Target FP: Add string routines to target-float.{c,h}
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h" /* for overlay functions */
46 #include "inferior.h"
47 #include "target-float.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52 #include <algorithm>
53 #include "common/gdb_optional.h"
54
55 /* Standard set of definitions for printing, dumping, prefixifying,
56 * and evaluating expressions. */
57
58 const struct exp_descriptor exp_descriptor_standard =
59 {
60 print_subexp_standard,
61 operator_length_standard,
62 operator_check_standard,
63 op_name_standard,
64 dump_subexp_body_standard,
65 evaluate_subexp_standard
66 };
67 \f
68 /* Global variables declared in parser-defs.h (and commented there). */
69 const struct block *expression_context_block;
70 CORE_ADDR expression_context_pc;
71 const struct block *innermost_block;
72 int arglist_len;
73 static struct type_stack type_stack;
74 const char *lexptr;
75 const char *prev_lexptr;
76 int paren_depth;
77 int comma_terminates;
78
79 /* True if parsing an expression to attempt completion. */
80 int parse_completion;
81
82 /* The index of the last struct expression directly before a '.' or
83 '->'. This is set when parsing and is only used when completing a
84 field name. It is -1 if no dereference operation was found. */
85 static int expout_last_struct = -1;
86
87 /* If we are completing a tagged type name, this will be nonzero. */
88 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
89
90 /* The token for tagged type name completion. */
91 static char *expout_completion_name;
92
93 \f
94 static unsigned int expressiondebug = 0;
95 static void
96 show_expressiondebug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
100 }
101
102
103 /* Non-zero if an expression parser should set yydebug. */
104 int parser_debug;
105
106 static void
107 show_parserdebug (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109 {
110 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
111 }
112
113
114 static int prefixify_subexp (struct expression *, struct expression *, int,
115 int);
116
117 static expression_up parse_exp_in_context (const char **, CORE_ADDR,
118 const struct block *, int,
119 int, int *);
120 static expression_up parse_exp_in_context_1 (const char **, CORE_ADDR,
121 const struct block *, int,
122 int, int *);
123
124 /* Data structure for saving values of arglist_len for function calls whose
125 arguments contain other function calls. */
126
127 static std::vector<int> *funcall_chain;
128
129 /* Begin counting arguments for a function call,
130 saving the data about any containing call. */
131
132 void
133 start_arglist (void)
134 {
135 funcall_chain->push_back (arglist_len);
136 arglist_len = 0;
137 }
138
139 /* Return the number of arguments in a function call just terminated,
140 and restore the data for the containing function call. */
141
142 int
143 end_arglist (void)
144 {
145 int val = arglist_len;
146 arglist_len = funcall_chain->back ();
147 funcall_chain->pop_back ();
148 return val;
149 }
150
151 \f
152
153 /* See definition in parser-defs.h. */
154
155 void
156 initialize_expout (struct parser_state *ps, size_t initial_size,
157 const struct language_defn *lang,
158 struct gdbarch *gdbarch)
159 {
160 ps->expout_size = initial_size;
161 ps->expout_ptr = 0;
162 ps->expout
163 = (struct expression *) xmalloc (sizeof (struct expression)
164 + EXP_ELEM_TO_BYTES (ps->expout_size));
165 ps->expout->language_defn = lang;
166 ps->expout->gdbarch = gdbarch;
167 }
168
169 /* See definition in parser-defs.h. */
170
171 void
172 reallocate_expout (struct parser_state *ps)
173 {
174 /* Record the actual number of expression elements, and then
175 reallocate the expression memory so that we free up any
176 excess elements. */
177
178 ps->expout->nelts = ps->expout_ptr;
179 ps->expout = (struct expression *)
180 xrealloc (ps->expout,
181 sizeof (struct expression)
182 + EXP_ELEM_TO_BYTES (ps->expout_ptr));
183 }
184
185 /* This page contains the functions for adding data to the struct expression
186 being constructed. */
187
188 /* Add one element to the end of the expression. */
189
190 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
191 a register through here. */
192
193 static void
194 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
195 {
196 if (ps->expout_ptr >= ps->expout_size)
197 {
198 ps->expout_size *= 2;
199 ps->expout = (struct expression *)
200 xrealloc (ps->expout, sizeof (struct expression)
201 + EXP_ELEM_TO_BYTES (ps->expout_size));
202 }
203 ps->expout->elts[ps->expout_ptr++] = *expelt;
204 }
205
206 void
207 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
208 {
209 union exp_element tmp;
210
211 memset (&tmp, 0, sizeof (union exp_element));
212 tmp.opcode = expelt;
213 write_exp_elt (ps, &tmp);
214 }
215
216 void
217 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
218 {
219 union exp_element tmp;
220
221 memset (&tmp, 0, sizeof (union exp_element));
222 tmp.symbol = expelt;
223 write_exp_elt (ps, &tmp);
224 }
225
226 void
227 write_exp_elt_msym (struct parser_state *ps, minimal_symbol *expelt)
228 {
229 union exp_element tmp;
230
231 memset (&tmp, 0, sizeof (union exp_element));
232 tmp.msymbol = expelt;
233 write_exp_elt (ps, &tmp);
234 }
235
236 void
237 write_exp_elt_block (struct parser_state *ps, const struct block *b)
238 {
239 union exp_element tmp;
240
241 memset (&tmp, 0, sizeof (union exp_element));
242 tmp.block = b;
243 write_exp_elt (ps, &tmp);
244 }
245
246 void
247 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
248 {
249 union exp_element tmp;
250
251 memset (&tmp, 0, sizeof (union exp_element));
252 tmp.objfile = objfile;
253 write_exp_elt (ps, &tmp);
254 }
255
256 void
257 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
258 {
259 union exp_element tmp;
260
261 memset (&tmp, 0, sizeof (union exp_element));
262 tmp.longconst = expelt;
263 write_exp_elt (ps, &tmp);
264 }
265
266 void
267 write_exp_elt_floatcst (struct parser_state *ps, const gdb_byte expelt[16])
268 {
269 union exp_element tmp;
270 int index;
271
272 for (index = 0; index < 16; index++)
273 tmp.floatconst[index] = expelt[index];
274
275 write_exp_elt (ps, &tmp);
276 }
277
278 void
279 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
280 {
281 union exp_element tmp;
282
283 memset (&tmp, 0, sizeof (union exp_element));
284 tmp.type = expelt;
285 write_exp_elt (ps, &tmp);
286 }
287
288 void
289 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
290 {
291 union exp_element tmp;
292
293 memset (&tmp, 0, sizeof (union exp_element));
294 tmp.internalvar = expelt;
295 write_exp_elt (ps, &tmp);
296 }
297
298 /* Add a string constant to the end of the expression.
299
300 String constants are stored by first writing an expression element
301 that contains the length of the string, then stuffing the string
302 constant itself into however many expression elements are needed
303 to hold it, and then writing another expression element that contains
304 the length of the string. I.e. an expression element at each end of
305 the string records the string length, so you can skip over the
306 expression elements containing the actual string bytes from either
307 end of the string. Note that this also allows gdb to handle
308 strings with embedded null bytes, as is required for some languages.
309
310 Don't be fooled by the fact that the string is null byte terminated,
311 this is strictly for the convenience of debugging gdb itself.
312 Gdb does not depend up the string being null terminated, since the
313 actual length is recorded in expression elements at each end of the
314 string. The null byte is taken into consideration when computing how
315 many expression elements are required to hold the string constant, of
316 course. */
317
318
319 void
320 write_exp_string (struct parser_state *ps, struct stoken str)
321 {
322 int len = str.length;
323 size_t lenelt;
324 char *strdata;
325
326 /* Compute the number of expression elements required to hold the string
327 (including a null byte terminator), along with one expression element
328 at each end to record the actual string length (not including the
329 null byte terminator). */
330
331 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
332
333 increase_expout_size (ps, lenelt);
334
335 /* Write the leading length expression element (which advances the current
336 expression element index), then write the string constant followed by a
337 terminating null byte, and then write the trailing length expression
338 element. */
339
340 write_exp_elt_longcst (ps, (LONGEST) len);
341 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
342 memcpy (strdata, str.ptr, len);
343 *(strdata + len) = '\0';
344 ps->expout_ptr += lenelt - 2;
345 write_exp_elt_longcst (ps, (LONGEST) len);
346 }
347
348 /* Add a vector of string constants to the end of the expression.
349
350 This adds an OP_STRING operation, but encodes the contents
351 differently from write_exp_string. The language is expected to
352 handle evaluation of this expression itself.
353
354 After the usual OP_STRING header, TYPE is written into the
355 expression as a long constant. The interpretation of this field is
356 up to the language evaluator.
357
358 Next, each string in VEC is written. The length is written as a
359 long constant, followed by the contents of the string. */
360
361 void
362 write_exp_string_vector (struct parser_state *ps, int type,
363 struct stoken_vector *vec)
364 {
365 int i, len;
366 size_t n_slots;
367
368 /* Compute the size. We compute the size in number of slots to
369 avoid issues with string padding. */
370 n_slots = 0;
371 for (i = 0; i < vec->len; ++i)
372 {
373 /* One slot for the length of this element, plus the number of
374 slots needed for this string. */
375 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
376 }
377
378 /* One more slot for the type of the string. */
379 ++n_slots;
380
381 /* Now compute a phony string length. */
382 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
383
384 n_slots += 4;
385 increase_expout_size (ps, n_slots);
386
387 write_exp_elt_opcode (ps, OP_STRING);
388 write_exp_elt_longcst (ps, len);
389 write_exp_elt_longcst (ps, type);
390
391 for (i = 0; i < vec->len; ++i)
392 {
393 write_exp_elt_longcst (ps, vec->tokens[i].length);
394 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
395 vec->tokens[i].length);
396 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
397 }
398
399 write_exp_elt_longcst (ps, len);
400 write_exp_elt_opcode (ps, OP_STRING);
401 }
402
403 /* Add a bitstring constant to the end of the expression.
404
405 Bitstring constants are stored by first writing an expression element
406 that contains the length of the bitstring (in bits), then stuffing the
407 bitstring constant itself into however many expression elements are
408 needed to hold it, and then writing another expression element that
409 contains the length of the bitstring. I.e. an expression element at
410 each end of the bitstring records the bitstring length, so you can skip
411 over the expression elements containing the actual bitstring bytes from
412 either end of the bitstring. */
413
414 void
415 write_exp_bitstring (struct parser_state *ps, struct stoken str)
416 {
417 int bits = str.length; /* length in bits */
418 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
419 size_t lenelt;
420 char *strdata;
421
422 /* Compute the number of expression elements required to hold the bitstring,
423 along with one expression element at each end to record the actual
424 bitstring length in bits. */
425
426 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
427
428 increase_expout_size (ps, lenelt);
429
430 /* Write the leading length expression element (which advances the current
431 expression element index), then write the bitstring constant, and then
432 write the trailing length expression element. */
433
434 write_exp_elt_longcst (ps, (LONGEST) bits);
435 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
436 memcpy (strdata, str.ptr, len);
437 ps->expout_ptr += lenelt - 2;
438 write_exp_elt_longcst (ps, (LONGEST) bits);
439 }
440
441 /* Return the type of MSYMBOL, a minimal symbol of OBJFILE. If
442 ADDRESS_P is not NULL, set it to the MSYMBOL's resolved
443 address. */
444
445 type *
446 find_minsym_type_and_address (minimal_symbol *msymbol,
447 struct objfile *objfile,
448 CORE_ADDR *address_p)
449 {
450 bound_minimal_symbol bound_msym = {msymbol, objfile};
451 struct gdbarch *gdbarch = get_objfile_arch (objfile);
452 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
453 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
454 CORE_ADDR pc;
455
456 bool is_tls = (section != NULL
457 && section->the_bfd_section->flags & SEC_THREAD_LOCAL);
458
459 /* Addresses of TLS symbols are really offsets into a
460 per-objfile/per-thread storage block. */
461 CORE_ADDR addr = (is_tls
462 ? MSYMBOL_VALUE_RAW_ADDRESS (bound_msym.minsym)
463 : BMSYMBOL_VALUE_ADDRESS (bound_msym));
464
465 /* The minimal symbol might point to a function descriptor;
466 resolve it to the actual code address instead. */
467 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
468 if (pc != addr)
469 {
470 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
471
472 /* In this case, assume we have a code symbol instead of
473 a data symbol. */
474
475 if (ifunc_msym.minsym != NULL
476 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
477 && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
478 {
479 /* A function descriptor has been resolved but PC is still in the
480 STT_GNU_IFUNC resolver body (such as because inferior does not
481 run to be able to call it). */
482
483 type = mst_text_gnu_ifunc;
484 }
485 else
486 type = mst_text;
487 section = NULL;
488 addr = pc;
489 }
490
491 if (overlay_debugging)
492 addr = symbol_overlayed_address (addr, section);
493
494 if (is_tls)
495 {
496 /* Skip translation if caller does not need the address. */
497 if (address_p != NULL)
498 *address_p = target_translate_tls_address (objfile, addr);
499 return objfile_type (objfile)->nodebug_tls_symbol;
500 }
501
502 if (address_p != NULL)
503 *address_p = addr;
504
505 struct type *the_type;
506
507 switch (type)
508 {
509 case mst_text:
510 case mst_file_text:
511 case mst_solib_trampoline:
512 return objfile_type (objfile)->nodebug_text_symbol;
513
514 case mst_text_gnu_ifunc:
515 return objfile_type (objfile)->nodebug_text_gnu_ifunc_symbol;
516
517 case mst_data:
518 case mst_file_data:
519 case mst_bss:
520 case mst_file_bss:
521 return objfile_type (objfile)->nodebug_data_symbol;
522
523 case mst_slot_got_plt:
524 return objfile_type (objfile)->nodebug_got_plt_symbol;
525
526 default:
527 return objfile_type (objfile)->nodebug_unknown_symbol;
528 }
529 }
530
531 /* Add the appropriate elements for a minimal symbol to the end of
532 the expression. */
533
534 void
535 write_exp_msymbol (struct parser_state *ps,
536 struct bound_minimal_symbol bound_msym)
537 {
538 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
539 write_exp_elt_objfile (ps, bound_msym.objfile);
540 write_exp_elt_msym (ps, bound_msym.minsym);
541 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
542 }
543
544 /* Mark the current index as the starting location of a structure
545 expression. This is used when completing on field names. */
546
547 void
548 mark_struct_expression (struct parser_state *ps)
549 {
550 gdb_assert (parse_completion
551 && expout_tag_completion_type == TYPE_CODE_UNDEF);
552 expout_last_struct = ps->expout_ptr;
553 }
554
555 /* Indicate that the current parser invocation is completing a tag.
556 TAG is the type code of the tag, and PTR and LENGTH represent the
557 start of the tag name. */
558
559 void
560 mark_completion_tag (enum type_code tag, const char *ptr, int length)
561 {
562 gdb_assert (parse_completion
563 && expout_tag_completion_type == TYPE_CODE_UNDEF
564 && expout_completion_name == NULL
565 && expout_last_struct == -1);
566 gdb_assert (tag == TYPE_CODE_UNION
567 || tag == TYPE_CODE_STRUCT
568 || tag == TYPE_CODE_ENUM);
569 expout_tag_completion_type = tag;
570 expout_completion_name = (char *) xmalloc (length + 1);
571 memcpy (expout_completion_name, ptr, length);
572 expout_completion_name[length] = '\0';
573 }
574
575 \f
576 /* Recognize tokens that start with '$'. These include:
577
578 $regname A native register name or a "standard
579 register name".
580
581 $variable A convenience variable with a name chosen
582 by the user.
583
584 $digits Value history with index <digits>, starting
585 from the first value which has index 1.
586
587 $$digits Value history with index <digits> relative
588 to the last value. I.e. $$0 is the last
589 value, $$1 is the one previous to that, $$2
590 is the one previous to $$1, etc.
591
592 $ | $0 | $$0 The last value in the value history.
593
594 $$ An abbreviation for the second to the last
595 value in the value history, I.e. $$1 */
596
597 void
598 write_dollar_variable (struct parser_state *ps, struct stoken str)
599 {
600 struct block_symbol sym;
601 struct bound_minimal_symbol msym;
602 struct internalvar *isym = NULL;
603
604 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
605 and $$digits (equivalent to $<-digits> if you could type that). */
606
607 int negate = 0;
608 int i = 1;
609 /* Double dollar means negate the number and add -1 as well.
610 Thus $$ alone means -1. */
611 if (str.length >= 2 && str.ptr[1] == '$')
612 {
613 negate = 1;
614 i = 2;
615 }
616 if (i == str.length)
617 {
618 /* Just dollars (one or two). */
619 i = -negate;
620 goto handle_last;
621 }
622 /* Is the rest of the token digits? */
623 for (; i < str.length; i++)
624 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
625 break;
626 if (i == str.length)
627 {
628 i = atoi (str.ptr + 1 + negate);
629 if (negate)
630 i = -i;
631 goto handle_last;
632 }
633
634 /* Handle tokens that refer to machine registers:
635 $ followed by a register name. */
636 i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
637 str.ptr + 1, str.length - 1);
638 if (i >= 0)
639 goto handle_register;
640
641 /* Any names starting with $ are probably debugger internal variables. */
642
643 isym = lookup_only_internalvar (copy_name (str) + 1);
644 if (isym)
645 {
646 write_exp_elt_opcode (ps, OP_INTERNALVAR);
647 write_exp_elt_intern (ps, isym);
648 write_exp_elt_opcode (ps, OP_INTERNALVAR);
649 return;
650 }
651
652 /* On some systems, such as HP-UX and hppa-linux, certain system routines
653 have names beginning with $ or $$. Check for those, first. */
654
655 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
656 VAR_DOMAIN, NULL);
657 if (sym.symbol)
658 {
659 write_exp_elt_opcode (ps, OP_VAR_VALUE);
660 write_exp_elt_block (ps, sym.block);
661 write_exp_elt_sym (ps, sym.symbol);
662 write_exp_elt_opcode (ps, OP_VAR_VALUE);
663 return;
664 }
665 msym = lookup_bound_minimal_symbol (copy_name (str));
666 if (msym.minsym)
667 {
668 write_exp_msymbol (ps, msym);
669 return;
670 }
671
672 /* Any other names are assumed to be debugger internal variables. */
673
674 write_exp_elt_opcode (ps, OP_INTERNALVAR);
675 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
676 write_exp_elt_opcode (ps, OP_INTERNALVAR);
677 return;
678 handle_last:
679 write_exp_elt_opcode (ps, OP_LAST);
680 write_exp_elt_longcst (ps, (LONGEST) i);
681 write_exp_elt_opcode (ps, OP_LAST);
682 return;
683 handle_register:
684 write_exp_elt_opcode (ps, OP_REGISTER);
685 str.length--;
686 str.ptr++;
687 write_exp_string (ps, str);
688 write_exp_elt_opcode (ps, OP_REGISTER);
689 return;
690 }
691
692
693 const char *
694 find_template_name_end (const char *p)
695 {
696 int depth = 1;
697 int just_seen_right = 0;
698 int just_seen_colon = 0;
699 int just_seen_space = 0;
700
701 if (!p || (*p != '<'))
702 return 0;
703
704 while (*++p)
705 {
706 switch (*p)
707 {
708 case '\'':
709 case '\"':
710 case '{':
711 case '}':
712 /* In future, may want to allow these?? */
713 return 0;
714 case '<':
715 depth++; /* start nested template */
716 if (just_seen_colon || just_seen_right || just_seen_space)
717 return 0; /* but not after : or :: or > or space */
718 break;
719 case '>':
720 if (just_seen_colon || just_seen_right)
721 return 0; /* end a (nested?) template */
722 just_seen_right = 1; /* but not after : or :: */
723 if (--depth == 0) /* also disallow >>, insist on > > */
724 return ++p; /* if outermost ended, return */
725 break;
726 case ':':
727 if (just_seen_space || (just_seen_colon > 1))
728 return 0; /* nested class spec coming up */
729 just_seen_colon++; /* we allow :: but not :::: */
730 break;
731 case ' ':
732 break;
733 default:
734 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
735 (*p >= 'A' && *p <= 'Z') ||
736 (*p >= '0' && *p <= '9') ||
737 (*p == '_') || (*p == ',') || /* commas for template args */
738 (*p == '&') || (*p == '*') || /* pointer and ref types */
739 (*p == '(') || (*p == ')') || /* function types */
740 (*p == '[') || (*p == ']'))) /* array types */
741 return 0;
742 }
743 if (*p != ' ')
744 just_seen_space = 0;
745 if (*p != ':')
746 just_seen_colon = 0;
747 if (*p != '>')
748 just_seen_right = 0;
749 }
750 return 0;
751 }
752 \f
753
754 /* Return a null-terminated temporary copy of the name of a string token.
755
756 Tokens that refer to names do so with explicit pointer and length,
757 so they can share the storage that lexptr is parsing.
758 When it is necessary to pass a name to a function that expects
759 a null-terminated string, the substring is copied out
760 into a separate block of storage.
761
762 N.B. A single buffer is reused on each call. */
763
764 char *
765 copy_name (struct stoken token)
766 {
767 /* A temporary buffer for identifiers, so we can null-terminate them.
768 We allocate this with xrealloc. parse_exp_1 used to allocate with
769 alloca, using the size of the whole expression as a conservative
770 estimate of the space needed. However, macro expansion can
771 introduce names longer than the original expression; there's no
772 practical way to know beforehand how large that might be. */
773 static char *namecopy;
774 static size_t namecopy_size;
775
776 /* Make sure there's enough space for the token. */
777 if (namecopy_size < token.length + 1)
778 {
779 namecopy_size = token.length + 1;
780 namecopy = (char *) xrealloc (namecopy, token.length + 1);
781 }
782
783 memcpy (namecopy, token.ptr, token.length);
784 namecopy[token.length] = 0;
785
786 return namecopy;
787 }
788 \f
789
790 /* See comments on parser-defs.h. */
791
792 int
793 prefixify_expression (struct expression *expr)
794 {
795 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
796 struct expression *temp;
797 int inpos = expr->nelts, outpos = 0;
798
799 temp = (struct expression *) alloca (len);
800
801 /* Copy the original expression into temp. */
802 memcpy (temp, expr, len);
803
804 return prefixify_subexp (temp, expr, inpos, outpos);
805 }
806
807 /* Return the number of exp_elements in the postfix subexpression
808 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
809
810 static int
811 length_of_subexp (struct expression *expr, int endpos)
812 {
813 int oplen, args;
814
815 operator_length (expr, endpos, &oplen, &args);
816
817 while (args > 0)
818 {
819 oplen += length_of_subexp (expr, endpos - oplen);
820 args--;
821 }
822
823 return oplen;
824 }
825
826 /* Sets *OPLENP to the length of the operator whose (last) index is
827 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
828 operator takes. */
829
830 void
831 operator_length (const struct expression *expr, int endpos, int *oplenp,
832 int *argsp)
833 {
834 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
835 oplenp, argsp);
836 }
837
838 /* Default value for operator_length in exp_descriptor vectors. */
839
840 void
841 operator_length_standard (const struct expression *expr, int endpos,
842 int *oplenp, int *argsp)
843 {
844 int oplen = 1;
845 int args = 0;
846 enum range_type range_type;
847 int i;
848
849 if (endpos < 1)
850 error (_("?error in operator_length_standard"));
851
852 i = (int) expr->elts[endpos - 1].opcode;
853
854 switch (i)
855 {
856 /* C++ */
857 case OP_SCOPE:
858 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
859 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
860 break;
861
862 case OP_LONG:
863 case OP_FLOAT:
864 case OP_VAR_VALUE:
865 case OP_VAR_MSYM_VALUE:
866 oplen = 4;
867 break;
868
869 case OP_FUNC_STATIC_VAR:
870 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
871 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
872 args = 1;
873 break;
874
875 case OP_TYPE:
876 case OP_BOOL:
877 case OP_LAST:
878 case OP_INTERNALVAR:
879 case OP_VAR_ENTRY_VALUE:
880 oplen = 3;
881 break;
882
883 case OP_COMPLEX:
884 oplen = 3;
885 args = 2;
886 break;
887
888 case OP_FUNCALL:
889 case OP_F77_UNDETERMINED_ARGLIST:
890 oplen = 3;
891 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
892 break;
893
894 case TYPE_INSTANCE:
895 oplen = 5 + longest_to_int (expr->elts[endpos - 2].longconst);
896 args = 1;
897 break;
898
899 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
900 oplen = 4;
901 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
902 break;
903
904 case UNOP_MAX:
905 case UNOP_MIN:
906 oplen = 3;
907 break;
908
909 case UNOP_CAST_TYPE:
910 case UNOP_DYNAMIC_CAST:
911 case UNOP_REINTERPRET_CAST:
912 case UNOP_MEMVAL_TYPE:
913 oplen = 1;
914 args = 2;
915 break;
916
917 case BINOP_VAL:
918 case UNOP_CAST:
919 case UNOP_MEMVAL:
920 oplen = 3;
921 args = 1;
922 break;
923
924 case UNOP_ABS:
925 case UNOP_CAP:
926 case UNOP_CHR:
927 case UNOP_FLOAT:
928 case UNOP_HIGH:
929 case UNOP_ODD:
930 case UNOP_ORD:
931 case UNOP_TRUNC:
932 case OP_TYPEOF:
933 case OP_DECLTYPE:
934 case OP_TYPEID:
935 oplen = 1;
936 args = 1;
937 break;
938
939 case OP_ADL_FUNC:
940 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
941 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
942 oplen++;
943 oplen++;
944 break;
945
946 case STRUCTOP_STRUCT:
947 case STRUCTOP_PTR:
948 args = 1;
949 /* fall through */
950 case OP_REGISTER:
951 case OP_M2_STRING:
952 case OP_STRING:
953 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
954 NSString constant. */
955 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
956 case OP_NAME:
957 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
958 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
959 break;
960
961 case OP_ARRAY:
962 oplen = 4;
963 args = longest_to_int (expr->elts[endpos - 2].longconst);
964 args -= longest_to_int (expr->elts[endpos - 3].longconst);
965 args += 1;
966 break;
967
968 case TERNOP_COND:
969 case TERNOP_SLICE:
970 args = 3;
971 break;
972
973 /* Modula-2 */
974 case MULTI_SUBSCRIPT:
975 oplen = 3;
976 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
977 break;
978
979 case BINOP_ASSIGN_MODIFY:
980 oplen = 3;
981 args = 2;
982 break;
983
984 /* C++ */
985 case OP_THIS:
986 oplen = 2;
987 break;
988
989 case OP_RANGE:
990 oplen = 3;
991 range_type = (enum range_type)
992 longest_to_int (expr->elts[endpos - 2].longconst);
993
994 switch (range_type)
995 {
996 case LOW_BOUND_DEFAULT:
997 case HIGH_BOUND_DEFAULT:
998 args = 1;
999 break;
1000 case BOTH_BOUND_DEFAULT:
1001 args = 0;
1002 break;
1003 case NONE_BOUND_DEFAULT:
1004 args = 2;
1005 break;
1006 }
1007
1008 break;
1009
1010 default:
1011 args = 1 + (i < (int) BINOP_END);
1012 }
1013
1014 *oplenp = oplen;
1015 *argsp = args;
1016 }
1017
1018 /* Copy the subexpression ending just before index INEND in INEXPR
1019 into OUTEXPR, starting at index OUTBEG.
1020 In the process, convert it from suffix to prefix form.
1021 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1022 Otherwise, it returns the index of the subexpression which is the
1023 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1024
1025 static int
1026 prefixify_subexp (struct expression *inexpr,
1027 struct expression *outexpr, int inend, int outbeg)
1028 {
1029 int oplen;
1030 int args;
1031 int i;
1032 int *arglens;
1033 int result = -1;
1034
1035 operator_length (inexpr, inend, &oplen, &args);
1036
1037 /* Copy the final operator itself, from the end of the input
1038 to the beginning of the output. */
1039 inend -= oplen;
1040 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1041 EXP_ELEM_TO_BYTES (oplen));
1042 outbeg += oplen;
1043
1044 if (expout_last_struct == inend)
1045 result = outbeg - oplen;
1046
1047 /* Find the lengths of the arg subexpressions. */
1048 arglens = (int *) alloca (args * sizeof (int));
1049 for (i = args - 1; i >= 0; i--)
1050 {
1051 oplen = length_of_subexp (inexpr, inend);
1052 arglens[i] = oplen;
1053 inend -= oplen;
1054 }
1055
1056 /* Now copy each subexpression, preserving the order of
1057 the subexpressions, but prefixifying each one.
1058 In this loop, inend starts at the beginning of
1059 the expression this level is working on
1060 and marches forward over the arguments.
1061 outbeg does similarly in the output. */
1062 for (i = 0; i < args; i++)
1063 {
1064 int r;
1065
1066 oplen = arglens[i];
1067 inend += oplen;
1068 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1069 if (r != -1)
1070 {
1071 /* Return immediately. We probably have only parsed a
1072 partial expression, so we don't want to try to reverse
1073 the other operands. */
1074 return r;
1075 }
1076 outbeg += oplen;
1077 }
1078
1079 return result;
1080 }
1081 \f
1082 /* Read an expression from the string *STRINGPTR points to,
1083 parse it, and return a pointer to a struct expression that we malloc.
1084 Use block BLOCK as the lexical context for variable names;
1085 if BLOCK is zero, use the block of the selected stack frame.
1086 Meanwhile, advance *STRINGPTR to point after the expression,
1087 at the first nonwhite character that is not part of the expression
1088 (possibly a null character).
1089
1090 If COMMA is nonzero, stop if a comma is reached. */
1091
1092 expression_up
1093 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1094 int comma)
1095 {
1096 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1097 }
1098
1099 static expression_up
1100 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1101 const struct block *block,
1102 int comma, int void_context_p, int *out_subexp)
1103 {
1104 return parse_exp_in_context_1 (stringptr, pc, block, comma,
1105 void_context_p, out_subexp);
1106 }
1107
1108 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1109 no value is expected from the expression.
1110 OUT_SUBEXP is set when attempting to complete a field name; in this
1111 case it is set to the index of the subexpression on the
1112 left-hand-side of the struct op. If not doing such completion, it
1113 is left untouched. */
1114
1115 static expression_up
1116 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1117 const struct block *block,
1118 int comma, int void_context_p, int *out_subexp)
1119 {
1120 const struct language_defn *lang = NULL;
1121 struct parser_state ps;
1122 int subexp;
1123
1124 lexptr = *stringptr;
1125 prev_lexptr = NULL;
1126
1127 paren_depth = 0;
1128 type_stack.depth = 0;
1129 expout_last_struct = -1;
1130 expout_tag_completion_type = TYPE_CODE_UNDEF;
1131 xfree (expout_completion_name);
1132 expout_completion_name = NULL;
1133
1134 comma_terminates = comma;
1135
1136 if (lexptr == 0 || *lexptr == 0)
1137 error_no_arg (_("expression to compute"));
1138
1139 std::vector<int> funcalls;
1140 scoped_restore save_funcall_chain = make_scoped_restore (&funcall_chain,
1141 &funcalls);
1142
1143 expression_context_block = block;
1144
1145 /* If no context specified, try using the current frame, if any. */
1146 if (!expression_context_block)
1147 expression_context_block = get_selected_block (&expression_context_pc);
1148 else if (pc == 0)
1149 expression_context_pc = BLOCK_START (expression_context_block);
1150 else
1151 expression_context_pc = pc;
1152
1153 /* Fall back to using the current source static context, if any. */
1154
1155 if (!expression_context_block)
1156 {
1157 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1158 if (cursal.symtab)
1159 expression_context_block
1160 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1161 STATIC_BLOCK);
1162 if (expression_context_block)
1163 expression_context_pc = BLOCK_START (expression_context_block);
1164 }
1165
1166 if (language_mode == language_mode_auto && block != NULL)
1167 {
1168 /* Find the language associated to the given context block.
1169 Default to the current language if it can not be determined.
1170
1171 Note that using the language corresponding to the current frame
1172 can sometimes give unexpected results. For instance, this
1173 routine is often called several times during the inferior
1174 startup phase to re-parse breakpoint expressions after
1175 a new shared library has been loaded. The language associated
1176 to the current frame at this moment is not relevant for
1177 the breakpoint. Using it would therefore be silly, so it seems
1178 better to rely on the current language rather than relying on
1179 the current frame language to parse the expression. That's why
1180 we do the following language detection only if the context block
1181 has been specifically provided. */
1182 struct symbol *func = block_linkage_function (block);
1183
1184 if (func != NULL)
1185 lang = language_def (SYMBOL_LANGUAGE (func));
1186 if (lang == NULL || lang->la_language == language_unknown)
1187 lang = current_language;
1188 }
1189 else
1190 lang = current_language;
1191
1192 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1193 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1194 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1195 to the value matching SELECTED_FRAME as set by get_current_arch. */
1196
1197 initialize_expout (&ps, 10, lang, get_current_arch ());
1198
1199 scoped_restore_current_language lang_saver;
1200 set_language (lang->la_language);
1201
1202 TRY
1203 {
1204 if (lang->la_parser (&ps))
1205 lang->la_error (NULL);
1206 }
1207 CATCH (except, RETURN_MASK_ALL)
1208 {
1209 if (! parse_completion)
1210 {
1211 xfree (ps.expout);
1212 throw_exception (except);
1213 }
1214 }
1215 END_CATCH
1216
1217 reallocate_expout (&ps);
1218
1219 /* Convert expression from postfix form as generated by yacc
1220 parser, to a prefix form. */
1221
1222 if (expressiondebug)
1223 dump_raw_expression (ps.expout, gdb_stdlog,
1224 "before conversion to prefix form");
1225
1226 subexp = prefixify_expression (ps.expout);
1227 if (out_subexp)
1228 *out_subexp = subexp;
1229
1230 lang->la_post_parser (&ps.expout, void_context_p);
1231
1232 if (expressiondebug)
1233 dump_prefix_expression (ps.expout, gdb_stdlog);
1234
1235 *stringptr = lexptr;
1236 return expression_up (ps.expout);
1237 }
1238
1239 /* Parse STRING as an expression, and complain if this fails
1240 to use up all of the contents of STRING. */
1241
1242 expression_up
1243 parse_expression (const char *string)
1244 {
1245 expression_up exp = parse_exp_1 (&string, 0, 0, 0);
1246 if (*string)
1247 error (_("Junk after end of expression."));
1248 return exp;
1249 }
1250
1251 /* Same as parse_expression, but using the given language (LANG)
1252 to parse the expression. */
1253
1254 expression_up
1255 parse_expression_with_language (const char *string, enum language lang)
1256 {
1257 gdb::optional<scoped_restore_current_language> lang_saver;
1258 if (current_language->la_language != lang)
1259 {
1260 lang_saver.emplace ();
1261 set_language (lang);
1262 }
1263
1264 return parse_expression (string);
1265 }
1266
1267 /* Parse STRING as an expression. If parsing ends in the middle of a
1268 field reference, return the type of the left-hand-side of the
1269 reference; furthermore, if the parsing ends in the field name,
1270 return the field name in *NAME. If the parsing ends in the middle
1271 of a field reference, but the reference is somehow invalid, throw
1272 an exception. In all other cases, return NULL. Returned non-NULL
1273 *NAME must be freed by the caller. */
1274
1275 struct type *
1276 parse_expression_for_completion (const char *string, char **name,
1277 enum type_code *code)
1278 {
1279 expression_up exp;
1280 struct value *val;
1281 int subexp;
1282
1283 TRY
1284 {
1285 parse_completion = 1;
1286 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1287 }
1288 CATCH (except, RETURN_MASK_ERROR)
1289 {
1290 /* Nothing, EXP remains NULL. */
1291 }
1292 END_CATCH
1293
1294 parse_completion = 0;
1295 if (exp == NULL)
1296 return NULL;
1297
1298 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1299 {
1300 *code = expout_tag_completion_type;
1301 *name = expout_completion_name;
1302 expout_completion_name = NULL;
1303 return NULL;
1304 }
1305
1306 if (expout_last_struct == -1)
1307 return NULL;
1308
1309 *name = extract_field_op (exp.get (), &subexp);
1310 if (!*name)
1311 return NULL;
1312
1313 /* This might throw an exception. If so, we want to let it
1314 propagate. */
1315 val = evaluate_subexpression_type (exp.get (), subexp);
1316 /* (*NAME) is a part of the EXP memory block freed below. */
1317 *name = xstrdup (*name);
1318
1319 return value_type (val);
1320 }
1321
1322 /* A post-parser that does nothing. */
1323
1324 void
1325 null_post_parser (struct expression **exp, int void_context_p)
1326 {
1327 }
1328
1329 /* Parse floating point value P of length LEN.
1330 Return false if invalid, true if valid.
1331 The successfully parsed number is stored in DATA in
1332 target format for floating-point type TYPE.
1333
1334 NOTE: This accepts the floating point syntax that sscanf accepts. */
1335
1336 bool
1337 parse_float (const char *p, int len,
1338 const struct type *type, gdb_byte *data)
1339 {
1340 return target_float_from_string (data, type, std::string (p, len));
1341 }
1342 \f
1343 /* Stuff for maintaining a stack of types. Currently just used by C, but
1344 probably useful for any language which declares its types "backwards". */
1345
1346 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1347
1348 static void
1349 type_stack_reserve (struct type_stack *stack, int howmuch)
1350 {
1351 if (stack->depth + howmuch >= stack->size)
1352 {
1353 stack->size *= 2;
1354 if (stack->size < howmuch)
1355 stack->size = howmuch;
1356 stack->elements = XRESIZEVEC (union type_stack_elt, stack->elements,
1357 stack->size);
1358 }
1359 }
1360
1361 /* Ensure that there is a single open slot in the global type stack. */
1362
1363 static void
1364 check_type_stack_depth (void)
1365 {
1366 type_stack_reserve (&type_stack, 1);
1367 }
1368
1369 /* A helper function for insert_type and insert_type_address_space.
1370 This does work of expanding the type stack and inserting the new
1371 element, ELEMENT, into the stack at location SLOT. */
1372
1373 static void
1374 insert_into_type_stack (int slot, union type_stack_elt element)
1375 {
1376 check_type_stack_depth ();
1377
1378 if (slot < type_stack.depth)
1379 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1380 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1381 type_stack.elements[slot] = element;
1382 ++type_stack.depth;
1383 }
1384
1385 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1386 tp_pointer, tp_reference or tp_rvalue_reference, it is inserted at the
1387 bottom. If TP is a qualifier, it is inserted at slot 1 (just above a
1388 previous tp_pointer) if there is anything on the stack, or simply pushed
1389 if the stack is empty. Other values for TP are invalid. */
1390
1391 void
1392 insert_type (enum type_pieces tp)
1393 {
1394 union type_stack_elt element;
1395 int slot;
1396
1397 gdb_assert (tp == tp_pointer || tp == tp_reference
1398 || tp == tp_rvalue_reference || tp == tp_const
1399 || tp == tp_volatile);
1400
1401 /* If there is anything on the stack (we know it will be a
1402 tp_pointer), insert the qualifier above it. Otherwise, simply
1403 push this on the top of the stack. */
1404 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1405 slot = 1;
1406 else
1407 slot = 0;
1408
1409 element.piece = tp;
1410 insert_into_type_stack (slot, element);
1411 }
1412
1413 void
1414 push_type (enum type_pieces tp)
1415 {
1416 check_type_stack_depth ();
1417 type_stack.elements[type_stack.depth++].piece = tp;
1418 }
1419
1420 void
1421 push_type_int (int n)
1422 {
1423 check_type_stack_depth ();
1424 type_stack.elements[type_stack.depth++].int_val = n;
1425 }
1426
1427 /* Insert a tp_space_identifier and the corresponding address space
1428 value into the stack. STRING is the name of an address space, as
1429 recognized by address_space_name_to_int. If the stack is empty,
1430 the new elements are simply pushed. If the stack is not empty,
1431 this function assumes that the first item on the stack is a
1432 tp_pointer, and the new values are inserted above the first
1433 item. */
1434
1435 void
1436 insert_type_address_space (struct parser_state *pstate, char *string)
1437 {
1438 union type_stack_elt element;
1439 int slot;
1440
1441 /* If there is anything on the stack (we know it will be a
1442 tp_pointer), insert the address space qualifier above it.
1443 Otherwise, simply push this on the top of the stack. */
1444 if (type_stack.depth)
1445 slot = 1;
1446 else
1447 slot = 0;
1448
1449 element.piece = tp_space_identifier;
1450 insert_into_type_stack (slot, element);
1451 element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1452 string);
1453 insert_into_type_stack (slot, element);
1454 }
1455
1456 enum type_pieces
1457 pop_type (void)
1458 {
1459 if (type_stack.depth)
1460 return type_stack.elements[--type_stack.depth].piece;
1461 return tp_end;
1462 }
1463
1464 int
1465 pop_type_int (void)
1466 {
1467 if (type_stack.depth)
1468 return type_stack.elements[--type_stack.depth].int_val;
1469 /* "Can't happen". */
1470 return 0;
1471 }
1472
1473 /* Pop a type list element from the global type stack. */
1474
1475 static VEC (type_ptr) *
1476 pop_typelist (void)
1477 {
1478 gdb_assert (type_stack.depth);
1479 return type_stack.elements[--type_stack.depth].typelist_val;
1480 }
1481
1482 /* Pop a type_stack element from the global type stack. */
1483
1484 static struct type_stack *
1485 pop_type_stack (void)
1486 {
1487 gdb_assert (type_stack.depth);
1488 return type_stack.elements[--type_stack.depth].stack_val;
1489 }
1490
1491 /* Append the elements of the type stack FROM to the type stack TO.
1492 Always returns TO. */
1493
1494 struct type_stack *
1495 append_type_stack (struct type_stack *to, struct type_stack *from)
1496 {
1497 type_stack_reserve (to, from->depth);
1498
1499 memcpy (&to->elements[to->depth], &from->elements[0],
1500 from->depth * sizeof (union type_stack_elt));
1501 to->depth += from->depth;
1502
1503 return to;
1504 }
1505
1506 /* Push the type stack STACK as an element on the global type stack. */
1507
1508 void
1509 push_type_stack (struct type_stack *stack)
1510 {
1511 check_type_stack_depth ();
1512 type_stack.elements[type_stack.depth++].stack_val = stack;
1513 push_type (tp_type_stack);
1514 }
1515
1516 /* Copy the global type stack into a newly allocated type stack and
1517 return it. The global stack is cleared. The returned type stack
1518 must be freed with type_stack_cleanup. */
1519
1520 struct type_stack *
1521 get_type_stack (void)
1522 {
1523 struct type_stack *result = XNEW (struct type_stack);
1524
1525 *result = type_stack;
1526 type_stack.depth = 0;
1527 type_stack.size = 0;
1528 type_stack.elements = NULL;
1529
1530 return result;
1531 }
1532
1533 /* A cleanup function that destroys a single type stack. */
1534
1535 void
1536 type_stack_cleanup (void *arg)
1537 {
1538 struct type_stack *stack = (struct type_stack *) arg;
1539
1540 xfree (stack->elements);
1541 xfree (stack);
1542 }
1543
1544 /* Push a function type with arguments onto the global type stack.
1545 LIST holds the argument types. If the final item in LIST is NULL,
1546 then the function will be varargs. */
1547
1548 void
1549 push_typelist (VEC (type_ptr) *list)
1550 {
1551 check_type_stack_depth ();
1552 type_stack.elements[type_stack.depth++].typelist_val = list;
1553 push_type (tp_function_with_arguments);
1554 }
1555
1556 /* Pop the type stack and return a type_instance_flags that
1557 corresponds the const/volatile qualifiers on the stack. This is
1558 called by the C++ parser when parsing methods types, and as such no
1559 other kind of type in the type stack is expected. */
1560
1561 type_instance_flags
1562 follow_type_instance_flags ()
1563 {
1564 type_instance_flags flags = 0;
1565
1566 for (;;)
1567 switch (pop_type ())
1568 {
1569 case tp_end:
1570 return flags;
1571 case tp_const:
1572 flags |= TYPE_INSTANCE_FLAG_CONST;
1573 break;
1574 case tp_volatile:
1575 flags |= TYPE_INSTANCE_FLAG_VOLATILE;
1576 break;
1577 default:
1578 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1579 }
1580 }
1581
1582
1583 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1584 as modified by all the stuff on the stack. */
1585 struct type *
1586 follow_types (struct type *follow_type)
1587 {
1588 int done = 0;
1589 int make_const = 0;
1590 int make_volatile = 0;
1591 int make_addr_space = 0;
1592 int array_size;
1593
1594 while (!done)
1595 switch (pop_type ())
1596 {
1597 case tp_end:
1598 done = 1;
1599 if (make_const)
1600 follow_type = make_cv_type (make_const,
1601 TYPE_VOLATILE (follow_type),
1602 follow_type, 0);
1603 if (make_volatile)
1604 follow_type = make_cv_type (TYPE_CONST (follow_type),
1605 make_volatile,
1606 follow_type, 0);
1607 if (make_addr_space)
1608 follow_type = make_type_with_address_space (follow_type,
1609 make_addr_space);
1610 make_const = make_volatile = 0;
1611 make_addr_space = 0;
1612 break;
1613 case tp_const:
1614 make_const = 1;
1615 break;
1616 case tp_volatile:
1617 make_volatile = 1;
1618 break;
1619 case tp_space_identifier:
1620 make_addr_space = pop_type_int ();
1621 break;
1622 case tp_pointer:
1623 follow_type = lookup_pointer_type (follow_type);
1624 if (make_const)
1625 follow_type = make_cv_type (make_const,
1626 TYPE_VOLATILE (follow_type),
1627 follow_type, 0);
1628 if (make_volatile)
1629 follow_type = make_cv_type (TYPE_CONST (follow_type),
1630 make_volatile,
1631 follow_type, 0);
1632 if (make_addr_space)
1633 follow_type = make_type_with_address_space (follow_type,
1634 make_addr_space);
1635 make_const = make_volatile = 0;
1636 make_addr_space = 0;
1637 break;
1638 case tp_reference:
1639 follow_type = lookup_lvalue_reference_type (follow_type);
1640 goto process_reference;
1641 case tp_rvalue_reference:
1642 follow_type = lookup_rvalue_reference_type (follow_type);
1643 process_reference:
1644 if (make_const)
1645 follow_type = make_cv_type (make_const,
1646 TYPE_VOLATILE (follow_type),
1647 follow_type, 0);
1648 if (make_volatile)
1649 follow_type = make_cv_type (TYPE_CONST (follow_type),
1650 make_volatile,
1651 follow_type, 0);
1652 if (make_addr_space)
1653 follow_type = make_type_with_address_space (follow_type,
1654 make_addr_space);
1655 make_const = make_volatile = 0;
1656 make_addr_space = 0;
1657 break;
1658 case tp_array:
1659 array_size = pop_type_int ();
1660 /* FIXME-type-allocation: need a way to free this type when we are
1661 done with it. */
1662 follow_type =
1663 lookup_array_range_type (follow_type,
1664 0, array_size >= 0 ? array_size - 1 : 0);
1665 if (array_size < 0)
1666 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1667 = PROP_UNDEFINED;
1668 break;
1669 case tp_function:
1670 /* FIXME-type-allocation: need a way to free this type when we are
1671 done with it. */
1672 follow_type = lookup_function_type (follow_type);
1673 break;
1674
1675 case tp_function_with_arguments:
1676 {
1677 VEC (type_ptr) *args = pop_typelist ();
1678
1679 follow_type
1680 = lookup_function_type_with_arguments (follow_type,
1681 VEC_length (type_ptr, args),
1682 VEC_address (type_ptr,
1683 args));
1684 VEC_free (type_ptr, args);
1685 }
1686 break;
1687
1688 case tp_type_stack:
1689 {
1690 struct type_stack *stack = pop_type_stack ();
1691 /* Sort of ugly, but not really much worse than the
1692 alternatives. */
1693 struct type_stack save = type_stack;
1694
1695 type_stack = *stack;
1696 follow_type = follow_types (follow_type);
1697 gdb_assert (type_stack.depth == 0);
1698
1699 type_stack = save;
1700 }
1701 break;
1702 default:
1703 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1704 }
1705 return follow_type;
1706 }
1707 \f
1708 /* This function avoids direct calls to fprintf
1709 in the parser generated debug code. */
1710 void
1711 parser_fprintf (FILE *x, const char *y, ...)
1712 {
1713 va_list args;
1714
1715 va_start (args, y);
1716 if (x == stderr)
1717 vfprintf_unfiltered (gdb_stderr, y, args);
1718 else
1719 {
1720 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1721 vfprintf_unfiltered (gdb_stderr, y, args);
1722 }
1723 va_end (args);
1724 }
1725
1726 /* Implementation of the exp_descriptor method operator_check. */
1727
1728 int
1729 operator_check_standard (struct expression *exp, int pos,
1730 int (*objfile_func) (struct objfile *objfile,
1731 void *data),
1732 void *data)
1733 {
1734 const union exp_element *const elts = exp->elts;
1735 struct type *type = NULL;
1736 struct objfile *objfile = NULL;
1737
1738 /* Extended operators should have been already handled by exp_descriptor
1739 iterate method of its specific language. */
1740 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1741
1742 /* Track the callers of write_exp_elt_type for this table. */
1743
1744 switch (elts[pos].opcode)
1745 {
1746 case BINOP_VAL:
1747 case OP_COMPLEX:
1748 case OP_FLOAT:
1749 case OP_LONG:
1750 case OP_SCOPE:
1751 case OP_TYPE:
1752 case UNOP_CAST:
1753 case UNOP_MAX:
1754 case UNOP_MEMVAL:
1755 case UNOP_MIN:
1756 type = elts[pos + 1].type;
1757 break;
1758
1759 case TYPE_INSTANCE:
1760 {
1761 LONGEST arg, nargs = elts[pos + 2].longconst;
1762
1763 for (arg = 0; arg < nargs; arg++)
1764 {
1765 struct type *type = elts[pos + 3 + arg].type;
1766 struct objfile *objfile = TYPE_OBJFILE (type);
1767
1768 if (objfile && (*objfile_func) (objfile, data))
1769 return 1;
1770 }
1771 }
1772 break;
1773
1774 case OP_VAR_VALUE:
1775 {
1776 const struct block *const block = elts[pos + 1].block;
1777 const struct symbol *const symbol = elts[pos + 2].symbol;
1778
1779 /* Check objfile where the variable itself is placed.
1780 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1781 if ((*objfile_func) (symbol_objfile (symbol), data))
1782 return 1;
1783
1784 /* Check objfile where is placed the code touching the variable. */
1785 objfile = lookup_objfile_from_block (block);
1786
1787 type = SYMBOL_TYPE (symbol);
1788 }
1789 break;
1790 case OP_VAR_MSYM_VALUE:
1791 objfile = elts[pos + 1].objfile;
1792 break;
1793 }
1794
1795 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1796
1797 if (type && TYPE_OBJFILE (type)
1798 && (*objfile_func) (TYPE_OBJFILE (type), data))
1799 return 1;
1800 if (objfile && (*objfile_func) (objfile, data))
1801 return 1;
1802
1803 return 0;
1804 }
1805
1806 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1807 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1808 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1809 returns non-zero value then (any other) non-zero value is immediately
1810 returned to the caller. Otherwise zero is returned after iterating
1811 through whole EXP. */
1812
1813 static int
1814 exp_iterate (struct expression *exp,
1815 int (*objfile_func) (struct objfile *objfile, void *data),
1816 void *data)
1817 {
1818 int endpos;
1819
1820 for (endpos = exp->nelts; endpos > 0; )
1821 {
1822 int pos, args, oplen = 0;
1823
1824 operator_length (exp, endpos, &oplen, &args);
1825 gdb_assert (oplen > 0);
1826
1827 pos = endpos - oplen;
1828 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1829 objfile_func, data))
1830 return 1;
1831
1832 endpos = pos;
1833 }
1834
1835 return 0;
1836 }
1837
1838 /* Helper for exp_uses_objfile. */
1839
1840 static int
1841 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1842 {
1843 struct objfile *objfile = (struct objfile *) objfile_voidp;
1844
1845 if (exp_objfile->separate_debug_objfile_backlink)
1846 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1847
1848 return exp_objfile == objfile;
1849 }
1850
1851 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1852 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1853 file. */
1854
1855 int
1856 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1857 {
1858 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1859
1860 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1861 }
1862
1863 /* See definition in parser-defs.h. */
1864
1865 void
1866 increase_expout_size (struct parser_state *ps, size_t lenelt)
1867 {
1868 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1869 {
1870 ps->expout_size = std::max (ps->expout_size * 2,
1871 ps->expout_ptr + lenelt + 10);
1872 ps->expout = (struct expression *)
1873 xrealloc (ps->expout, (sizeof (struct expression)
1874 + EXP_ELEM_TO_BYTES (ps->expout_size)));
1875 }
1876 }
1877
1878 void
1879 _initialize_parse (void)
1880 {
1881 type_stack.size = 0;
1882 type_stack.depth = 0;
1883 type_stack.elements = NULL;
1884
1885 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1886 &expressiondebug,
1887 _("Set expression debugging."),
1888 _("Show expression debugging."),
1889 _("When non-zero, the internal representation "
1890 "of expressions will be printed."),
1891 NULL,
1892 show_expressiondebug,
1893 &setdebuglist, &showdebuglist);
1894 add_setshow_boolean_cmd ("parser", class_maintenance,
1895 &parser_debug,
1896 _("Set parser debugging."),
1897 _("Show parser debugging."),
1898 _("When non-zero, expression parser "
1899 "tracing will be enabled."),
1900 NULL,
1901 show_parserdebug,
1902 &setdebuglist, &showdebuglist);
1903 }
This page took 0.077464 seconds and 4 git commands to generate.