memset (&tmp, 0, sizeof (union exp_element));
252 tmp.block = b;
253 write_exp_elt (ps, &tmp);
254 }
255
256 void
257 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
258 {
259 union exp_element tmp;
260
261 memset (&tmp, 0, sizeof (union exp_element));
262 tmp.objfile = objfile;
263 write_exp_elt (ps, &tmp);
264 }
265
266 void
267 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
268 {
269 union exp_element tmp;
270
271 memset (&tmp, 0, sizeof (union exp_element));
272 tmp.longconst = expelt;
273 write_exp_elt (ps, &tmp);
274 }
275
276 void
277 write_exp_elt_floatcst (struct parser_state *ps, const gdb_byte expelt[16])
278 {
279 union exp_element tmp;
280 int index;
281
282 for (index = 0; index < 16; index++)
283 tmp.floatconst[index] = expelt[index];
284
285 write_exp_elt (ps, &tmp);
286 }
287
288 void
289 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
290 {
291 union exp_element tmp;
292
293 memset (&tmp, 0, sizeof (union exp_element));
294 tmp.type = expelt;
295 write_exp_elt (ps, &tmp);
296 }
297
298 void
299 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
300 {
301 union exp_element tmp;
302
303 memset (&tmp, 0, sizeof (union exp_element));
304 tmp.internalvar = expelt;
305 write_exp_elt (ps, &tmp);
306 }
307
308 /* Add a string constant to the end of the expression.
309
310 String constants are stored by first writing an expression element
311 that contains the length of the string, then stuffing the string
312 constant itself into however many expression elements are needed
313 to hold it, and then writing another expression element that contains
314 the length of the string. I.e. an expression element at each end of
315 the string records the string length, so you can skip over the
316 expression elements containing the actual string bytes from either
317 end of the string. Note that this also allows gdb to handle
318 strings with embedded null bytes, as is required for some languages.
319
320 Don't be fooled by the fact that the string is null byte terminated,
321 this is strictly for the convenience of debugging gdb itself.
322 Gdb does not depend up the string being null terminated, since the
323 actual length is recorded in expression elements at each end of the
324 string. The null byte is taken into consideration when computing how
325 many expression elements are required to hold the string constant, of
326 course. */
327
328
329 void
330 write_exp_string (struct parser_state *ps, struct stoken str)
331 {
332 int len = str.length;
333 size_t lenelt;
334 char *strdata;
335
336 /* Compute the number of expression elements required to hold the string
337 (including a null byte terminator), along with one expression element
338 at each end to record the actual string length (not including the
339 null byte terminator). */
340
341 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
342
343 increase_expout_size (ps, lenelt);
344
345 /* Write the leading length expression element (which advances the current
346 expression element index), then write the string constant followed by a
347 terminating null byte, and then write the trailing length expression
348 element. */
349
350 write_exp_elt_longcst (ps, (LONGEST) len);
351 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
352 memcpy (strdata, str.ptr, len);
353 *(strdata + len) = '\0';
354 ps->expout_ptr += lenelt - 2;
355 write_exp_elt_longcst (ps, (LONGEST) len);
356 }
357
358 /* Add a vector of string constants to the end of the expression.
359
360 This adds an OP_STRING operation, but encodes the contents
361 differently from write_exp_string. The language is expected to
362 handle evaluation of this expression itself.
363
364 After the usual OP_STRING header, TYPE is written into the
365 expression as a long constant. The interpretation of this field is
366 up to the language evaluator.
367
368 Next, each string in VEC is written. The length is written as a
369 long constant, followed by the contents of the string. */
370
371 void
372 write_exp_string_vector (struct parser_state *ps, int type,
373 struct stoken_vector *vec)
374 {
375 int i, len;
376 size_t n_slots;
377
378 /* Compute the size. We compute the size in number of slots to
379 avoid issues with string padding. */
380 n_slots = 0;
381 for (i = 0; i < vec->len; ++i)
382 {
383 /* One slot for the length of this element, plus the number of
384 slots needed for this string. */
385 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
386 }
387
388 /* One more slot for the type of the string. */
389 ++n_slots;
390
391 /* Now compute a phony string length. */
392 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
393
394 n_slots += 4;
395 increase_expout_size (ps, n_slots);
396
397 write_exp_elt_opcode (ps, OP_STRING);
398 write_exp_elt_longcst (ps, len);
399 write_exp_elt_longcst (ps, type);
400
401 for (i = 0; i < vec->len; ++i)
402 {
403 write_exp_elt_longcst (ps, vec->tokens[i].length);
404 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
405 vec->tokens[i].length);
406 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
407 }
408
409 write_exp_elt_longcst (ps, len);
410 write_exp_elt_opcode (ps, OP_STRING);
411 }
412
413 /* Add a bitstring constant to the end of the expression.
414
415 Bitstring constants are stored by first writing an expression element
416 that contains the length of the bitstring (in bits), then stuffing the
417 bitstring constant itself into however many expression elements are
418 needed to hold it, and then writing another expression element that
419 contains the length of the bitstring. I.e. an expression element at
420 each end of the bitstring records the bitstring length, so you can skip
421 over the expression elements containing the actual bitstring bytes from
422 either end of the bitstring. */
423
424 void
425 write_exp_bitstring (struct parser_state *ps, struct stoken str)
426 {
427 int bits = str.length; /* length in bits */
428 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
429 size_t lenelt;
430 char *strdata;
431
432 /* Compute the number of expression elements required to hold the bitstring,
433 along with one expression element at each end to record the actual
434 bitstring length in bits. */
435
436 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
437
438 increase_expout_size (ps, lenelt);
439
440 /* Write the leading length expression element (which advances the current
441 expression element index), then write the bitstring constant, and then
442 write the trailing length expression element. */
443
444 write_exp_elt_longcst (ps, (LONGEST) bits);
445 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
446 memcpy (strdata, str.ptr, len);
447 ps->expout_ptr += lenelt - 2;
448 write_exp_elt_longcst (ps, (LONGEST) bits);
449 }
450
451 /* Return the type of MSYMBOL, a minimal symbol of OBJFILE. If
452 ADDRESS_P is not NULL, set it to the MSYMBOL's resolved
453 address. */
454
455 type *
456 find_minsym_type_and_address (minimal_symbol *msymbol,
457 struct objfile *objfile,
458 CORE_ADDR *address_p)
459 {
460 bound_minimal_symbol bound_msym = {msymbol, objfile};
461 struct gdbarch *gdbarch = get_objfile_arch (objfile);
462 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
463 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
464 CORE_ADDR pc;
465
466 bool is_tls = (section != NULL
467 && section->the_bfd_section->flags & SEC_THREAD_LOCAL);
468
469 /* Addresses of TLS symbols are really offsets into a
470 per-objfile/per-thread storage block. */
471 CORE_ADDR addr = (is_tls
472 ? MSYMBOL_VALUE_RAW_ADDRESS (bound_msym.minsym)
473 : BMSYMBOL_VALUE_ADDRESS (bound_msym));
474
475 /* The minimal symbol might point to a function descriptor;
476 resolve it to the actual code address instead. */
477 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
478 if (pc != addr)
479 {
480 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
481
482 /* In this case, assume we have a code symbol instead of
483 a data symbol. */
484
485 if (ifunc_msym.minsym != NULL
486 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
487 && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
488 {
489 /* A function descriptor has been resolved but PC is still in the
490 STT_GNU_IFUNC resolver body (such as because inferior does not
491 run to be able to call it). */
492
493 type = mst_text_gnu_ifunc;
494 }
495 else
496 type = mst_text;
497 section = NULL;
498 addr = pc;
499 }
500
501 if (overlay_debugging)
502 addr = symbol_overlayed_address (addr, section);
503
504 if (is_tls)
505 {
506 /* Skip translation if caller does not need the address. */
507 if (address_p != NULL)
508 *address_p = target_translate_tls_address (objfile, addr);
509 return objfile_type (objfile)->nodebug_tls_symbol;
510 }
511
512 if (address_p != NULL)
513 *address_p = addr;
514
515 switch (type)
516 {
517 case mst_text:
518 case mst_file_text:
519 case mst_solib_trampoline:
520 return objfile_type (objfile)->nodebug_text_symbol;
521
522 case mst_text_gnu_ifunc:
523 return objfile_type (objfile)->nodebug_text_gnu_ifunc_symbol;
524
525 case mst_data:
526 case mst_file_data:
527 case mst_bss:
528 case mst_file_bss:
529 return objfile_type (objfile)->nodebug_data_symbol;
530
531 case mst_slot_got_plt:
532 return objfile_type (objfile)->nodebug_got_plt_symbol;
533
534 default:
535 return objfile_type (objfile)->nodebug_unknown_symbol;
536 }
537 }
538
539 /* Add the appropriate elements for a minimal symbol to the end of
540 the expression. */
541
542 void
543 write_exp_msymbol (struct parser_state *ps,
544 struct bound_minimal_symbol bound_msym)
545 {
546 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
547 write_exp_elt_objfile (ps, bound_msym.objfile);
548 write_exp_elt_msym (ps, bound_msym.minsym);
549 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
550 }
551
552 /* Mark the current index as the starting location of a structure
553 expression. This is used when completing on field names. */
554
555 void
556 mark_struct_expression (struct parser_state *ps)
557 {
558 gdb_assert (parse_completion
559 && expout_tag_completion_type == TYPE_CODE_UNDEF);
560 expout_last_struct = ps->expout_ptr;
561 }
562
563 /* Indicate that the current parser invocation is completing a tag.
564 TAG is the type code of the tag, and PTR and LENGTH represent the
565 start of the tag name. */
566
567 void
568 mark_completion_tag (enum type_code tag, const char *ptr, int length)
569 {
570 gdb_assert (parse_completion
571 && expout_tag_completion_type == TYPE_CODE_UNDEF
572 && expout_completion_name == NULL
573 && expout_last_struct == -1);
574 gdb_assert (tag == TYPE_CODE_UNION
575 || tag == TYPE_CODE_STRUCT
576 || tag == TYPE_CODE_ENUM);
577 expout_tag_completion_type = tag;
578 expout_completion_name.reset (xstrndup (ptr, length));
579 }
580
581 \f
582 /* Recognize tokens that start with '$'. These include:
583
584 $regname A native register name or a "standard
585 register name".
586
587 $variable A convenience variable with a name chosen
588 by the user.
589
590 $digits Value history with index <digits>, starting
591 from the first value which has index 1.
592
593 $$digits Value history with index <digits> relative
594 to the last value. I.e. $$0 is the last
595 value, $$1 is the one previous to that, $$2
596 is the one previous to $$1, etc.
597
598 $ | $0 | $$0 The last value in the value history.
599
600 $$ An abbreviation for the second to the last
601 value in the value history, I.e. $$1 */
602
603 void
604 write_dollar_variable (struct parser_state *ps, struct stoken str)
605 {
606 struct block_symbol sym;
607 struct bound_minimal_symbol msym;
608 struct internalvar *isym = NULL;
609
610 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
611 and $$digits (equivalent to $<-digits> if you could type that). */
612
613 int negate = 0;
614 int i = 1;
615 /* Double dollar means negate the number and add -1 as well.
616 Thus $$ alone means -1. */
617 if (str.length >= 2 && str.ptr[1] == '$')
618 {
619 negate = 1;
620 i = 2;
621 }
622 if (i == str.length)
623 {
624 /* Just dollars (one or two). */
625 i = -negate;
626 goto handle_last;
627 }
628 /* Is the rest of the token digits? */
629 for (; i < str.length; i++)
630 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
631 break;
632 if (i == str.length)
633 {
634 i = atoi (str.ptr + 1 + negate);
635 if (negate)
636 i = -i;
637 goto handle_last;
638 }
639
640 /* Handle tokens that refer to machine registers:
641 $ followed by a register name. */
642 i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
643 str.ptr + 1, str.length - 1);
644 if (i >= 0)
645 goto handle_register;
646
647 /* Any names starting with $ are probably debugger internal variables. */
648
649 isym = lookup_only_internalvar (copy_name (str) + 1);
650 if (isym)
651 {
652 write_exp_elt_opcode (ps, OP_INTERNALVAR);
653 write_exp_elt_intern (ps, isym);
654 write_exp_elt_opcode (ps, OP_INTERNALVAR);
655 return;
656 }
657
658 /* On some systems, such as HP-UX and hppa-linux, certain system routines
659 have names beginning with $ or $$. Check for those, first. */
660
661 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
662 VAR_DOMAIN, NULL);
663 if (sym.symbol)
664 {
665 write_exp_elt_opcode (ps, OP_VAR_VALUE);
666 write_exp_elt_block (ps, sym.block);
667 write_exp_elt_sym (ps, sym.symbol);
668 write_exp_elt_opcode (ps, OP_VAR_VALUE);
669 return;
670 }
671 msym = lookup_bound_minimal_symbol (copy_name (str));
672 if (msym.minsym)
673 {
674 write_exp_msymbol (ps, msym);
675 return;
676 }
677
678 /* Any other names are assumed to be debugger internal variables. */
679
680 write_exp_elt_opcode (ps, OP_INTERNALVAR);
681 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
682 write_exp_elt_opcode (ps, OP_INTERNALVAR);
683 return;
684 handle_last:
685 write_exp_elt_opcode (ps, OP_LAST);
686 write_exp_elt_longcst (ps, (LONGEST) i);
687 write_exp_elt_opcode (ps, OP_LAST);
688 return;
689 handle_register:
690 write_exp_elt_opcode (ps, OP_REGISTER);
691 str.length--;
692 str.ptr++;
693 write_exp_string (ps, str);
694 write_exp_elt_opcode (ps, OP_REGISTER);
695 innermost_block.update (expression_context_block,
696 INNERMOST_BLOCK_FOR_REGISTERS);
697 return;
698 }
699
700
701 const char *
702 find_template_name_end (const char *p)
703 {
704 int depth = 1;
705 int just_seen_right = 0;
706 int just_seen_colon = 0;
707 int just_seen_space = 0;
708
709 if (!p || (*p != '<'))
710 return 0;
711
712 while (*++p)
713 {
714 switch (*p)
715 {
716 case '\'':
717 case '\"':
718 case '{':
719 case '}':
720 /* In future, may want to allow these?? */
721 return 0;
722 case '<':
723 depth++; /* start nested template */
724 if (just_seen_colon || just_seen_right || just_seen_space)
725 return 0; /* but not after : or :: or > or space */
726 break;
727 case '>':
728 if (just_seen_colon || just_seen_right)
729 return 0; /* end a (nested?) template */
730 just_seen_right = 1; /* but not after : or :: */
731 if (--depth == 0) /* also disallow >>, insist on > > */
732 return ++p; /* if outermost ended, return */
733 break;
734 case ':':
735 if (just_seen_space || (just_seen_colon > 1))
736 return 0; /* nested class spec coming up */
737 just_seen_colon++; /* we allow :: but not :::: */
738 break;
739 case ' ':
740 break;
741 default:
742 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
743 (*p >= 'A' && *p <= 'Z') ||
744 (*p >= '0' && *p <= '9') ||
745 (*p == '_') || (*p == ',') || /* commas for template args */
746 (*p == '&') || (*p == '*') || /* pointer and ref types */
747 (*p == '(') || (*p == ')') || /* function types */
748 (*p == '[') || (*p == ']'))) /* array types */
749 return 0;
750 }
751 if (*p != ' ')
752 just_seen_space = 0;
753 if (*p != ':')
754 just_seen_colon = 0;
755 if (*p != '>')
756 just_seen_right = 0;
757 }
758 return 0;
759 }
760 \f
761
762 /* Return a null-terminated temporary copy of the name of a string token.
763
764 Tokens that refer to names do so with explicit pointer and length,
765 so they can share the storage that lexptr is parsing.
766 When it is necessary to pass a name to a function that expects
767 a null-terminated string, the substring is copied out
768 into a separate block of storage.
769
770 N.B. A single buffer is reused on each call. */
771
772 char *
773 copy_name (struct stoken token)
774 {
775 /* A temporary buffer for identifiers, so we can null-terminate them.
776 We allocate this with xrealloc. parse_exp_1 used to allocate with
777 alloca, using the size of the whole expression as a conservative
778 estimate of the space needed. However, macro expansion can
779 introduce names longer than the original expression; there's no
780 practical way to know beforehand how large that might be. */
781 static char *namecopy;
782 static size_t namecopy_size;
783
784 /* Make sure there's enough space for the token. */
785 if (namecopy_size < token.length + 1)
786 {
787 namecopy_size = token.length + 1;
788 namecopy = (char *) xrealloc (namecopy, token.length + 1);
789 }
790
791 memcpy (namecopy, token.ptr, token.length);
792 namecopy[token.length] = 0;
793
794 return namecopy;
795 }
796 \f
797
798 /* See comments on parser-defs.h. */
799
800 int
801 prefixify_expression (struct expression *expr)
802 {
803 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
804 struct expression *temp;
805 int inpos = expr->nelts, outpos = 0;
806
807 temp = (struct expression *) alloca (len);
808
809 /* Copy the original expression into temp. */
810 memcpy (temp, expr, len);
811
812 return prefixify_subexp (temp, expr, inpos, outpos);
813 }
814
815 /* Return the number of exp_elements in the postfix subexpression
816 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
817
818 static int
819 length_of_subexp (struct expression *expr, int endpos)
820 {
821 int oplen, args;
822
823 operator_length (expr, endpos, &oplen, &args);
824
825 while (args > 0)
826 {
827 oplen += length_of_subexp (expr, endpos - oplen);
828 args--;
829 }
830
831 return oplen;
832 }
833
834 /* Sets *OPLENP to the length of the operator whose (last) index is
835 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
836 operator takes. */
837
838 void
839 operator_length (const struct expression *expr, int endpos, int *oplenp,
840 int *argsp)
841 {
842 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
843 oplenp, argsp);
844 }
845
846 /* Default value for operator_length in exp_descriptor vectors. */
847
848 void
849 operator_length_standard (const struct expression *expr, int endpos,
850 int *oplenp, int *argsp)
851 {
852 int oplen = 1;
853 int args = 0;
854 enum range_type range_type;
855 int i;
856
857 if (endpos < 1)
858 error (_("?error in operator_length_standard"));
859
860 i = (int) expr->elts[endpos - 1].opcode;
861
862 switch (i)
863 {
864 /* C++ */
865 case OP_SCOPE:
866 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
867 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
868 break;
869
870 case OP_LONG:
871 case OP_FLOAT:
872 case OP_VAR_VALUE:
873 case OP_VAR_MSYM_VALUE:
874 oplen = 4;
875 break;
876
877 case OP_FUNC_STATIC_VAR:
878 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
879 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
880 args = 1;
881 break;
882
883 case OP_TYPE:
884 case OP_BOOL:
885 case OP_LAST:
886 case OP_INTERNALVAR:
887 case OP_VAR_ENTRY_VALUE:
888 oplen = 3;
889 break;
890
891 case OP_COMPLEX:
892 oplen = 3;
893 args = 2;
894 break;
895
896 case OP_FUNCALL:
897 case OP_F77_UNDETERMINED_ARGLIST:
898 oplen = 3;
899 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
900 break;
901
902 case TYPE_INSTANCE:
903 oplen = 5 + longest_to_int (expr->elts[endpos - 2].longconst);
904 args = 1;
905 break;
906
907 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
908 oplen = 4;
909 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
910 break;
911
912 case UNOP_MAX:
913 case UNOP_MIN:
914 oplen = 3;
915 break;
916
917 case UNOP_CAST_TYPE:
918 case UNOP_DYNAMIC_CAST:
919 case UNOP_REINTERPRET_CAST:
920 case UNOP_MEMVAL_TYPE:
921 oplen = 1;
922 args = 2;
923 break;
924
925 case BINOP_VAL:
926 case UNOP_CAST:
927 case UNOP_MEMVAL:
928 oplen = 3;
929 args = 1;
930 break;
931
932 case UNOP_ABS:
933 case UNOP_CAP:
934 case UNOP_CHR:
935 case UNOP_FLOAT:
936 case UNOP_HIGH:
937 case UNOP_ODD:
938 case UNOP_ORD:
939 case UNOP_TRUNC:
940 case OP_TYPEOF:
941 case OP_DECLTYPE:
942 case OP_TYPEID:
943 oplen = 1;
944 args = 1;
945 break;
946
947 case OP_ADL_FUNC:
948 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
949 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
950 oplen++;
951 oplen++;
952 break;
953
954 case STRUCTOP_STRUCT:
955 case STRUCTOP_PTR:
956 args = 1;
957 /* fall through */
958 case OP_REGISTER:
959 case OP_M2_STRING:
960 case OP_STRING:
961 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
962 NSString constant. */
963 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
964 case OP_NAME:
965 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
966 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
967 break;
968
969 case OP_ARRAY:
970 oplen = 4;
971 args = longest_to_int (expr->elts[endpos - 2].longconst);
972 args -= longest_to_int (expr->elts[endpos - 3].longconst);
973 args += 1;
974 break;
975
976 case TERNOP_COND:
977 case TERNOP_SLICE:
978 args = 3;
979 break;
980
981 /* Modula-2 */
982 case MULTI_SUBSCRIPT:
983 oplen = 3;
984 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
985 break;
986
987 case BINOP_ASSIGN_MODIFY:
988 oplen = 3;
989 args = 2;
990 break;
991
992 /* C++ */
993 case OP_THIS:
994 oplen = 2;
995 break;
996
997 case OP_RANGE:
998 oplen = 3;
999 range_type = (enum range_type)
1000 longest_to_int (expr->elts[endpos - 2].longconst);
1001
1002 switch (range_type)
1003 {
1004 case LOW_BOUND_DEFAULT:
1005 case HIGH_BOUND_DEFAULT:
1006 args = 1;
1007 break;
1008 case BOTH_BOUND_DEFAULT:
1009 args = 0;
1010 break;
1011 case NONE_BOUND_DEFAULT:
1012 args = 2;
1013 break;
1014 }
1015
1016 break;
1017
1018 default:
1019 args = 1 + (i < (int) BINOP_END);
1020 }
1021
1022 *oplenp = oplen;
1023 *argsp = args;
1024 }
1025
1026 /* Copy the subexpression ending just before index INEND in INEXPR
1027 into OUTEXPR, starting at index OUTBEG.
1028 In the process, convert it from suffix to prefix form.
1029 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1030 Otherwise, it returns the index of the subexpression which is the
1031 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1032
1033 static int
1034 prefixify_subexp (struct expression *inexpr,
1035 struct expression *outexpr, int inend, int outbeg)
1036 {
1037 int oplen;
1038 int args;
1039 int i;
1040 int *arglens;
1041 int result = -1;
1042
1043 operator_length (inexpr, inend, &oplen, &args);
1044
1045 /* Copy the final operator itself, from the end of the input
1046 to the beginning of the output. */
1047 inend -= oplen;
1048 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1049 EXP_ELEM_TO_BYTES (oplen));
1050 outbeg += oplen;
1051
1052 if (expout_last_struct == inend)
1053 result = outbeg - oplen;
1054
1055 /* Find the lengths of the arg subexpressions. */
1056 arglens = (int *) alloca (args * sizeof (int));
1057 for (i = args - 1; i >= 0; i--)
1058 {
1059 oplen = length_of_subexp (inexpr, inend);
1060 arglens[i] = oplen;
1061 inend -= oplen;
1062 }
1063
1064 /* Now copy each subexpression, preserving the order of
1065 the subexpressions, but prefixifying each one.
1066 In this loop, inend starts at the beginning of
1067 the expression this level is working on
1068 and marches forward over the arguments.
1069 outbeg does similarly in the output. */
1070 for (i = 0; i < args; i++)
1071 {
1072 int r;
1073
1074 oplen = arglens[i];
1075 inend += oplen;
1076 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1077 if (r != -1)
1078 {
1079 /* Return immediately. We probably have only parsed a
1080 partial expression, so we don't want to try to reverse
1081 the other operands. */
1082 return r;
1083 }
1084 outbeg += oplen;
1085 }
1086
1087 return result;
1088 }
1089 \f
1090 /* Read an expression from the string *STRINGPTR points to,
1091 parse it, and return a pointer to a struct expression that we malloc.
1092 Use block BLOCK as the lexical context for variable names;
1093 if BLOCK is zero, use the block of the selected stack frame.
1094 Meanwhile, advance *STRINGPTR to point after the expression,
1095 at the first nonwhite character that is not part of the expression
1096 (possibly a null character).
1097
1098 If COMMA is nonzero, stop if a comma is reached. */
1099
1100 expression_up
1101 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1102 int comma)
1103 {
1104 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1105 }
1106
1107 static expression_up
1108 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1109 const struct block *block,
1110 int comma, int void_context_p, int *out_subexp)
1111 {
1112 return parse_exp_in_context_1 (stringptr, pc, block, comma,
1113 void_context_p, out_subexp);
1114 }
1115
1116 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1117 no value is expected from the expression.
1118 OUT_SUBEXP is set when attempting to complete a field name; in this
1119 case it is set to the index of the subexpression on the
1120 left-hand-side of the struct op. If not doing such completion, it
1121 is left untouched. */
1122
1123 static expression_up
1124 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1125 const struct block *block,
1126 int comma, int void_context_p, int *out_subexp)
1127 {
1128 const struct language_defn *lang = NULL;
1129 int subexp;
1130
1131 lexptr = *stringptr;
1132 prev_lexptr = NULL;
1133
1134 paren_depth = 0;
1135 type_stack.depth = 0;
1136 expout_last_struct = -1;
1137 expout_tag_completion_type = TYPE_CODE_UNDEF;
1138 expout_completion_name.reset ();
1139
1140 comma_terminates = comma;
1141
1142 if (lexptr == 0 || *lexptr == 0)
1143 error_no_arg (_("expression to compute"));
1144
1145 std::vector<int> funcalls;
1146 scoped_restore save_funcall_chain = make_scoped_restore (&funcall_chain,
1147 &funcalls);
1148
1149 expression_context_block = block;
1150
1151 /* If no context specified, try using the current frame, if any. */
1152 if (!expression_context_block)
1153 expression_context_block = get_selected_block (&expression_context_pc);
1154 else if (pc == 0)
1155 expression_context_pc = BLOCK_START (expression_context_block);
1156 else
1157 expression_context_pc = pc;
1158
1159 /* Fall back to using the current source static context, if any. */
1160
1161 if (!expression_context_block)
1162 {
1163 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1164 if (cursal.symtab)
1165 expression_context_block
1166 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1167 STATIC_BLOCK);
1168 if (expression_context_block)
1169 expression_context_pc = BLOCK_START (expression_context_block);
1170 }
1171
1172 if (language_mode == language_mode_auto && block != NULL)
1173 {
1174 /* Find the language associated to the given context block.
1175 Default to the current language if it can not be determined.
1176
1177 Note that using the language corresponding to the current frame
1178 can sometimes give unexpected results. For instance, this
1179 routine is often called several times during the inferior
1180 startup phase to re-parse breakpoint expressions after
1181 a new shared library has been loaded. The language associated
1182 to the current frame at this moment is not relevant for
1183 the breakpoint. Using it would therefore be silly, so it seems
1184 better to rely on the current language rather than relying on
1185 the current frame language to parse the expression. That's why
1186 we do the following language detection only if the context block
1187 has been specifically provided. */
1188 struct symbol *func = block_linkage_function (block);
1189
1190 if (func != NULL)
1191 lang = language_def (SYMBOL_LANGUAGE (func));
1192 if (lang == NULL || lang->la_language == language_unknown)
1193 lang = current_language;
1194 }
1195 else
1196 lang = current_language;
1197
1198 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1199 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1200 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1201 to the value matching SELECTED_FRAME as set by get_current_arch. */
1202
1203 parser_state ps (10, lang, get_current_arch ());
1204
1205 scoped_restore_current_language lang_saver;
1206 set_language (lang->la_language);
1207
1208 TRY
1209 {
1210 if (lang->la_parser (&ps))
1211 lang->la_error (NULL);
1212 }
1213 CATCH (except, RETURN_MASK_ALL)
1214 {
1215 if (! parse_completion)
1216 throw_exception (except);
1217 }
1218 END_CATCH
1219
1220 /* We have to operate on an "expression *", due to la_post_parser,
1221 which explains this funny-looking double release. */
1222 expression_up result = ps.release ();
1223
1224 /* Convert expression from postfix form as generated by yacc
1225 parser, to a prefix form. */
1226
1227 if (expressiondebug)
1228 dump_raw_expression (result.get (), gdb_stdlog,
1229 "before conversion to prefix form");
1230
1231 subexp = prefixify_expression (result.get ());
1232 if (out_subexp)
1233 *out_subexp = subexp;
1234
1235 lang->la_post_parser (&result, void_context_p);
1236
1237 if (expressiondebug)
1238 dump_prefix_expression (result.get (), gdb_stdlog);
1239
1240 *stringptr = lexptr;
1241 return result;
1242 }
1243
1244 /* Parse STRING as an expression, and complain if this fails
1245 to use up all of the contents of STRING. */
1246
1247 expression_up
1248 parse_expression (const char *string)
1249 {
1250 expression_up exp = parse_exp_1 (&string, 0, 0, 0);
1251 if (*string)
1252 error (_("Junk after end of expression."));
1253 return exp;
1254 }
1255
1256 /* Same as parse_expression, but using the given language (LANG)
1257 to parse the expression. */
1258
1259 expression_up
1260 parse_expression_with_language (const char *string, enum language lang)
1261 {
1262 gdb::optional<scoped_restore_current_language> lang_saver;
1263 if (current_language->la_language != lang)
1264 {
1265 lang_saver.emplace ();
1266 set_language (lang);
1267 }
1268
1269 return parse_expression (string);
1270 }
1271
1272 /* Parse STRING as an expression. If parsing ends in the middle of a
1273 field reference, return the type of the left-hand-side of the
1274 reference; furthermore, if the parsing ends in the field name,
1275 return the field name in *NAME. If the parsing ends in the middle
1276 of a field reference, but the reference is somehow invalid, throw
1277 an exception. In all other cases, return NULL. */
1278
1279 struct type *
1280 parse_expression_for_completion (const char *string,
1281 gdb::unique_xmalloc_ptr<char> *name,
1282 enum type_code *code)
1283 {
1284 expression_up exp;
1285 struct value *val;
1286 int subexp;
1287
1288 TRY
1289 {
1290 parse_completion = 1;
1291 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1292 }
1293 CATCH (except, RETURN_MASK_ERROR)
1294 {
1295 /* Nothing, EXP remains NULL. */
1296 }
1297 END_CATCH
1298
1299 parse_completion = 0;
1300 if (exp == NULL)
1301 return NULL;
1302
1303 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1304 {
1305 *code = expout_tag_completion_type;
1306 *name = std::move (expout_completion_name);
1307 return NULL;
1308 }
1309
1310 if (expout_last_struct == -1)
1311 return NULL;
1312
1313 const char *fieldname = extract_field_op (exp.get (), &subexp);
1314 if (fieldname == NULL)
1315 {
1316 name->reset ();
1317 return NULL;
1318 }
1319
1320 name->reset (xstrdup (fieldname));
1321 /* This might throw an exception. If so, we want to let it
1322 propagate. */
1323 val = evaluate_subexpression_type (exp.get (), subexp);
1324
1325 return value_type (val);
1326 }
1327
1328 /* A post-parser that does nothing. */
1329
1330 void
1331 null_post_parser (expression_up *exp, int void_context_p)
1332 {
1333 }
1334
1335 /* Parse floating point value P of length LEN.
1336 Return false if invalid, true if valid.
1337 The successfully parsed number is stored in DATA in
1338 target format for floating-point type TYPE.
1339
1340 NOTE: This accepts the floating point syntax that sscanf accepts. */
1341
1342 bool
1343 parse_float (const char *p, int len,
1344 const struct type *type, gdb_byte *data)
1345 {
1346 return target_float_from_string (data, type, std::string (p, len));
1347 }
1348 \f
1349 /* Stuff for maintaining a stack of types. Currently just used by C, but
1350 probably useful for any language which declares its types "backwards". */
1351
1352 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1353
1354 static void
1355 type_stack_reserve (struct type_stack *stack, int howmuch)
1356 {
1357 if (stack->depth + howmuch >= stack->size)
1358 {
1359 stack->size *= 2;
1360 if (stack->size < howmuch)
1361 stack->size = howmuch;
1362 stack->elements = XRESIZEVEC (union type_stack_elt, stack->elements,
1363 stack->size);
1364 }
1365 }
1366
1367 /* Ensure that there is a single open slot in the global type stack. */
1368
1369 static void
1370 check_type_stack_depth (void)
1371 {
1372 type_stack_reserve (&type_stack, 1);
1373 }
1374
1375 /* A helper function for insert_type and insert_type_address_space.
1376 This does work of expanding the type stack and inserting the new
1377 element, ELEMENT, into the stack at location SLOT. */
1378
1379 static void
1380 insert_into_type_stack (int slot, union type_stack_elt element)
1381 {
1382 check_type_stack_depth ();
1383
1384 if (slot < type_stack.depth)
1385 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1386 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1387 type_stack.elements[slot] = element;
1388 ++type_stack.depth;
1389 }
1390
1391 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1392 tp_pointer, tp_reference or tp_rvalue_reference, it is inserted at the
1393 bottom. If TP is a qualifier, it is inserted at slot 1 (just above a
1394 previous tp_pointer) if there is anything on the stack, or simply pushed
1395 if the stack is empty. Other values for TP are invalid. */
1396
1397 void
1398 insert_type (enum type_pieces tp)
1399 {
1400 union type_stack_elt element;
1401 int slot;
1402
1403 gdb_assert (tp == tp_pointer || tp == tp_reference
1404 || tp == tp_rvalue_reference || tp == tp_const
1405 || tp == tp_volatile);
1406
1407 /* If there is anything on the stack (we know it will be a
1408 tp_pointer), insert the qualifier above it. Otherwise, simply
1409 push this on the top of the stack. */
1410 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1411 slot = 1;
1412 else
1413 slot = 0;
1414
1415 element.piece = tp;
1416 insert_into_type_stack (slot, element);
1417 }
1418
1419 void
1420 push_type (enum type_pieces tp)
1421 {
1422 check_type_stack_depth ();
1423 type_stack.elements[type_stack.depth++].piece = tp;
1424 }
1425
1426 void
1427 push_type_int (int n)
1428 {
1429 check_type_stack_depth ();
1430 type_stack.elements[type_stack.depth++].int_val = n;
1431 }
1432
1433 /* Insert a tp_space_identifier and the corresponding address space
1434 value into the stack. STRING is the name of an address space, as
1435 recognized by address_space_name_to_int. If the stack is empty,
1436 the new elements are simply pushed. If the stack is not empty,
1437 this function assumes that the first item on the stack is a
1438 tp_pointer, and the new values are inserted above the first
1439 item. */
1440
1441 void
1442 insert_type_address_space (struct parser_state *pstate, char *string)
1443 {
1444 union type_stack_elt element;
1445 int slot;
1446
1447 /* If there is anything on the stack (we know it will be a
1448 tp_pointer), insert the address space qualifier above it.
1449 Otherwise, simply push this on the top of the stack. */
1450 if (type_stack.depth)
1451 slot = 1;
1452 else
1453 slot = 0;
1454
1455 element.piece = tp_space_identifier;
1456 insert_into_type_stack (slot, element);
1457 element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1458 string);
1459 insert_into_type_stack (slot, element);
1460 }
1461
1462 enum type_pieces
1463 pop_type (void)
1464 {
1465 if (type_stack.depth)
1466 return type_stack.elements[--type_stack.depth].piece;
1467 return tp_end;
1468 }
1469
1470 int
1471 pop_type_int (void)
1472 {
1473 if (type_stack.depth)
1474 return type_stack.elements[--type_stack.depth].int_val;
1475 /* "Can't happen". */
1476 return 0;
1477 }
1478
1479 /* Pop a type list element from the global type stack. */
1480
1481 static VEC (type_ptr) *
1482 pop_typelist (void)
1483 {
1484 gdb_assert (type_stack.depth);
1485 return type_stack.elements[--type_stack.depth].typelist_val;
1486 }
1487
1488 /* Pop a type_stack element from the global type stack. */
1489
1490 static struct type_stack *
1491 pop_type_stack (void)
1492 {
1493 gdb_assert (type_stack.depth);
1494 return type_stack.elements[--type_stack.depth].stack_val;
1495 }
1496
1497 /* Append the elements of the type stack FROM to the type stack TO.
1498 Always returns TO. */
1499
1500 struct type_stack *
1501 append_type_stack (struct type_stack *to, struct type_stack *from)
1502 {
1503 type_stack_reserve (to, from->depth);
1504
1505 memcpy (&to->elements[to->depth], &from->elements[0],
1506 from->depth * sizeof (union type_stack_elt));
1507 to->depth += from->depth;
1508
1509 return to;
1510 }
1511
1512 /* Push the type stack STACK as an element on the global type stack. */
1513
1514 void
1515 push_type_stack (struct type_stack *stack)
1516 {
1517 check_type_stack_depth ();
1518 type_stack.elements[type_stack.depth++].stack_val = stack;
1519 push_type (tp_type_stack);
1520 }
1521
1522 /* Copy the global type stack into a newly allocated type stack and
1523 return it. The global stack is cleared. The returned type stack
1524 must be freed with type_stack_cleanup. */
1525
1526 struct type_stack *
1527 get_type_stack (void)
1528 {
1529 struct type_stack *result = XNEW (struct type_stack);
1530
1531 *result = type_stack;
1532 type_stack.depth = 0;
1533 type_stack.size = 0;
1534 type_stack.elements = NULL;
1535
1536 return result;
1537 }
1538
1539 /* A cleanup function that destroys a single type stack. */
1540
1541 void
1542 type_stack_cleanup (void *arg)
1543 {
1544 struct type_stack *stack = (struct type_stack *) arg;
1545
1546 xfree (stack->elements);
1547 xfree (stack);
1548 }
1549
1550 /* Push a function type with arguments onto the global type stack.
1551 LIST holds the argument types. If the final item in LIST is NULL,
1552 then the function will be varargs. */
1553
1554 void
1555 push_typelist (VEC (type_ptr) *list)
1556 {
1557 check_type_stack_depth ();
1558 type_stack.elements[type_stack.depth++].typelist_val = list;
1559 push_type (tp_function_with_arguments);
1560 }
1561
1562 /* Pop the type stack and return a type_instance_flags that
1563 corresponds the const/volatile qualifiers on the stack. This is
1564 called by the C++ parser when parsing methods types, and as such no
1565 other kind of type in the type stack is expected. */
1566
1567 type_instance_flags
1568 follow_type_instance_flags ()
1569 {
1570 type_instance_flags flags = 0;
1571
1572 for (;;)
1573 switch (pop_type ())
1574 {
1575 case tp_end:
1576 return flags;
1577 case tp_const:
1578 flags |= TYPE_INSTANCE_FLAG_CONST;
1579 break;
1580 case tp_volatile:
1581 flags |= TYPE_INSTANCE_FLAG_VOLATILE;
1582 break;
1583 default:
1584 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1585 }
1586 }
1587
1588
1589 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1590 as modified by all the stuff on the stack. */
1591 struct type *
1592 follow_types (struct type *follow_type)
1593 {
1594 int done = 0;
1595 int make_const = 0;
1596 int make_volatile = 0;
1597 int make_addr_space = 0;
1598 int array_size;
1599
1600 while (!done)
1601 switch (pop_type ())
1602 {
1603 case tp_end:
1604 done = 1;
1605 if (make_const)
1606 follow_type = make_cv_type (make_const,
1607 TYPE_VOLATILE (follow_type),
1608 follow_type, 0);
1609 if (make_volatile)
1610 follow_type = make_cv_type (TYPE_CONST (follow_type),
1611 make_volatile,
1612 follow_type, 0);
1613 if (make_addr_space)
1614 follow_type = make_type_with_address_space (follow_type,
1615 make_addr_space);
1616 make_const = make_volatile = 0;
1617 make_addr_space = 0;
1618 break;
1619 case tp_const:
1620 make_const = 1;
1621 break;
1622 case tp_volatile:
1623 make_volatile = 1;
1624 break;
1625 case tp_space_identifier:
1626 make_addr_space = pop_type_int ();
1627 break;
1628 case tp_pointer:
1629 follow_type = lookup_pointer_type (follow_type);
1630 if (make_const)
1631 follow_type = make_cv_type (make_const,
1632 TYPE_VOLATILE (follow_type),
1633 follow_type, 0);
1634 if (make_volatile)
1635 follow_type = make_cv_type (TYPE_CONST (follow_type),
1636 make_volatile,
1637 follow_type, 0);
1638 if (make_addr_space)
1639 follow_type = make_type_with_address_space (follow_type,
1640 make_addr_space);
1641 make_const = make_volatile = 0;
1642 make_addr_space = 0;
1643 break;
1644 case tp_reference:
1645 follow_type = lookup_lvalue_reference_type (follow_type);
1646 goto process_reference;
1647 case tp_rvalue_reference:
1648 follow_type = lookup_rvalue_reference_type (follow_type);
1649 process_reference:
1650 if (make_const)
1651 follow_type = make_cv_type (make_const,
1652 TYPE_VOLATILE (follow_type),
1653 follow_type, 0);
1654 if (make_volatile)
1655 follow_type = make_cv_type (TYPE_CONST (follow_type),
1656 make_volatile,
1657 follow_type, 0);
1658 if (make_addr_space)
1659 follow_type = make_type_with_address_space (follow_type,
1660 make_addr_space);
1661 make_const = make_volatile = 0;
1662 make_addr_space = 0;
1663 break;
1664 case tp_array:
1665 array_size = pop_type_int ();
1666 /* FIXME-type-allocation: need a way to free this type when we are
1667 done with it. */
1668 follow_type =
1669 lookup_array_range_type (follow_type,
1670 0, array_size >= 0 ? array_size - 1 : 0);
1671 if (array_size < 0)
1672 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1673 = PROP_UNDEFINED;
1674 break;
1675 case tp_function:
1676 /* FIXME-type-allocation: need a way to free this type when we are
1677 done with it. */
1678 follow_type = lookup_function_type (follow_type);
1679 break;
1680
1681 case tp_function_with_arguments:
1682 {
1683 VEC (type_ptr) *args = pop_typelist ();
1684
1685 follow_type
1686 = lookup_function_type_with_arguments (follow_type,
1687 VEC_length (type_ptr, args),
1688 VEC_address (type_ptr,
1689 args));
1690 VEC_free (type_ptr, args);
1691 }
1692 break;
1693
1694 case tp_type_stack:
1695 {
1696 struct type_stack *stack = pop_type_stack ();
1697 /* Sort of ugly, but not really much worse than the
1698 alternatives. */
1699 struct type_stack save = type_stack;
1700
1701 type_stack = *stack;
1702 follow_type = follow_types (follow_type);
1703 gdb_assert (type_stack.depth == 0);
1704
1705 type_stack = save;
1706 }
1707 break;
1708 default:
1709 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1710 }
1711 return follow_type;
1712 }
1713 \f
1714 /* This function avoids direct calls to fprintf
1715 in the parser generated debug code. */
1716 void
1717 parser_fprintf (FILE *x, const char *y, ...)
1718 {
1719 va_list args;
1720
1721 va_start (args, y);
1722 if (x == stderr)
1723 vfprintf_unfiltered (gdb_stderr, y, args);
1724 else
1725 {
1726 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1727 vfprintf_unfiltered (gdb_stderr, y, args);
1728 }
1729 va_end (args);
1730 }
1731
1732 /* Implementation of the exp_descriptor method operator_check. */
1733
1734 int
1735 operator_check_standard (struct expression *exp, int pos,
1736 int (*objfile_func) (struct objfile *objfile,
1737 void *data),
1738 void *data)
1739 {
1740 const union exp_element *const elts = exp->elts;
1741 struct type *type = NULL;
1742 struct objfile *objfile = NULL;
1743
1744 /* Extended operators should have been already handled by exp_descriptor
1745 iterate method of its specific language. */
1746 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1747
1748 /* Track the callers of write_exp_elt_type for this table. */
1749
1750 switch (elts[pos].opcode)
1751 {
1752 case BINOP_VAL:
1753 case OP_COMPLEX:
1754 case OP_FLOAT:
1755 case OP_LONG:
1756 case OP_SCOPE:
1757 case OP_TYPE:
1758 case UNOP_CAST:
1759 case UNOP_MAX:
1760 case UNOP_MEMVAL:
1761 case UNOP_MIN:
1762 type = elts[pos + 1].type;
1763 break;
1764
1765 case TYPE_INSTANCE:
1766 {
1767 LONGEST arg, nargs = elts[pos + 2].longconst;
1768
1769 for (arg = 0; arg < nargs; arg++)
1770 {
1771 struct type *type = elts[pos + 3 + arg].type;
1772 struct objfile *objfile = TYPE_OBJFILE (type);
1773
1774 if (objfile && (*objfile_func) (objfile, data))
1775 return 1;
1776 }
1777 }
1778 break;
1779
1780 case OP_VAR_VALUE:
1781 {
1782 const struct block *const block = elts[pos + 1].block;
1783 const struct symbol *const symbol = elts[pos + 2].symbol;
1784
1785 /* Check objfile where the variable itself is placed.
1786 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1787 if ((*objfile_func) (symbol_objfile (symbol), data))
1788 return 1;
1789
1790 /* Check objfile where is placed the code touching the variable. */
1791 objfile = lookup_objfile_from_block (block);
1792
1793 type = SYMBOL_TYPE (symbol);
1794 }
1795 break;
1796 case OP_VAR_MSYM_VALUE:
1797 objfile = elts[pos + 1].objfile;
1798 break;
1799 }
1800
1801 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1802
1803 if (type && TYPE_OBJFILE (type)
1804 && (*objfile_func) (TYPE_OBJFILE (type), data))
1805 return 1;
1806 if (objfile && (*objfile_func) (objfile, data))
1807 return 1;
1808
1809 return 0;
1810 }
1811
1812 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1813 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1814 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1815 returns non-zero value then (any other) non-zero value is immediately
1816 returned to the caller. Otherwise zero is returned after iterating
1817 through whole EXP. */
1818
1819 static int
1820 exp_iterate (struct expression *exp,
1821 int (*objfile_func) (struct objfile *objfile, void *data),
1822 void *data)
1823 {
1824 int endpos;
1825
1826 for (endpos = exp->nelts; endpos > 0; )
1827 {
1828 int pos, args, oplen = 0;
1829
1830 operator_length (exp, endpos, &oplen, &args);
1831 gdb_assert (oplen > 0);
1832
1833 pos = endpos - oplen;
1834 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1835 objfile_func, data))
1836 return 1;
1837
1838 endpos = pos;
1839 }
1840
1841 return 0;
1842 }
1843
1844 /* Helper for exp_uses_objfile. */
1845
1846 static int
1847 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1848 {
1849 struct objfile *objfile = (struct objfile *) objfile_voidp;
1850
1851 if (exp_objfile->separate_debug_objfile_backlink)
1852 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1853
1854 return exp_objfile == objfile;
1855 }
1856
1857 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1858 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1859 file. */
1860
1861 int
1862 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1863 {
1864 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1865
1866 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1867 }
1868
1869 /* See definition in parser-defs.h. */
1870
1871 void
1872 increase_expout_size (struct parser_state *ps, size_t lenelt)
1873 {
1874 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1875 {
1876 ps->expout_size = std::max (ps->expout_size * 2,
1877 ps->expout_ptr + lenelt + 10);
1878 ps->expout.reset (XRESIZEVAR (expression,
1879 ps->expout.release (),
1880 (sizeof (struct expression)
1881 + EXP_ELEM_TO_BYTES (ps->expout_size))));
1882 }
1883 }
1884
1885 void
1886 _initialize_parse (void)
1887 {
1888 type_stack.size = 0;
1889 type_stack.depth = 0;
1890 type_stack.elements = NULL;
1891
1892 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1893 &expressiondebug,
1894 _("Set expression debugging."),
1895 _("Show expression debugging."),
1896 _("When non-zero, the internal representation "
1897 "of expressions will be printed."),
1898 NULL,
1899 show_expressiondebug,
1900 &setdebuglist, &showdebuglist);
1901 add_setshow_boolean_cmd ("parser", class_maintenance,
1902 &parser_debug,
1903 _("Set parser debugging."),
1904 _("Show parser debugging."),
1905 _("When non-zero, expression parser "
1906 "tracing will be enabled."),
1907 NULL,
1908 show_parserdebug,
1909 &setdebuglist, &showdebuglist);
1910 }
This page took 0.073848 seconds and 4 git commands to generate.