Fix for PR 17247: Block SIGCHLD while initializing Guile.
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h" /* for overlay functions */
46 #include "inferior.h"
47 #include "doublest.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "exceptions.h"
52 #include "user-regs.h"
53
54 /* Standard set of definitions for printing, dumping, prefixifying,
55 * and evaluating expressions. */
56
57 const struct exp_descriptor exp_descriptor_standard =
58 {
59 print_subexp_standard,
60 operator_length_standard,
61 operator_check_standard,
62 op_name_standard,
63 dump_subexp_body_standard,
64 evaluate_subexp_standard
65 };
66 \f
67 /* Global variables declared in parser-defs.h (and commented there). */
68 const struct block *expression_context_block;
69 CORE_ADDR expression_context_pc;
70 const struct block *innermost_block;
71 int arglist_len;
72 static struct type_stack type_stack;
73 const char *lexptr;
74 const char *prev_lexptr;
75 int paren_depth;
76 int comma_terminates;
77
78 /* True if parsing an expression to attempt completion. */
79 int parse_completion;
80
81 /* The index of the last struct expression directly before a '.' or
82 '->'. This is set when parsing and is only used when completing a
83 field name. It is -1 if no dereference operation was found. */
84 static int expout_last_struct = -1;
85
86 /* If we are completing a tagged type name, this will be nonzero. */
87 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
88
89 /* The token for tagged type name completion. */
90 static char *expout_completion_name;
91
92 \f
93 static unsigned int expressiondebug = 0;
94 static void
95 show_expressiondebug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
99 }
100
101
102 /* Non-zero if an expression parser should set yydebug. */
103 int parser_debug;
104
105 static void
106 show_parserdebug (struct ui_file *file, int from_tty,
107 struct cmd_list_element *c, const char *value)
108 {
109 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
110 }
111
112
113 static void free_funcalls (void *ignore);
114
115 static int prefixify_subexp (struct expression *, struct expression *, int,
116 int);
117
118 static struct expression *parse_exp_in_context (const char **, CORE_ADDR,
119 const struct block *, int,
120 int, int *);
121 static struct expression *parse_exp_in_context_1 (const char **, CORE_ADDR,
122 const struct block *, int,
123 int, int *);
124
125 void _initialize_parse (void);
126
127 /* Data structure for saving values of arglist_len for function calls whose
128 arguments contain other function calls. */
129
130 struct funcall
131 {
132 struct funcall *next;
133 int arglist_len;
134 };
135
136 static struct funcall *funcall_chain;
137
138 /* Begin counting arguments for a function call,
139 saving the data about any containing call. */
140
141 void
142 start_arglist (void)
143 {
144 struct funcall *new;
145
146 new = (struct funcall *) xmalloc (sizeof (struct funcall));
147 new->next = funcall_chain;
148 new->arglist_len = arglist_len;
149 arglist_len = 0;
150 funcall_chain = new;
151 }
152
153 /* Return the number of arguments in a function call just terminated,
154 and restore the data for the containing function call. */
155
156 int
157 end_arglist (void)
158 {
159 int val = arglist_len;
160 struct funcall *call = funcall_chain;
161
162 funcall_chain = call->next;
163 arglist_len = call->arglist_len;
164 xfree (call);
165 return val;
166 }
167
168 /* Free everything in the funcall chain.
169 Used when there is an error inside parsing. */
170
171 static void
172 free_funcalls (void *ignore)
173 {
174 struct funcall *call, *next;
175
176 for (call = funcall_chain; call; call = next)
177 {
178 next = call->next;
179 xfree (call);
180 }
181 }
182 \f
183
184 /* See definition in parser-defs.h. */
185
186 void
187 initialize_expout (struct parser_state *ps, size_t initial_size,
188 const struct language_defn *lang,
189 struct gdbarch *gdbarch)
190 {
191 ps->expout_size = initial_size;
192 ps->expout_ptr = 0;
193 ps->expout = xmalloc (sizeof (struct expression)
194 + EXP_ELEM_TO_BYTES (ps->expout_size));
195 ps->expout->language_defn = lang;
196 ps->expout->gdbarch = gdbarch;
197 }
198
199 /* See definition in parser-defs.h. */
200
201 void
202 reallocate_expout (struct parser_state *ps)
203 {
204 /* Record the actual number of expression elements, and then
205 reallocate the expression memory so that we free up any
206 excess elements. */
207
208 ps->expout->nelts = ps->expout_ptr;
209 ps->expout = (struct expression *)
210 xrealloc (ps->expout,
211 sizeof (struct expression)
212 + EXP_ELEM_TO_BYTES (ps->expout_ptr));
213 }
214
215 /* This page contains the functions for adding data to the struct expression
216 being constructed. */
217
218 /* Add one element to the end of the expression. */
219
220 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
221 a register through here. */
222
223 static void
224 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
225 {
226 if (ps->expout_ptr >= ps->expout_size)
227 {
228 ps->expout_size *= 2;
229 ps->expout = (struct expression *)
230 xrealloc (ps->expout, sizeof (struct expression)
231 + EXP_ELEM_TO_BYTES (ps->expout_size));
232 }
233 ps->expout->elts[ps->expout_ptr++] = *expelt;
234 }
235
236 void
237 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
238 {
239 union exp_element tmp;
240
241 memset (&tmp, 0, sizeof (union exp_element));
242 tmp.opcode = expelt;
243 write_exp_elt (ps, &tmp);
244 }
245
246 void
247 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
248 {
249 union exp_element tmp;
250
251 memset (&tmp, 0, sizeof (union exp_element));
252 tmp.symbol = expelt;
253 write_exp_elt (ps, &tmp);
254 }
255
256 void
257 write_exp_elt_block (struct parser_state *ps, const struct block *b)
258 {
259 union exp_element tmp;
260
261 memset (&tmp, 0, sizeof (union exp_element));
262 tmp.block = b;
263 write_exp_elt (ps, &tmp);
264 }
265
266 void
267 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
268 {
269 union exp_element tmp;
270
271 memset (&tmp, 0, sizeof (union exp_element));
272 tmp.objfile = objfile;
273 write_exp_elt (ps, &tmp);
274 }
275
276 void
277 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
278 {
279 union exp_element tmp;
280
281 memset (&tmp, 0, sizeof (union exp_element));
282 tmp.longconst = expelt;
283 write_exp_elt (ps, &tmp);
284 }
285
286 void
287 write_exp_elt_dblcst (struct parser_state *ps, DOUBLEST expelt)
288 {
289 union exp_element tmp;
290
291 memset (&tmp, 0, sizeof (union exp_element));
292 tmp.doubleconst = expelt;
293 write_exp_elt (ps, &tmp);
294 }
295
296 void
297 write_exp_elt_decfloatcst (struct parser_state *ps, gdb_byte expelt[16])
298 {
299 union exp_element tmp;
300 int index;
301
302 for (index = 0; index < 16; index++)
303 tmp.decfloatconst[index] = expelt[index];
304
305 write_exp_elt (ps, &tmp);
306 }
307
308 void
309 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
310 {
311 union exp_element tmp;
312
313 memset (&tmp, 0, sizeof (union exp_element));
314 tmp.type = expelt;
315 write_exp_elt (ps, &tmp);
316 }
317
318 void
319 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
320 {
321 union exp_element tmp;
322
323 memset (&tmp, 0, sizeof (union exp_element));
324 tmp.internalvar = expelt;
325 write_exp_elt (ps, &tmp);
326 }
327
328 /* Add a string constant to the end of the expression.
329
330 String constants are stored by first writing an expression element
331 that contains the length of the string, then stuffing the string
332 constant itself into however many expression elements are needed
333 to hold it, and then writing another expression element that contains
334 the length of the string. I.e. an expression element at each end of
335 the string records the string length, so you can skip over the
336 expression elements containing the actual string bytes from either
337 end of the string. Note that this also allows gdb to handle
338 strings with embedded null bytes, as is required for some languages.
339
340 Don't be fooled by the fact that the string is null byte terminated,
341 this is strictly for the convenience of debugging gdb itself.
342 Gdb does not depend up the string being null terminated, since the
343 actual length is recorded in expression elements at each end of the
344 string. The null byte is taken into consideration when computing how
345 many expression elements are required to hold the string constant, of
346 course. */
347
348
349 void
350 write_exp_string (struct parser_state *ps, struct stoken str)
351 {
352 int len = str.length;
353 size_t lenelt;
354 char *strdata;
355
356 /* Compute the number of expression elements required to hold the string
357 (including a null byte terminator), along with one expression element
358 at each end to record the actual string length (not including the
359 null byte terminator). */
360
361 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
362
363 increase_expout_size (ps, lenelt);
364
365 /* Write the leading length expression element (which advances the current
366 expression element index), then write the string constant followed by a
367 terminating null byte, and then write the trailing length expression
368 element. */
369
370 write_exp_elt_longcst (ps, (LONGEST) len);
371 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
372 memcpy (strdata, str.ptr, len);
373 *(strdata + len) = '\0';
374 ps->expout_ptr += lenelt - 2;
375 write_exp_elt_longcst (ps, (LONGEST) len);
376 }
377
378 /* Add a vector of string constants to the end of the expression.
379
380 This adds an OP_STRING operation, but encodes the contents
381 differently from write_exp_string. The language is expected to
382 handle evaluation of this expression itself.
383
384 After the usual OP_STRING header, TYPE is written into the
385 expression as a long constant. The interpretation of this field is
386 up to the language evaluator.
387
388 Next, each string in VEC is written. The length is written as a
389 long constant, followed by the contents of the string. */
390
391 void
392 write_exp_string_vector (struct parser_state *ps, int type,
393 struct stoken_vector *vec)
394 {
395 int i, len;
396 size_t n_slots;
397
398 /* Compute the size. We compute the size in number of slots to
399 avoid issues with string padding. */
400 n_slots = 0;
401 for (i = 0; i < vec->len; ++i)
402 {
403 /* One slot for the length of this element, plus the number of
404 slots needed for this string. */
405 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
406 }
407
408 /* One more slot for the type of the string. */
409 ++n_slots;
410
411 /* Now compute a phony string length. */
412 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
413
414 n_slots += 4;
415 increase_expout_size (ps, n_slots);
416
417 write_exp_elt_opcode (ps, OP_STRING);
418 write_exp_elt_longcst (ps, len);
419 write_exp_elt_longcst (ps, type);
420
421 for (i = 0; i < vec->len; ++i)
422 {
423 write_exp_elt_longcst (ps, vec->tokens[i].length);
424 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
425 vec->tokens[i].length);
426 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
427 }
428
429 write_exp_elt_longcst (ps, len);
430 write_exp_elt_opcode (ps, OP_STRING);
431 }
432
433 /* Add a bitstring constant to the end of the expression.
434
435 Bitstring constants are stored by first writing an expression element
436 that contains the length of the bitstring (in bits), then stuffing the
437 bitstring constant itself into however many expression elements are
438 needed to hold it, and then writing another expression element that
439 contains the length of the bitstring. I.e. an expression element at
440 each end of the bitstring records the bitstring length, so you can skip
441 over the expression elements containing the actual bitstring bytes from
442 either end of the bitstring. */
443
444 void
445 write_exp_bitstring (struct parser_state *ps, struct stoken str)
446 {
447 int bits = str.length; /* length in bits */
448 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
449 size_t lenelt;
450 char *strdata;
451
452 /* Compute the number of expression elements required to hold the bitstring,
453 along with one expression element at each end to record the actual
454 bitstring length in bits. */
455
456 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
457
458 increase_expout_size (ps, lenelt);
459
460 /* Write the leading length expression element (which advances the current
461 expression element index), then write the bitstring constant, and then
462 write the trailing length expression element. */
463
464 write_exp_elt_longcst (ps, (LONGEST) bits);
465 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
466 memcpy (strdata, str.ptr, len);
467 ps->expout_ptr += lenelt - 2;
468 write_exp_elt_longcst (ps, (LONGEST) bits);
469 }
470
471 /* Add the appropriate elements for a minimal symbol to the end of
472 the expression. */
473
474 void
475 write_exp_msymbol (struct parser_state *ps,
476 struct bound_minimal_symbol bound_msym)
477 {
478 struct minimal_symbol *msymbol = bound_msym.minsym;
479 struct objfile *objfile = bound_msym.objfile;
480 struct gdbarch *gdbarch = get_objfile_arch (objfile);
481
482 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (bound_msym);
483 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
484 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
485 CORE_ADDR pc;
486
487 /* The minimal symbol might point to a function descriptor;
488 resolve it to the actual code address instead. */
489 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
490 if (pc != addr)
491 {
492 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
493
494 /* In this case, assume we have a code symbol instead of
495 a data symbol. */
496
497 if (ifunc_msym.minsym != NULL
498 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
499 && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
500 {
501 /* A function descriptor has been resolved but PC is still in the
502 STT_GNU_IFUNC resolver body (such as because inferior does not
503 run to be able to call it). */
504
505 type = mst_text_gnu_ifunc;
506 }
507 else
508 type = mst_text;
509 section = NULL;
510 addr = pc;
511 }
512
513 if (overlay_debugging)
514 addr = symbol_overlayed_address (addr, section);
515
516 write_exp_elt_opcode (ps, OP_LONG);
517 /* Let's make the type big enough to hold a 64-bit address. */
518 write_exp_elt_type (ps, objfile_type (objfile)->builtin_core_addr);
519 write_exp_elt_longcst (ps, (LONGEST) addr);
520 write_exp_elt_opcode (ps, OP_LONG);
521
522 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
523 {
524 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
525 write_exp_elt_objfile (ps, objfile);
526 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_tls_symbol);
527 write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
528 return;
529 }
530
531 write_exp_elt_opcode (ps, UNOP_MEMVAL);
532 switch (type)
533 {
534 case mst_text:
535 case mst_file_text:
536 case mst_solib_trampoline:
537 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_text_symbol);
538 break;
539
540 case mst_text_gnu_ifunc:
541 write_exp_elt_type (ps, objfile_type (objfile)
542 ->nodebug_text_gnu_ifunc_symbol);
543 break;
544
545 case mst_data:
546 case mst_file_data:
547 case mst_bss:
548 case mst_file_bss:
549 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_data_symbol);
550 break;
551
552 case mst_slot_got_plt:
553 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_got_plt_symbol);
554 break;
555
556 default:
557 write_exp_elt_type (ps, objfile_type (objfile)->nodebug_unknown_symbol);
558 break;
559 }
560 write_exp_elt_opcode (ps, UNOP_MEMVAL);
561 }
562
563 /* Mark the current index as the starting location of a structure
564 expression. This is used when completing on field names. */
565
566 void
567 mark_struct_expression (struct parser_state *ps)
568 {
569 gdb_assert (parse_completion
570 && expout_tag_completion_type == TYPE_CODE_UNDEF);
571 expout_last_struct = ps->expout_ptr;
572 }
573
574 /* Indicate that the current parser invocation is completing a tag.
575 TAG is the type code of the tag, and PTR and LENGTH represent the
576 start of the tag name. */
577
578 void
579 mark_completion_tag (enum type_code tag, const char *ptr, int length)
580 {
581 gdb_assert (parse_completion
582 && expout_tag_completion_type == TYPE_CODE_UNDEF
583 && expout_completion_name == NULL
584 && expout_last_struct == -1);
585 gdb_assert (tag == TYPE_CODE_UNION
586 || tag == TYPE_CODE_STRUCT
587 || tag == TYPE_CODE_CLASS
588 || tag == TYPE_CODE_ENUM);
589 expout_tag_completion_type = tag;
590 expout_completion_name = xmalloc (length + 1);
591 memcpy (expout_completion_name, ptr, length);
592 expout_completion_name[length] = '\0';
593 }
594
595 \f
596 /* Recognize tokens that start with '$'. These include:
597
598 $regname A native register name or a "standard
599 register name".
600
601 $variable A convenience variable with a name chosen
602 by the user.
603
604 $digits Value history with index <digits>, starting
605 from the first value which has index 1.
606
607 $$digits Value history with index <digits> relative
608 to the last value. I.e. $$0 is the last
609 value, $$1 is the one previous to that, $$2
610 is the one previous to $$1, etc.
611
612 $ | $0 | $$0 The last value in the value history.
613
614 $$ An abbreviation for the second to the last
615 value in the value history, I.e. $$1 */
616
617 void
618 write_dollar_variable (struct parser_state *ps, struct stoken str)
619 {
620 struct symbol *sym = NULL;
621 struct bound_minimal_symbol msym;
622 struct internalvar *isym = NULL;
623
624 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
625 and $$digits (equivalent to $<-digits> if you could type that). */
626
627 int negate = 0;
628 int i = 1;
629 /* Double dollar means negate the number and add -1 as well.
630 Thus $$ alone means -1. */
631 if (str.length >= 2 && str.ptr[1] == '$')
632 {
633 negate = 1;
634 i = 2;
635 }
636 if (i == str.length)
637 {
638 /* Just dollars (one or two). */
639 i = -negate;
640 goto handle_last;
641 }
642 /* Is the rest of the token digits? */
643 for (; i < str.length; i++)
644 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
645 break;
646 if (i == str.length)
647 {
648 i = atoi (str.ptr + 1 + negate);
649 if (negate)
650 i = -i;
651 goto handle_last;
652 }
653
654 /* Handle tokens that refer to machine registers:
655 $ followed by a register name. */
656 i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
657 str.ptr + 1, str.length - 1);
658 if (i >= 0)
659 goto handle_register;
660
661 /* Any names starting with $ are probably debugger internal variables. */
662
663 isym = lookup_only_internalvar (copy_name (str) + 1);
664 if (isym)
665 {
666 write_exp_elt_opcode (ps, OP_INTERNALVAR);
667 write_exp_elt_intern (ps, isym);
668 write_exp_elt_opcode (ps, OP_INTERNALVAR);
669 return;
670 }
671
672 /* On some systems, such as HP-UX and hppa-linux, certain system routines
673 have names beginning with $ or $$. Check for those, first. */
674
675 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
676 VAR_DOMAIN, NULL);
677 if (sym)
678 {
679 write_exp_elt_opcode (ps, OP_VAR_VALUE);
680 write_exp_elt_block (ps, block_found); /* set by lookup_symbol */
681 write_exp_elt_sym (ps, sym);
682 write_exp_elt_opcode (ps, OP_VAR_VALUE);
683 return;
684 }
685 msym = lookup_bound_minimal_symbol (copy_name (str));
686 if (msym.minsym)
687 {
688 write_exp_msymbol (ps, msym);
689 return;
690 }
691
692 /* Any other names are assumed to be debugger internal variables. */
693
694 write_exp_elt_opcode (ps, OP_INTERNALVAR);
695 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
696 write_exp_elt_opcode (ps, OP_INTERNALVAR);
697 return;
698 handle_last:
699 write_exp_elt_opcode (ps, OP_LAST);
700 write_exp_elt_longcst (ps, (LONGEST) i);
701 write_exp_elt_opcode (ps, OP_LAST);
702 return;
703 handle_register:
704 write_exp_elt_opcode (ps, OP_REGISTER);
705 str.length--;
706 str.ptr++;
707 write_exp_string (ps, str);
708 write_exp_elt_opcode (ps, OP_REGISTER);
709 return;
710 }
711
712
713 const char *
714 find_template_name_end (const char *p)
715 {
716 int depth = 1;
717 int just_seen_right = 0;
718 int just_seen_colon = 0;
719 int just_seen_space = 0;
720
721 if (!p || (*p != '<'))
722 return 0;
723
724 while (*++p)
725 {
726 switch (*p)
727 {
728 case '\'':
729 case '\"':
730 case '{':
731 case '}':
732 /* In future, may want to allow these?? */
733 return 0;
734 case '<':
735 depth++; /* start nested template */
736 if (just_seen_colon || just_seen_right || just_seen_space)
737 return 0; /* but not after : or :: or > or space */
738 break;
739 case '>':
740 if (just_seen_colon || just_seen_right)
741 return 0; /* end a (nested?) template */
742 just_seen_right = 1; /* but not after : or :: */
743 if (--depth == 0) /* also disallow >>, insist on > > */
744 return ++p; /* if outermost ended, return */
745 break;
746 case ':':
747 if (just_seen_space || (just_seen_colon > 1))
748 return 0; /* nested class spec coming up */
749 just_seen_colon++; /* we allow :: but not :::: */
750 break;
751 case ' ':
752 break;
753 default:
754 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
755 (*p >= 'A' && *p <= 'Z') ||
756 (*p >= '0' && *p <= '9') ||
757 (*p == '_') || (*p == ',') || /* commas for template args */
758 (*p == '&') || (*p == '*') || /* pointer and ref types */
759 (*p == '(') || (*p == ')') || /* function types */
760 (*p == '[') || (*p == ']'))) /* array types */
761 return 0;
762 }
763 if (*p != ' ')
764 just_seen_space = 0;
765 if (*p != ':')
766 just_seen_colon = 0;
767 if (*p != '>')
768 just_seen_right = 0;
769 }
770 return 0;
771 }
772 \f
773
774 /* Return a null-terminated temporary copy of the name of a string token.
775
776 Tokens that refer to names do so with explicit pointer and length,
777 so they can share the storage that lexptr is parsing.
778 When it is necessary to pass a name to a function that expects
779 a null-terminated string, the substring is copied out
780 into a separate block of storage.
781
782 N.B. A single buffer is reused on each call. */
783
784 char *
785 copy_name (struct stoken token)
786 {
787 /* A temporary buffer for identifiers, so we can null-terminate them.
788 We allocate this with xrealloc. parse_exp_1 used to allocate with
789 alloca, using the size of the whole expression as a conservative
790 estimate of the space needed. However, macro expansion can
791 introduce names longer than the original expression; there's no
792 practical way to know beforehand how large that might be. */
793 static char *namecopy;
794 static size_t namecopy_size;
795
796 /* Make sure there's enough space for the token. */
797 if (namecopy_size < token.length + 1)
798 {
799 namecopy_size = token.length + 1;
800 namecopy = xrealloc (namecopy, token.length + 1);
801 }
802
803 memcpy (namecopy, token.ptr, token.length);
804 namecopy[token.length] = 0;
805
806 return namecopy;
807 }
808 \f
809
810 /* See comments on parser-defs.h. */
811
812 int
813 prefixify_expression (struct expression *expr)
814 {
815 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
816 struct expression *temp;
817 int inpos = expr->nelts, outpos = 0;
818
819 temp = (struct expression *) alloca (len);
820
821 /* Copy the original expression into temp. */
822 memcpy (temp, expr, len);
823
824 return prefixify_subexp (temp, expr, inpos, outpos);
825 }
826
827 /* Return the number of exp_elements in the postfix subexpression
828 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
829
830 int
831 length_of_subexp (struct expression *expr, int endpos)
832 {
833 int oplen, args;
834
835 operator_length (expr, endpos, &oplen, &args);
836
837 while (args > 0)
838 {
839 oplen += length_of_subexp (expr, endpos - oplen);
840 args--;
841 }
842
843 return oplen;
844 }
845
846 /* Sets *OPLENP to the length of the operator whose (last) index is
847 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
848 operator takes. */
849
850 void
851 operator_length (const struct expression *expr, int endpos, int *oplenp,
852 int *argsp)
853 {
854 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
855 oplenp, argsp);
856 }
857
858 /* Default value for operator_length in exp_descriptor vectors. */
859
860 void
861 operator_length_standard (const struct expression *expr, int endpos,
862 int *oplenp, int *argsp)
863 {
864 int oplen = 1;
865 int args = 0;
866 enum f90_range_type range_type;
867 int i;
868
869 if (endpos < 1)
870 error (_("?error in operator_length_standard"));
871
872 i = (int) expr->elts[endpos - 1].opcode;
873
874 switch (i)
875 {
876 /* C++ */
877 case OP_SCOPE:
878 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
879 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
880 break;
881
882 case OP_LONG:
883 case OP_DOUBLE:
884 case OP_DECFLOAT:
885 case OP_VAR_VALUE:
886 oplen = 4;
887 break;
888
889 case OP_TYPE:
890 case OP_BOOL:
891 case OP_LAST:
892 case OP_INTERNALVAR:
893 case OP_VAR_ENTRY_VALUE:
894 oplen = 3;
895 break;
896
897 case OP_COMPLEX:
898 oplen = 3;
899 args = 2;
900 break;
901
902 case OP_FUNCALL:
903 case OP_F77_UNDETERMINED_ARGLIST:
904 oplen = 3;
905 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
906 break;
907
908 case TYPE_INSTANCE:
909 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
910 args = 1;
911 break;
912
913 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
914 oplen = 4;
915 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
916 break;
917
918 case UNOP_MAX:
919 case UNOP_MIN:
920 oplen = 3;
921 break;
922
923 case UNOP_CAST_TYPE:
924 case UNOP_DYNAMIC_CAST:
925 case UNOP_REINTERPRET_CAST:
926 case UNOP_MEMVAL_TYPE:
927 oplen = 1;
928 args = 2;
929 break;
930
931 case BINOP_VAL:
932 case UNOP_CAST:
933 case UNOP_MEMVAL:
934 oplen = 3;
935 args = 1;
936 break;
937
938 case UNOP_MEMVAL_TLS:
939 oplen = 4;
940 args = 1;
941 break;
942
943 case UNOP_ABS:
944 case UNOP_CAP:
945 case UNOP_CHR:
946 case UNOP_FLOAT:
947 case UNOP_HIGH:
948 case UNOP_ODD:
949 case UNOP_ORD:
950 case UNOP_TRUNC:
951 case OP_TYPEOF:
952 case OP_DECLTYPE:
953 case OP_TYPEID:
954 oplen = 1;
955 args = 1;
956 break;
957
958 case OP_ADL_FUNC:
959 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
960 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
961 oplen++;
962 oplen++;
963 break;
964
965 case STRUCTOP_STRUCT:
966 case STRUCTOP_PTR:
967 args = 1;
968 /* fall through */
969 case OP_REGISTER:
970 case OP_M2_STRING:
971 case OP_STRING:
972 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
973 NSString constant. */
974 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
975 case OP_NAME:
976 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
977 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
978 break;
979
980 case OP_ARRAY:
981 oplen = 4;
982 args = longest_to_int (expr->elts[endpos - 2].longconst);
983 args -= longest_to_int (expr->elts[endpos - 3].longconst);
984 args += 1;
985 break;
986
987 case TERNOP_COND:
988 case TERNOP_SLICE:
989 args = 3;
990 break;
991
992 /* Modula-2 */
993 case MULTI_SUBSCRIPT:
994 oplen = 3;
995 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
996 break;
997
998 case BINOP_ASSIGN_MODIFY:
999 oplen = 3;
1000 args = 2;
1001 break;
1002
1003 /* C++ */
1004 case OP_THIS:
1005 oplen = 2;
1006 break;
1007
1008 case OP_F90_RANGE:
1009 oplen = 3;
1010
1011 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1012 switch (range_type)
1013 {
1014 case LOW_BOUND_DEFAULT:
1015 case HIGH_BOUND_DEFAULT:
1016 args = 1;
1017 break;
1018 case BOTH_BOUND_DEFAULT:
1019 args = 0;
1020 break;
1021 case NONE_BOUND_DEFAULT:
1022 args = 2;
1023 break;
1024 }
1025
1026 break;
1027
1028 default:
1029 args = 1 + (i < (int) BINOP_END);
1030 }
1031
1032 *oplenp = oplen;
1033 *argsp = args;
1034 }
1035
1036 /* Copy the subexpression ending just before index INEND in INEXPR
1037 into OUTEXPR, starting at index OUTBEG.
1038 In the process, convert it from suffix to prefix form.
1039 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1040 Otherwise, it returns the index of the subexpression which is the
1041 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1042
1043 static int
1044 prefixify_subexp (struct expression *inexpr,
1045 struct expression *outexpr, int inend, int outbeg)
1046 {
1047 int oplen;
1048 int args;
1049 int i;
1050 int *arglens;
1051 int result = -1;
1052
1053 operator_length (inexpr, inend, &oplen, &args);
1054
1055 /* Copy the final operator itself, from the end of the input
1056 to the beginning of the output. */
1057 inend -= oplen;
1058 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1059 EXP_ELEM_TO_BYTES (oplen));
1060 outbeg += oplen;
1061
1062 if (expout_last_struct == inend)
1063 result = outbeg - oplen;
1064
1065 /* Find the lengths of the arg subexpressions. */
1066 arglens = (int *) alloca (args * sizeof (int));
1067 for (i = args - 1; i >= 0; i--)
1068 {
1069 oplen = length_of_subexp (inexpr, inend);
1070 arglens[i] = oplen;
1071 inend -= oplen;
1072 }
1073
1074 /* Now copy each subexpression, preserving the order of
1075 the subexpressions, but prefixifying each one.
1076 In this loop, inend starts at the beginning of
1077 the expression this level is working on
1078 and marches forward over the arguments.
1079 outbeg does similarly in the output. */
1080 for (i = 0; i < args; i++)
1081 {
1082 int r;
1083
1084 oplen = arglens[i];
1085 inend += oplen;
1086 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1087 if (r != -1)
1088 {
1089 /* Return immediately. We probably have only parsed a
1090 partial expression, so we don't want to try to reverse
1091 the other operands. */
1092 return r;
1093 }
1094 outbeg += oplen;
1095 }
1096
1097 return result;
1098 }
1099 \f
1100 /* Read an expression from the string *STRINGPTR points to,
1101 parse it, and return a pointer to a struct expression that we malloc.
1102 Use block BLOCK as the lexical context for variable names;
1103 if BLOCK is zero, use the block of the selected stack frame.
1104 Meanwhile, advance *STRINGPTR to point after the expression,
1105 at the first nonwhite character that is not part of the expression
1106 (possibly a null character).
1107
1108 If COMMA is nonzero, stop if a comma is reached. */
1109
1110 struct expression *
1111 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1112 int comma)
1113 {
1114 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1115 }
1116
1117 static struct expression *
1118 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1119 const struct block *block,
1120 int comma, int void_context_p, int *out_subexp)
1121 {
1122 return parse_exp_in_context_1 (stringptr, pc, block, comma,
1123 void_context_p, out_subexp);
1124 }
1125
1126 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1127 no value is expected from the expression.
1128 OUT_SUBEXP is set when attempting to complete a field name; in this
1129 case it is set to the index of the subexpression on the
1130 left-hand-side of the struct op. If not doing such completion, it
1131 is left untouched. */
1132
1133 static struct expression *
1134 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1135 const struct block *block,
1136 int comma, int void_context_p, int *out_subexp)
1137 {
1138 volatile struct gdb_exception except;
1139 struct cleanup *old_chain, *inner_chain;
1140 const struct language_defn *lang = NULL;
1141 struct parser_state ps;
1142 int subexp;
1143
1144 lexptr = *stringptr;
1145 prev_lexptr = NULL;
1146
1147 paren_depth = 0;
1148 type_stack.depth = 0;
1149 expout_last_struct = -1;
1150 expout_tag_completion_type = TYPE_CODE_UNDEF;
1151 xfree (expout_completion_name);
1152 expout_completion_name = NULL;
1153
1154 comma_terminates = comma;
1155
1156 if (lexptr == 0 || *lexptr == 0)
1157 error_no_arg (_("expression to compute"));
1158
1159 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1160 funcall_chain = 0;
1161
1162 expression_context_block = block;
1163
1164 /* If no context specified, try using the current frame, if any. */
1165 if (!expression_context_block)
1166 expression_context_block = get_selected_block (&expression_context_pc);
1167 else if (pc == 0)
1168 expression_context_pc = BLOCK_START (expression_context_block);
1169 else
1170 expression_context_pc = pc;
1171
1172 /* Fall back to using the current source static context, if any. */
1173
1174 if (!expression_context_block)
1175 {
1176 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1177 if (cursal.symtab)
1178 expression_context_block
1179 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1180 if (expression_context_block)
1181 expression_context_pc = BLOCK_START (expression_context_block);
1182 }
1183
1184 if (language_mode == language_mode_auto && block != NULL)
1185 {
1186 /* Find the language associated to the given context block.
1187 Default to the current language if it can not be determined.
1188
1189 Note that using the language corresponding to the current frame
1190 can sometimes give unexpected results. For instance, this
1191 routine is often called several times during the inferior
1192 startup phase to re-parse breakpoint expressions after
1193 a new shared library has been loaded. The language associated
1194 to the current frame at this moment is not relevant for
1195 the breakpoint. Using it would therefore be silly, so it seems
1196 better to rely on the current language rather than relying on
1197 the current frame language to parse the expression. That's why
1198 we do the following language detection only if the context block
1199 has been specifically provided. */
1200 struct symbol *func = block_linkage_function (block);
1201
1202 if (func != NULL)
1203 lang = language_def (SYMBOL_LANGUAGE (func));
1204 if (lang == NULL || lang->la_language == language_unknown)
1205 lang = current_language;
1206 }
1207 else
1208 lang = current_language;
1209
1210 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1211 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1212 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1213 to the value matching SELECTED_FRAME as set by get_current_arch. */
1214
1215 initialize_expout (&ps, 10, lang, get_current_arch ());
1216 inner_chain = make_cleanup_restore_current_language ();
1217 set_language (lang->la_language);
1218
1219 TRY_CATCH (except, RETURN_MASK_ALL)
1220 {
1221 if (lang->la_parser (&ps))
1222 lang->la_error (NULL);
1223 }
1224 if (except.reason < 0)
1225 {
1226 if (! parse_completion)
1227 {
1228 xfree (ps.expout);
1229 throw_exception (except);
1230 }
1231 }
1232
1233 reallocate_expout (&ps);
1234
1235 /* Convert expression from postfix form as generated by yacc
1236 parser, to a prefix form. */
1237
1238 if (expressiondebug)
1239 dump_raw_expression (ps.expout, gdb_stdlog,
1240 "before conversion to prefix form");
1241
1242 subexp = prefixify_expression (ps.expout);
1243 if (out_subexp)
1244 *out_subexp = subexp;
1245
1246 lang->la_post_parser (&ps.expout, void_context_p);
1247
1248 if (expressiondebug)
1249 dump_prefix_expression (ps.expout, gdb_stdlog);
1250
1251 do_cleanups (inner_chain);
1252 discard_cleanups (old_chain);
1253
1254 *stringptr = lexptr;
1255 return ps.expout;
1256 }
1257
1258 /* Parse STRING as an expression, and complain if this fails
1259 to use up all of the contents of STRING. */
1260
1261 struct expression *
1262 parse_expression (const char *string)
1263 {
1264 struct expression *exp;
1265
1266 exp = parse_exp_1 (&string, 0, 0, 0);
1267 if (*string)
1268 error (_("Junk after end of expression."));
1269 return exp;
1270 }
1271
1272 /* Parse STRING as an expression. If parsing ends in the middle of a
1273 field reference, return the type of the left-hand-side of the
1274 reference; furthermore, if the parsing ends in the field name,
1275 return the field name in *NAME. If the parsing ends in the middle
1276 of a field reference, but the reference is somehow invalid, throw
1277 an exception. In all other cases, return NULL. Returned non-NULL
1278 *NAME must be freed by the caller. */
1279
1280 struct type *
1281 parse_expression_for_completion (const char *string, char **name,
1282 enum type_code *code)
1283 {
1284 struct expression *exp = NULL;
1285 struct value *val;
1286 int subexp;
1287 volatile struct gdb_exception except;
1288
1289 TRY_CATCH (except, RETURN_MASK_ERROR)
1290 {
1291 parse_completion = 1;
1292 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1293 }
1294 parse_completion = 0;
1295 if (except.reason < 0 || ! exp)
1296 return NULL;
1297
1298 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1299 {
1300 *code = expout_tag_completion_type;
1301 *name = expout_completion_name;
1302 expout_completion_name = NULL;
1303 return NULL;
1304 }
1305
1306 if (expout_last_struct == -1)
1307 {
1308 xfree (exp);
1309 return NULL;
1310 }
1311
1312 *name = extract_field_op (exp, &subexp);
1313 if (!*name)
1314 {
1315 xfree (exp);
1316 return NULL;
1317 }
1318
1319 /* This might throw an exception. If so, we want to let it
1320 propagate. */
1321 val = evaluate_subexpression_type (exp, subexp);
1322 /* (*NAME) is a part of the EXP memory block freed below. */
1323 *name = xstrdup (*name);
1324 xfree (exp);
1325
1326 return value_type (val);
1327 }
1328
1329 /* A post-parser that does nothing. */
1330
1331 void
1332 null_post_parser (struct expression **exp, int void_context_p)
1333 {
1334 }
1335
1336 /* Parse floating point value P of length LEN.
1337 Return 0 (false) if invalid, 1 (true) if valid.
1338 The successfully parsed number is stored in D.
1339 *SUFFIX points to the suffix of the number in P.
1340
1341 NOTE: This accepts the floating point syntax that sscanf accepts. */
1342
1343 int
1344 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1345 {
1346 char *copy;
1347 int n, num;
1348
1349 copy = xmalloc (len + 1);
1350 memcpy (copy, p, len);
1351 copy[len] = 0;
1352
1353 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1354 xfree (copy);
1355
1356 /* The sscanf man page suggests not making any assumptions on the effect
1357 of %n on the result, so we don't.
1358 That is why we simply test num == 0. */
1359 if (num == 0)
1360 return 0;
1361
1362 *suffix = p + n;
1363 return 1;
1364 }
1365
1366 /* Parse floating point value P of length LEN, using the C syntax for floats.
1367 Return 0 (false) if invalid, 1 (true) if valid.
1368 The successfully parsed number is stored in *D.
1369 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1370
1371 int
1372 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1373 DOUBLEST *d, struct type **t)
1374 {
1375 const char *suffix;
1376 int suffix_len;
1377 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1378
1379 if (! parse_float (p, len, d, &suffix))
1380 return 0;
1381
1382 suffix_len = p + len - suffix;
1383
1384 if (suffix_len == 0)
1385 *t = builtin_types->builtin_double;
1386 else if (suffix_len == 1)
1387 {
1388 /* Handle suffixes: 'f' for float, 'l' for long double. */
1389 if (tolower (*suffix) == 'f')
1390 *t = builtin_types->builtin_float;
1391 else if (tolower (*suffix) == 'l')
1392 *t = builtin_types->builtin_long_double;
1393 else
1394 return 0;
1395 }
1396 else
1397 return 0;
1398
1399 return 1;
1400 }
1401 \f
1402 /* Stuff for maintaining a stack of types. Currently just used by C, but
1403 probably useful for any language which declares its types "backwards". */
1404
1405 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1406
1407 static void
1408 type_stack_reserve (struct type_stack *stack, int howmuch)
1409 {
1410 if (stack->depth + howmuch >= stack->size)
1411 {
1412 stack->size *= 2;
1413 if (stack->size < howmuch)
1414 stack->size = howmuch;
1415 stack->elements = xrealloc (stack->elements,
1416 stack->size * sizeof (union type_stack_elt));
1417 }
1418 }
1419
1420 /* Ensure that there is a single open slot in the global type stack. */
1421
1422 static void
1423 check_type_stack_depth (void)
1424 {
1425 type_stack_reserve (&type_stack, 1);
1426 }
1427
1428 /* A helper function for insert_type and insert_type_address_space.
1429 This does work of expanding the type stack and inserting the new
1430 element, ELEMENT, into the stack at location SLOT. */
1431
1432 static void
1433 insert_into_type_stack (int slot, union type_stack_elt element)
1434 {
1435 check_type_stack_depth ();
1436
1437 if (slot < type_stack.depth)
1438 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1439 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1440 type_stack.elements[slot] = element;
1441 ++type_stack.depth;
1442 }
1443
1444 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1445 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1446 a qualifier, it is inserted at slot 1 (just above a previous
1447 tp_pointer) if there is anything on the stack, or simply pushed if
1448 the stack is empty. Other values for TP are invalid. */
1449
1450 void
1451 insert_type (enum type_pieces tp)
1452 {
1453 union type_stack_elt element;
1454 int slot;
1455
1456 gdb_assert (tp == tp_pointer || tp == tp_reference
1457 || tp == tp_const || tp == tp_volatile);
1458
1459 /* If there is anything on the stack (we know it will be a
1460 tp_pointer), insert the qualifier above it. Otherwise, simply
1461 push this on the top of the stack. */
1462 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1463 slot = 1;
1464 else
1465 slot = 0;
1466
1467 element.piece = tp;
1468 insert_into_type_stack (slot, element);
1469 }
1470
1471 void
1472 push_type (enum type_pieces tp)
1473 {
1474 check_type_stack_depth ();
1475 type_stack.elements[type_stack.depth++].piece = tp;
1476 }
1477
1478 void
1479 push_type_int (int n)
1480 {
1481 check_type_stack_depth ();
1482 type_stack.elements[type_stack.depth++].int_val = n;
1483 }
1484
1485 /* Insert a tp_space_identifier and the corresponding address space
1486 value into the stack. STRING is the name of an address space, as
1487 recognized by address_space_name_to_int. If the stack is empty,
1488 the new elements are simply pushed. If the stack is not empty,
1489 this function assumes that the first item on the stack is a
1490 tp_pointer, and the new values are inserted above the first
1491 item. */
1492
1493 void
1494 insert_type_address_space (struct parser_state *pstate, char *string)
1495 {
1496 union type_stack_elt element;
1497 int slot;
1498
1499 /* If there is anything on the stack (we know it will be a
1500 tp_pointer), insert the address space qualifier above it.
1501 Otherwise, simply push this on the top of the stack. */
1502 if (type_stack.depth)
1503 slot = 1;
1504 else
1505 slot = 0;
1506
1507 element.piece = tp_space_identifier;
1508 insert_into_type_stack (slot, element);
1509 element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1510 string);
1511 insert_into_type_stack (slot, element);
1512 }
1513
1514 enum type_pieces
1515 pop_type (void)
1516 {
1517 if (type_stack.depth)
1518 return type_stack.elements[--type_stack.depth].piece;
1519 return tp_end;
1520 }
1521
1522 int
1523 pop_type_int (void)
1524 {
1525 if (type_stack.depth)
1526 return type_stack.elements[--type_stack.depth].int_val;
1527 /* "Can't happen". */
1528 return 0;
1529 }
1530
1531 /* Pop a type list element from the global type stack. */
1532
1533 static VEC (type_ptr) *
1534 pop_typelist (void)
1535 {
1536 gdb_assert (type_stack.depth);
1537 return type_stack.elements[--type_stack.depth].typelist_val;
1538 }
1539
1540 /* Pop a type_stack element from the global type stack. */
1541
1542 static struct type_stack *
1543 pop_type_stack (void)
1544 {
1545 gdb_assert (type_stack.depth);
1546 return type_stack.elements[--type_stack.depth].stack_val;
1547 }
1548
1549 /* Append the elements of the type stack FROM to the type stack TO.
1550 Always returns TO. */
1551
1552 struct type_stack *
1553 append_type_stack (struct type_stack *to, struct type_stack *from)
1554 {
1555 type_stack_reserve (to, from->depth);
1556
1557 memcpy (&to->elements[to->depth], &from->elements[0],
1558 from->depth * sizeof (union type_stack_elt));
1559 to->depth += from->depth;
1560
1561 return to;
1562 }
1563
1564 /* Push the type stack STACK as an element on the global type stack. */
1565
1566 void
1567 push_type_stack (struct type_stack *stack)
1568 {
1569 check_type_stack_depth ();
1570 type_stack.elements[type_stack.depth++].stack_val = stack;
1571 push_type (tp_type_stack);
1572 }
1573
1574 /* Copy the global type stack into a newly allocated type stack and
1575 return it. The global stack is cleared. The returned type stack
1576 must be freed with type_stack_cleanup. */
1577
1578 struct type_stack *
1579 get_type_stack (void)
1580 {
1581 struct type_stack *result = XNEW (struct type_stack);
1582
1583 *result = type_stack;
1584 type_stack.depth = 0;
1585 type_stack.size = 0;
1586 type_stack.elements = NULL;
1587
1588 return result;
1589 }
1590
1591 /* A cleanup function that destroys a single type stack. */
1592
1593 void
1594 type_stack_cleanup (void *arg)
1595 {
1596 struct type_stack *stack = arg;
1597
1598 xfree (stack->elements);
1599 xfree (stack);
1600 }
1601
1602 /* Push a function type with arguments onto the global type stack.
1603 LIST holds the argument types. If the final item in LIST is NULL,
1604 then the function will be varargs. */
1605
1606 void
1607 push_typelist (VEC (type_ptr) *list)
1608 {
1609 check_type_stack_depth ();
1610 type_stack.elements[type_stack.depth++].typelist_val = list;
1611 push_type (tp_function_with_arguments);
1612 }
1613
1614 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1615 as modified by all the stuff on the stack. */
1616 struct type *
1617 follow_types (struct type *follow_type)
1618 {
1619 int done = 0;
1620 int make_const = 0;
1621 int make_volatile = 0;
1622 int make_addr_space = 0;
1623 int array_size;
1624
1625 while (!done)
1626 switch (pop_type ())
1627 {
1628 case tp_end:
1629 done = 1;
1630 if (make_const)
1631 follow_type = make_cv_type (make_const,
1632 TYPE_VOLATILE (follow_type),
1633 follow_type, 0);
1634 if (make_volatile)
1635 follow_type = make_cv_type (TYPE_CONST (follow_type),
1636 make_volatile,
1637 follow_type, 0);
1638 if (make_addr_space)
1639 follow_type = make_type_with_address_space (follow_type,
1640 make_addr_space);
1641 make_const = make_volatile = 0;
1642 make_addr_space = 0;
1643 break;
1644 case tp_const:
1645 make_const = 1;
1646 break;
1647 case tp_volatile:
1648 make_volatile = 1;
1649 break;
1650 case tp_space_identifier:
1651 make_addr_space = pop_type_int ();
1652 break;
1653 case tp_pointer:
1654 follow_type = lookup_pointer_type (follow_type);
1655 if (make_const)
1656 follow_type = make_cv_type (make_const,
1657 TYPE_VOLATILE (follow_type),
1658 follow_type, 0);
1659 if (make_volatile)
1660 follow_type = make_cv_type (TYPE_CONST (follow_type),
1661 make_volatile,
1662 follow_type, 0);
1663 if (make_addr_space)
1664 follow_type = make_type_with_address_space (follow_type,
1665 make_addr_space);
1666 make_const = make_volatile = 0;
1667 make_addr_space = 0;
1668 break;
1669 case tp_reference:
1670 follow_type = lookup_reference_type (follow_type);
1671 if (make_const)
1672 follow_type = make_cv_type (make_const,
1673 TYPE_VOLATILE (follow_type),
1674 follow_type, 0);
1675 if (make_volatile)
1676 follow_type = make_cv_type (TYPE_CONST (follow_type),
1677 make_volatile,
1678 follow_type, 0);
1679 if (make_addr_space)
1680 follow_type = make_type_with_address_space (follow_type,
1681 make_addr_space);
1682 make_const = make_volatile = 0;
1683 make_addr_space = 0;
1684 break;
1685 case tp_array:
1686 array_size = pop_type_int ();
1687 /* FIXME-type-allocation: need a way to free this type when we are
1688 done with it. */
1689 follow_type =
1690 lookup_array_range_type (follow_type,
1691 0, array_size >= 0 ? array_size - 1 : 0);
1692 if (array_size < 0)
1693 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1694 = PROP_UNDEFINED;
1695 break;
1696 case tp_function:
1697 /* FIXME-type-allocation: need a way to free this type when we are
1698 done with it. */
1699 follow_type = lookup_function_type (follow_type);
1700 break;
1701
1702 case tp_function_with_arguments:
1703 {
1704 VEC (type_ptr) *args = pop_typelist ();
1705
1706 follow_type
1707 = lookup_function_type_with_arguments (follow_type,
1708 VEC_length (type_ptr, args),
1709 VEC_address (type_ptr,
1710 args));
1711 VEC_free (type_ptr, args);
1712 }
1713 break;
1714
1715 case tp_type_stack:
1716 {
1717 struct type_stack *stack = pop_type_stack ();
1718 /* Sort of ugly, but not really much worse than the
1719 alternatives. */
1720 struct type_stack save = type_stack;
1721
1722 type_stack = *stack;
1723 follow_type = follow_types (follow_type);
1724 gdb_assert (type_stack.depth == 0);
1725
1726 type_stack = save;
1727 }
1728 break;
1729 default:
1730 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1731 }
1732 return follow_type;
1733 }
1734 \f
1735 /* This function avoids direct calls to fprintf
1736 in the parser generated debug code. */
1737 void
1738 parser_fprintf (FILE *x, const char *y, ...)
1739 {
1740 va_list args;
1741
1742 va_start (args, y);
1743 if (x == stderr)
1744 vfprintf_unfiltered (gdb_stderr, y, args);
1745 else
1746 {
1747 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1748 vfprintf_unfiltered (gdb_stderr, y, args);
1749 }
1750 va_end (args);
1751 }
1752
1753 /* Implementation of the exp_descriptor method operator_check. */
1754
1755 int
1756 operator_check_standard (struct expression *exp, int pos,
1757 int (*objfile_func) (struct objfile *objfile,
1758 void *data),
1759 void *data)
1760 {
1761 const union exp_element *const elts = exp->elts;
1762 struct type *type = NULL;
1763 struct objfile *objfile = NULL;
1764
1765 /* Extended operators should have been already handled by exp_descriptor
1766 iterate method of its specific language. */
1767 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1768
1769 /* Track the callers of write_exp_elt_type for this table. */
1770
1771 switch (elts[pos].opcode)
1772 {
1773 case BINOP_VAL:
1774 case OP_COMPLEX:
1775 case OP_DECFLOAT:
1776 case OP_DOUBLE:
1777 case OP_LONG:
1778 case OP_SCOPE:
1779 case OP_TYPE:
1780 case UNOP_CAST:
1781 case UNOP_MAX:
1782 case UNOP_MEMVAL:
1783 case UNOP_MIN:
1784 type = elts[pos + 1].type;
1785 break;
1786
1787 case TYPE_INSTANCE:
1788 {
1789 LONGEST arg, nargs = elts[pos + 1].longconst;
1790
1791 for (arg = 0; arg < nargs; arg++)
1792 {
1793 struct type *type = elts[pos + 2 + arg].type;
1794 struct objfile *objfile = TYPE_OBJFILE (type);
1795
1796 if (objfile && (*objfile_func) (objfile, data))
1797 return 1;
1798 }
1799 }
1800 break;
1801
1802 case UNOP_MEMVAL_TLS:
1803 objfile = elts[pos + 1].objfile;
1804 type = elts[pos + 2].type;
1805 break;
1806
1807 case OP_VAR_VALUE:
1808 {
1809 const struct block *const block = elts[pos + 1].block;
1810 const struct symbol *const symbol = elts[pos + 2].symbol;
1811
1812 /* Check objfile where the variable itself is placed.
1813 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1814 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1815 return 1;
1816
1817 /* Check objfile where is placed the code touching the variable. */
1818 objfile = lookup_objfile_from_block (block);
1819
1820 type = SYMBOL_TYPE (symbol);
1821 }
1822 break;
1823 }
1824
1825 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1826
1827 if (type && TYPE_OBJFILE (type)
1828 && (*objfile_func) (TYPE_OBJFILE (type), data))
1829 return 1;
1830 if (objfile && (*objfile_func) (objfile, data))
1831 return 1;
1832
1833 return 0;
1834 }
1835
1836 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1837 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1838 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1839 returns non-zero value then (any other) non-zero value is immediately
1840 returned to the caller. Otherwise zero is returned after iterating
1841 through whole EXP. */
1842
1843 static int
1844 exp_iterate (struct expression *exp,
1845 int (*objfile_func) (struct objfile *objfile, void *data),
1846 void *data)
1847 {
1848 int endpos;
1849
1850 for (endpos = exp->nelts; endpos > 0; )
1851 {
1852 int pos, args, oplen = 0;
1853
1854 operator_length (exp, endpos, &oplen, &args);
1855 gdb_assert (oplen > 0);
1856
1857 pos = endpos - oplen;
1858 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1859 objfile_func, data))
1860 return 1;
1861
1862 endpos = pos;
1863 }
1864
1865 return 0;
1866 }
1867
1868 /* Helper for exp_uses_objfile. */
1869
1870 static int
1871 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1872 {
1873 struct objfile *objfile = objfile_voidp;
1874
1875 if (exp_objfile->separate_debug_objfile_backlink)
1876 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1877
1878 return exp_objfile == objfile;
1879 }
1880
1881 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1882 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1883 file. */
1884
1885 int
1886 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1887 {
1888 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1889
1890 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1891 }
1892
1893 /* See definition in parser-defs.h. */
1894
1895 void
1896 increase_expout_size (struct parser_state *ps, size_t lenelt)
1897 {
1898 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1899 {
1900 ps->expout_size = max (ps->expout_size * 2,
1901 ps->expout_ptr + lenelt + 10);
1902 ps->expout = (struct expression *)
1903 xrealloc (ps->expout, (sizeof (struct expression)
1904 + EXP_ELEM_TO_BYTES (ps->expout_size)));
1905 }
1906 }
1907
1908 void
1909 _initialize_parse (void)
1910 {
1911 type_stack.size = 0;
1912 type_stack.depth = 0;
1913 type_stack.elements = NULL;
1914
1915 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1916 &expressiondebug,
1917 _("Set expression debugging."),
1918 _("Show expression debugging."),
1919 _("When non-zero, the internal representation "
1920 "of expressions will be printed."),
1921 NULL,
1922 show_expressiondebug,
1923 &setdebuglist, &showdebuglist);
1924 add_setshow_boolean_cmd ("parser", class_maintenance,
1925 &parser_debug,
1926 _("Set parser debugging."),
1927 _("Show parser debugging."),
1928 _("When non-zero, expression parser "
1929 "tracing will be enabled."),
1930 NULL,
1931 show_parserdebug,
1932 &setdebuglist, &showdebuglist);
1933 }
This page took 0.071232 seconds and 4 git commands to generate.