5d949fd6e2a28c2f423208aae957df85063effe5
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2004, 2005 Free Software Foundation, Inc.
5
6 Modified from expread.y by the Department of Computer Science at the
7 State University of New York at Buffalo, 1991.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 /* Parse an expression from text in a string,
27 and return the result as a struct expression pointer.
28 That structure contains arithmetic operations in reverse polish,
29 with constants represented by operations that are followed by special data.
30 See expression.h for the details of the format.
31 What is important here is that it can be built up sequentially
32 during the process of parsing; the lower levels of the tree always
33 come first in the result. */
34
35 #include <ctype.h>
36
37 #include "defs.h"
38 #include "gdb_string.h"
39 #include "symtab.h"
40 #include "gdbtypes.h"
41 #include "frame.h"
42 #include "expression.h"
43 #include "value.h"
44 #include "command.h"
45 #include "language.h"
46 #include "f-lang.h"
47 #include "parser-defs.h"
48 #include "gdbcmd.h"
49 #include "symfile.h" /* for overlay functions */
50 #include "inferior.h" /* for NUM_PSEUDO_REGS. NOTE: replace
51 with "gdbarch.h" when appropriate. */
52 #include "doublest.h"
53 #include "gdb_assert.h"
54 #include "block.h"
55 #include "source.h"
56
57 /* Standard set of definitions for printing, dumping, prefixifying,
58 * and evaluating expressions. */
59
60 const struct exp_descriptor exp_descriptor_standard =
61 {
62 print_subexp_standard,
63 operator_length_standard,
64 op_name_standard,
65 dump_subexp_body_standard,
66 evaluate_subexp_standard
67 };
68 \f
69 /* Global variables declared in parser-defs.h (and commented there). */
70 struct expression *expout;
71 int expout_size;
72 int expout_ptr;
73 struct block *expression_context_block;
74 CORE_ADDR expression_context_pc;
75 struct block *innermost_block;
76 int arglist_len;
77 union type_stack_elt *type_stack;
78 int type_stack_depth, type_stack_size;
79 char *lexptr;
80 char *prev_lexptr;
81 int paren_depth;
82 int comma_terminates;
83
84 /* A temporary buffer for identifiers, so we can null-terminate them.
85
86 We allocate this with xrealloc. parse_exp_1 used to allocate with
87 alloca, using the size of the whole expression as a conservative
88 estimate of the space needed. However, macro expansion can
89 introduce names longer than the original expression; there's no
90 practical way to know beforehand how large that might be. */
91 char *namecopy;
92 size_t namecopy_size;
93 \f
94 static int expressiondebug = 0;
95 static void
96 show_expressiondebug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
100 }
101
102 static void free_funcalls (void *ignore);
103
104 static void prefixify_expression (struct expression *);
105
106 static void prefixify_subexp (struct expression *, struct expression *, int,
107 int);
108
109 static struct expression *parse_exp_in_context (char **, struct block *, int,
110 int);
111
112 void _initialize_parse (void);
113
114 /* Data structure for saving values of arglist_len for function calls whose
115 arguments contain other function calls. */
116
117 struct funcall
118 {
119 struct funcall *next;
120 int arglist_len;
121 };
122
123 static struct funcall *funcall_chain;
124
125 /* Begin counting arguments for a function call,
126 saving the data about any containing call. */
127
128 void
129 start_arglist (void)
130 {
131 struct funcall *new;
132
133 new = (struct funcall *) xmalloc (sizeof (struct funcall));
134 new->next = funcall_chain;
135 new->arglist_len = arglist_len;
136 arglist_len = 0;
137 funcall_chain = new;
138 }
139
140 /* Return the number of arguments in a function call just terminated,
141 and restore the data for the containing function call. */
142
143 int
144 end_arglist (void)
145 {
146 int val = arglist_len;
147 struct funcall *call = funcall_chain;
148 funcall_chain = call->next;
149 arglist_len = call->arglist_len;
150 xfree (call);
151 return val;
152 }
153
154 /* Free everything in the funcall chain.
155 Used when there is an error inside parsing. */
156
157 static void
158 free_funcalls (void *ignore)
159 {
160 struct funcall *call, *next;
161
162 for (call = funcall_chain; call; call = next)
163 {
164 next = call->next;
165 xfree (call);
166 }
167 }
168 \f
169 /* This page contains the functions for adding data to the struct expression
170 being constructed. */
171
172 /* Add one element to the end of the expression. */
173
174 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
175 a register through here */
176
177 void
178 write_exp_elt (union exp_element expelt)
179 {
180 if (expout_ptr >= expout_size)
181 {
182 expout_size *= 2;
183 expout = (struct expression *)
184 xrealloc ((char *) expout, sizeof (struct expression)
185 + EXP_ELEM_TO_BYTES (expout_size));
186 }
187 expout->elts[expout_ptr++] = expelt;
188 }
189
190 void
191 write_exp_elt_opcode (enum exp_opcode expelt)
192 {
193 union exp_element tmp;
194 memset (&tmp, 0, sizeof (union exp_element));
195
196 tmp.opcode = expelt;
197
198 write_exp_elt (tmp);
199 }
200
201 void
202 write_exp_elt_sym (struct symbol *expelt)
203 {
204 union exp_element tmp;
205 memset (&tmp, 0, sizeof (union exp_element));
206
207 tmp.symbol = expelt;
208
209 write_exp_elt (tmp);
210 }
211
212 void
213 write_exp_elt_block (struct block *b)
214 {
215 union exp_element tmp;
216 memset (&tmp, 0, sizeof (union exp_element));
217 tmp.block = b;
218 write_exp_elt (tmp);
219 }
220
221 void
222 write_exp_elt_longcst (LONGEST expelt)
223 {
224 union exp_element tmp;
225 memset (&tmp, 0, sizeof (union exp_element));
226
227 tmp.longconst = expelt;
228
229 write_exp_elt (tmp);
230 }
231
232 void
233 write_exp_elt_dblcst (DOUBLEST expelt)
234 {
235 union exp_element tmp;
236 memset (&tmp, 0, sizeof (union exp_element));
237
238 tmp.doubleconst = expelt;
239
240 write_exp_elt (tmp);
241 }
242
243 void
244 write_exp_elt_type (struct type *expelt)
245 {
246 union exp_element tmp;
247 memset (&tmp, 0, sizeof (union exp_element));
248
249 tmp.type = expelt;
250
251 write_exp_elt (tmp);
252 }
253
254 void
255 write_exp_elt_intern (struct internalvar *expelt)
256 {
257 union exp_element tmp;
258 memset (&tmp, 0, sizeof (union exp_element));
259
260 tmp.internalvar = expelt;
261
262 write_exp_elt (tmp);
263 }
264
265 /* Add a string constant to the end of the expression.
266
267 String constants are stored by first writing an expression element
268 that contains the length of the string, then stuffing the string
269 constant itself into however many expression elements are needed
270 to hold it, and then writing another expression element that contains
271 the length of the string. I.E. an expression element at each end of
272 the string records the string length, so you can skip over the
273 expression elements containing the actual string bytes from either
274 end of the string. Note that this also allows gdb to handle
275 strings with embedded null bytes, as is required for some languages.
276
277 Don't be fooled by the fact that the string is null byte terminated,
278 this is strictly for the convenience of debugging gdb itself. Gdb
279 Gdb does not depend up the string being null terminated, since the
280 actual length is recorded in expression elements at each end of the
281 string. The null byte is taken into consideration when computing how
282 many expression elements are required to hold the string constant, of
283 course. */
284
285
286 void
287 write_exp_string (struct stoken str)
288 {
289 int len = str.length;
290 int lenelt;
291 char *strdata;
292
293 /* Compute the number of expression elements required to hold the string
294 (including a null byte terminator), along with one expression element
295 at each end to record the actual string length (not including the
296 null byte terminator). */
297
298 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
299
300 /* Ensure that we have enough available expression elements to store
301 everything. */
302
303 if ((expout_ptr + lenelt) >= expout_size)
304 {
305 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
306 expout = (struct expression *)
307 xrealloc ((char *) expout, (sizeof (struct expression)
308 + EXP_ELEM_TO_BYTES (expout_size)));
309 }
310
311 /* Write the leading length expression element (which advances the current
312 expression element index), then write the string constant followed by a
313 terminating null byte, and then write the trailing length expression
314 element. */
315
316 write_exp_elt_longcst ((LONGEST) len);
317 strdata = (char *) &expout->elts[expout_ptr];
318 memcpy (strdata, str.ptr, len);
319 *(strdata + len) = '\0';
320 expout_ptr += lenelt - 2;
321 write_exp_elt_longcst ((LONGEST) len);
322 }
323
324 /* Add a bitstring constant to the end of the expression.
325
326 Bitstring constants are stored by first writing an expression element
327 that contains the length of the bitstring (in bits), then stuffing the
328 bitstring constant itself into however many expression elements are
329 needed to hold it, and then writing another expression element that
330 contains the length of the bitstring. I.E. an expression element at
331 each end of the bitstring records the bitstring length, so you can skip
332 over the expression elements containing the actual bitstring bytes from
333 either end of the bitstring. */
334
335 void
336 write_exp_bitstring (struct stoken str)
337 {
338 int bits = str.length; /* length in bits */
339 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
340 int lenelt;
341 char *strdata;
342
343 /* Compute the number of expression elements required to hold the bitstring,
344 along with one expression element at each end to record the actual
345 bitstring length in bits. */
346
347 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
348
349 /* Ensure that we have enough available expression elements to store
350 everything. */
351
352 if ((expout_ptr + lenelt) >= expout_size)
353 {
354 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
355 expout = (struct expression *)
356 xrealloc ((char *) expout, (sizeof (struct expression)
357 + EXP_ELEM_TO_BYTES (expout_size)));
358 }
359
360 /* Write the leading length expression element (which advances the current
361 expression element index), then write the bitstring constant, and then
362 write the trailing length expression element. */
363
364 write_exp_elt_longcst ((LONGEST) bits);
365 strdata = (char *) &expout->elts[expout_ptr];
366 memcpy (strdata, str.ptr, len);
367 expout_ptr += lenelt - 2;
368 write_exp_elt_longcst ((LONGEST) bits);
369 }
370
371 /* Add the appropriate elements for a minimal symbol to the end of
372 the expression. The rationale behind passing in text_symbol_type and
373 data_symbol_type was so that Modula-2 could pass in WORD for
374 data_symbol_type. Perhaps it still is useful to have those types vary
375 based on the language, but they no longer have names like "int", so
376 the initial rationale is gone. */
377
378 static struct type *msym_text_symbol_type;
379 static struct type *msym_data_symbol_type;
380 static struct type *msym_unknown_symbol_type;
381
382 void
383 write_exp_msymbol (struct minimal_symbol *msymbol,
384 struct type *text_symbol_type,
385 struct type *data_symbol_type)
386 {
387 CORE_ADDR addr;
388
389 write_exp_elt_opcode (OP_LONG);
390 /* Let's make the type big enough to hold a 64-bit address. */
391 write_exp_elt_type (builtin_type_CORE_ADDR);
392
393 addr = SYMBOL_VALUE_ADDRESS (msymbol);
394 if (overlay_debugging)
395 addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol));
396 write_exp_elt_longcst ((LONGEST) addr);
397
398 write_exp_elt_opcode (OP_LONG);
399
400 write_exp_elt_opcode (UNOP_MEMVAL);
401 switch (msymbol->type)
402 {
403 case mst_text:
404 case mst_file_text:
405 case mst_solib_trampoline:
406 write_exp_elt_type (msym_text_symbol_type);
407 break;
408
409 case mst_data:
410 case mst_file_data:
411 case mst_bss:
412 case mst_file_bss:
413 write_exp_elt_type (msym_data_symbol_type);
414 break;
415
416 default:
417 write_exp_elt_type (msym_unknown_symbol_type);
418 break;
419 }
420 write_exp_elt_opcode (UNOP_MEMVAL);
421 }
422 \f
423 /* Recognize tokens that start with '$'. These include:
424
425 $regname A native register name or a "standard
426 register name".
427
428 $variable A convenience variable with a name chosen
429 by the user.
430
431 $digits Value history with index <digits>, starting
432 from the first value which has index 1.
433
434 $$digits Value history with index <digits> relative
435 to the last value. I.E. $$0 is the last
436 value, $$1 is the one previous to that, $$2
437 is the one previous to $$1, etc.
438
439 $ | $0 | $$0 The last value in the value history.
440
441 $$ An abbreviation for the second to the last
442 value in the value history, I.E. $$1
443
444 */
445
446 void
447 write_dollar_variable (struct stoken str)
448 {
449 struct symbol *sym = NULL;
450 struct minimal_symbol *msym = NULL;
451
452 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
453 and $$digits (equivalent to $<-digits> if you could type that). */
454
455 int negate = 0;
456 int i = 1;
457 /* Double dollar means negate the number and add -1 as well.
458 Thus $$ alone means -1. */
459 if (str.length >= 2 && str.ptr[1] == '$')
460 {
461 negate = 1;
462 i = 2;
463 }
464 if (i == str.length)
465 {
466 /* Just dollars (one or two) */
467 i = -negate;
468 goto handle_last;
469 }
470 /* Is the rest of the token digits? */
471 for (; i < str.length; i++)
472 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
473 break;
474 if (i == str.length)
475 {
476 i = atoi (str.ptr + 1 + negate);
477 if (negate)
478 i = -i;
479 goto handle_last;
480 }
481
482 /* Handle tokens that refer to machine registers:
483 $ followed by a register name. */
484 i = frame_map_name_to_regnum (deprecated_selected_frame,
485 str.ptr + 1, str.length - 1);
486 if (i >= 0)
487 goto handle_register;
488
489 /* On some systems, such as HP-UX and hppa-linux, certain system routines
490 have names beginning with $ or $$. Check for those, first. */
491
492 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
493 VAR_DOMAIN, (int *) NULL, (struct symtab **) NULL);
494 if (sym)
495 {
496 write_exp_elt_opcode (OP_VAR_VALUE);
497 write_exp_elt_block (block_found); /* set by lookup_symbol */
498 write_exp_elt_sym (sym);
499 write_exp_elt_opcode (OP_VAR_VALUE);
500 return;
501 }
502 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
503 if (msym)
504 {
505 write_exp_msymbol (msym,
506 lookup_function_type (builtin_type_int),
507 builtin_type_int);
508 return;
509 }
510
511 /* Any other names starting in $ are debugger internal variables. */
512
513 write_exp_elt_opcode (OP_INTERNALVAR);
514 write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
515 write_exp_elt_opcode (OP_INTERNALVAR);
516 return;
517 handle_last:
518 write_exp_elt_opcode (OP_LAST);
519 write_exp_elt_longcst ((LONGEST) i);
520 write_exp_elt_opcode (OP_LAST);
521 return;
522 handle_register:
523 write_exp_elt_opcode (OP_REGISTER);
524 write_exp_elt_longcst (i);
525 write_exp_elt_opcode (OP_REGISTER);
526 return;
527 }
528
529
530 /* Parse a string that is possibly a namespace / nested class
531 specification, i.e., something of the form A::B::C::x. Input
532 (NAME) is the entire string; LEN is the current valid length; the
533 output is a string, TOKEN, which points to the largest recognized
534 prefix which is a series of namespaces or classes. CLASS_PREFIX is
535 another output, which records whether a nested class spec was
536 recognized (= 1) or a fully qualified variable name was found (=
537 0). ARGPTR is side-effected (if non-NULL) to point to beyond the
538 string recognized and consumed by this routine.
539
540 The return value is a pointer to the symbol for the base class or
541 variable if found, or NULL if not found. Callers must check this
542 first -- if NULL, the outputs may not be correct.
543
544 This function is used c-exp.y. This is used specifically to get
545 around HP aCC (and possibly other compilers), which insists on
546 generating names with embedded colons for namespace or nested class
547 members.
548
549 (Argument LEN is currently unused. 1997-08-27)
550
551 Callers must free memory allocated for the output string TOKEN. */
552
553 static const char coloncolon[2] =
554 {':', ':'};
555
556 struct symbol *
557 parse_nested_classes_for_hpacc (char *name, int len, char **token,
558 int *class_prefix, char **argptr)
559 {
560 /* Comment below comes from decode_line_1 which has very similar
561 code, which is called for "break" command parsing. */
562
563 /* We have what looks like a class or namespace
564 scope specification (A::B), possibly with many
565 levels of namespaces or classes (A::B::C::D).
566
567 Some versions of the HP ANSI C++ compiler (as also possibly
568 other compilers) generate class/function/member names with
569 embedded double-colons if they are inside namespaces. To
570 handle this, we loop a few times, considering larger and
571 larger prefixes of the string as though they were single
572 symbols. So, if the initially supplied string is
573 A::B::C::D::foo, we have to look up "A", then "A::B",
574 then "A::B::C", then "A::B::C::D", and finally
575 "A::B::C::D::foo" as single, monolithic symbols, because
576 A, B, C or D may be namespaces.
577
578 Note that namespaces can nest only inside other
579 namespaces, and not inside classes. So we need only
580 consider *prefixes* of the string; there is no need to look up
581 "B::C" separately as a symbol in the previous example. */
582
583 char *p;
584 char *start, *end;
585 char *prefix = NULL;
586 char *tmp;
587 struct symbol *sym_class = NULL;
588 struct symbol *sym_var = NULL;
589 struct type *t;
590 int prefix_len = 0;
591 int done = 0;
592 char *q;
593
594 /* Check for HP-compiled executable -- in other cases
595 return NULL, and caller must default to standard GDB
596 behaviour. */
597
598 if (!deprecated_hp_som_som_object_present)
599 return (struct symbol *) NULL;
600
601 p = name;
602
603 /* Skip over whitespace and possible global "::" */
604 while (*p && (*p == ' ' || *p == '\t'))
605 p++;
606 if (p[0] == ':' && p[1] == ':')
607 p += 2;
608 while (*p && (*p == ' ' || *p == '\t'))
609 p++;
610
611 while (1)
612 {
613 /* Get to the end of the next namespace or class spec. */
614 /* If we're looking at some non-token, fail immediately */
615 start = p;
616 if (!(isalpha (*p) || *p == '$' || *p == '_'))
617 return (struct symbol *) NULL;
618 p++;
619 while (*p && (isalnum (*p) || *p == '$' || *p == '_'))
620 p++;
621
622 if (*p == '<')
623 {
624 /* If we have the start of a template specification,
625 scan right ahead to its end */
626 q = find_template_name_end (p);
627 if (q)
628 p = q;
629 }
630
631 end = p;
632
633 /* Skip over "::" and whitespace for next time around */
634 while (*p && (*p == ' ' || *p == '\t'))
635 p++;
636 if (p[0] == ':' && p[1] == ':')
637 p += 2;
638 while (*p && (*p == ' ' || *p == '\t'))
639 p++;
640
641 /* Done with tokens? */
642 if (!*p || !(isalpha (*p) || *p == '$' || *p == '_'))
643 done = 1;
644
645 tmp = (char *) alloca (prefix_len + end - start + 3);
646 if (prefix)
647 {
648 memcpy (tmp, prefix, prefix_len);
649 memcpy (tmp + prefix_len, coloncolon, 2);
650 memcpy (tmp + prefix_len + 2, start, end - start);
651 tmp[prefix_len + 2 + end - start] = '\000';
652 }
653 else
654 {
655 memcpy (tmp, start, end - start);
656 tmp[end - start] = '\000';
657 }
658
659 prefix = tmp;
660 prefix_len = strlen (prefix);
661
662 /* See if the prefix we have now is something we know about */
663
664 if (!done)
665 {
666 /* More tokens to process, so this must be a class/namespace */
667 sym_class = lookup_symbol (prefix, 0, STRUCT_DOMAIN,
668 0, (struct symtab **) NULL);
669 }
670 else
671 {
672 /* No more tokens, so try as a variable first */
673 sym_var = lookup_symbol (prefix, 0, VAR_DOMAIN,
674 0, (struct symtab **) NULL);
675 /* If failed, try as class/namespace */
676 if (!sym_var)
677 sym_class = lookup_symbol (prefix, 0, STRUCT_DOMAIN,
678 0, (struct symtab **) NULL);
679 }
680
681 if (sym_var ||
682 (sym_class &&
683 (t = check_typedef (SYMBOL_TYPE (sym_class)),
684 (TYPE_CODE (t) == TYPE_CODE_STRUCT
685 || TYPE_CODE (t) == TYPE_CODE_UNION))))
686 {
687 /* We found a valid token */
688 *token = (char *) xmalloc (prefix_len + 1);
689 memcpy (*token, prefix, prefix_len);
690 (*token)[prefix_len] = '\000';
691 break;
692 }
693
694 /* No variable or class/namespace found, no more tokens */
695 if (done)
696 return (struct symbol *) NULL;
697 }
698
699 /* Out of loop, so we must have found a valid token */
700 if (sym_var)
701 *class_prefix = 0;
702 else
703 *class_prefix = 1;
704
705 if (argptr)
706 *argptr = done ? p : end;
707
708 return sym_var ? sym_var : sym_class; /* found */
709 }
710
711 char *
712 find_template_name_end (char *p)
713 {
714 int depth = 1;
715 int just_seen_right = 0;
716 int just_seen_colon = 0;
717 int just_seen_space = 0;
718
719 if (!p || (*p != '<'))
720 return 0;
721
722 while (*++p)
723 {
724 switch (*p)
725 {
726 case '\'':
727 case '\"':
728 case '{':
729 case '}':
730 /* In future, may want to allow these?? */
731 return 0;
732 case '<':
733 depth++; /* start nested template */
734 if (just_seen_colon || just_seen_right || just_seen_space)
735 return 0; /* but not after : or :: or > or space */
736 break;
737 case '>':
738 if (just_seen_colon || just_seen_right)
739 return 0; /* end a (nested?) template */
740 just_seen_right = 1; /* but not after : or :: */
741 if (--depth == 0) /* also disallow >>, insist on > > */
742 return ++p; /* if outermost ended, return */
743 break;
744 case ':':
745 if (just_seen_space || (just_seen_colon > 1))
746 return 0; /* nested class spec coming up */
747 just_seen_colon++; /* we allow :: but not :::: */
748 break;
749 case ' ':
750 break;
751 default:
752 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
753 (*p >= 'A' && *p <= 'Z') ||
754 (*p >= '0' && *p <= '9') ||
755 (*p == '_') || (*p == ',') || /* commas for template args */
756 (*p == '&') || (*p == '*') || /* pointer and ref types */
757 (*p == '(') || (*p == ')') || /* function types */
758 (*p == '[') || (*p == ']'))) /* array types */
759 return 0;
760 }
761 if (*p != ' ')
762 just_seen_space = 0;
763 if (*p != ':')
764 just_seen_colon = 0;
765 if (*p != '>')
766 just_seen_right = 0;
767 }
768 return 0;
769 }
770 \f
771
772
773 /* Return a null-terminated temporary copy of the name
774 of a string token. */
775
776 char *
777 copy_name (struct stoken token)
778 {
779 /* Make sure there's enough space for the token. */
780 if (namecopy_size < token.length + 1)
781 {
782 namecopy_size = token.length + 1;
783 namecopy = xrealloc (namecopy, token.length + 1);
784 }
785
786 memcpy (namecopy, token.ptr, token.length);
787 namecopy[token.length] = 0;
788
789 return namecopy;
790 }
791 \f
792 /* Reverse an expression from suffix form (in which it is constructed)
793 to prefix form (in which we can conveniently print or execute it). */
794
795 static void
796 prefixify_expression (struct expression *expr)
797 {
798 int len =
799 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
800 struct expression *temp;
801 int inpos = expr->nelts, outpos = 0;
802
803 temp = (struct expression *) alloca (len);
804
805 /* Copy the original expression into temp. */
806 memcpy (temp, expr, len);
807
808 prefixify_subexp (temp, expr, inpos, outpos);
809 }
810
811 /* Return the number of exp_elements in the postfix subexpression
812 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
813
814 int
815 length_of_subexp (struct expression *expr, int endpos)
816 {
817 int oplen, args, i;
818
819 operator_length (expr, endpos, &oplen, &args);
820
821 while (args > 0)
822 {
823 oplen += length_of_subexp (expr, endpos - oplen);
824 args--;
825 }
826
827 return oplen;
828 }
829
830 /* Sets *OPLENP to the length of the operator whose (last) index is
831 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
832 operator takes. */
833
834 void
835 operator_length (struct expression *expr, int endpos, int *oplenp, int *argsp)
836 {
837 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
838 oplenp, argsp);
839 }
840
841 /* Default value for operator_length in exp_descriptor vectors. */
842
843 void
844 operator_length_standard (struct expression *expr, int endpos,
845 int *oplenp, int *argsp)
846 {
847 int oplen = 1;
848 int args = 0;
849 enum f90_range_type range_type;
850 int i;
851
852 if (endpos < 1)
853 error (_("?error in operator_length_standard"));
854
855 i = (int) expr->elts[endpos - 1].opcode;
856
857 switch (i)
858 {
859 /* C++ */
860 case OP_SCOPE:
861 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
862 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
863 break;
864
865 case OP_LONG:
866 case OP_DOUBLE:
867 case OP_VAR_VALUE:
868 oplen = 4;
869 break;
870
871 case OP_TYPE:
872 case OP_BOOL:
873 case OP_LAST:
874 case OP_REGISTER:
875 case OP_INTERNALVAR:
876 oplen = 3;
877 break;
878
879 case OP_COMPLEX:
880 oplen = 1;
881 args = 2;
882 break;
883
884 case OP_FUNCALL:
885 case OP_F77_UNDETERMINED_ARGLIST:
886 oplen = 3;
887 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
888 break;
889
890 case OP_OBJC_MSGCALL: /* Objective C message (method) call */
891 oplen = 4;
892 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
893 break;
894
895 case UNOP_MAX:
896 case UNOP_MIN:
897 oplen = 3;
898 break;
899
900 case BINOP_VAL:
901 case UNOP_CAST:
902 case UNOP_MEMVAL:
903 oplen = 3;
904 args = 1;
905 break;
906
907 case UNOP_ABS:
908 case UNOP_CAP:
909 case UNOP_CHR:
910 case UNOP_FLOAT:
911 case UNOP_HIGH:
912 case UNOP_ODD:
913 case UNOP_ORD:
914 case UNOP_TRUNC:
915 oplen = 1;
916 args = 1;
917 break;
918
919 case OP_LABELED:
920 case STRUCTOP_STRUCT:
921 case STRUCTOP_PTR:
922 args = 1;
923 /* fall through */
924 case OP_M2_STRING:
925 case OP_STRING:
926 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant */
927 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op */
928 case OP_NAME:
929 case OP_EXPRSTRING:
930 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
931 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
932 break;
933
934 case OP_BITSTRING:
935 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
936 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
937 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
938 break;
939
940 case OP_ARRAY:
941 oplen = 4;
942 args = longest_to_int (expr->elts[endpos - 2].longconst);
943 args -= longest_to_int (expr->elts[endpos - 3].longconst);
944 args += 1;
945 break;
946
947 case TERNOP_COND:
948 case TERNOP_SLICE:
949 case TERNOP_SLICE_COUNT:
950 args = 3;
951 break;
952
953 /* Modula-2 */
954 case MULTI_SUBSCRIPT:
955 oplen = 3;
956 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
957 break;
958
959 case BINOP_ASSIGN_MODIFY:
960 oplen = 3;
961 args = 2;
962 break;
963
964 /* C++ */
965 case OP_THIS:
966 case OP_OBJC_SELF:
967 oplen = 2;
968 break;
969
970 case OP_F90_RANGE:
971 oplen = 3;
972
973 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
974 switch (range_type)
975 {
976 case LOW_BOUND_DEFAULT:
977 case HIGH_BOUND_DEFAULT:
978 args = 1;
979 break;
980 case BOTH_BOUND_DEFAULT:
981 args = 0;
982 break;
983 case NONE_BOUND_DEFAULT:
984 args = 2;
985 break;
986 }
987
988 break;
989
990 default:
991 args = 1 + (i < (int) BINOP_END);
992 }
993
994 *oplenp = oplen;
995 *argsp = args;
996 }
997
998 /* Copy the subexpression ending just before index INEND in INEXPR
999 into OUTEXPR, starting at index OUTBEG.
1000 In the process, convert it from suffix to prefix form. */
1001
1002 static void
1003 prefixify_subexp (struct expression *inexpr,
1004 struct expression *outexpr, int inend, int outbeg)
1005 {
1006 int oplen;
1007 int args;
1008 int i;
1009 int *arglens;
1010 enum exp_opcode opcode;
1011
1012 operator_length (inexpr, inend, &oplen, &args);
1013
1014 /* Copy the final operator itself, from the end of the input
1015 to the beginning of the output. */
1016 inend -= oplen;
1017 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1018 EXP_ELEM_TO_BYTES (oplen));
1019 outbeg += oplen;
1020
1021 /* Find the lengths of the arg subexpressions. */
1022 arglens = (int *) alloca (args * sizeof (int));
1023 for (i = args - 1; i >= 0; i--)
1024 {
1025 oplen = length_of_subexp (inexpr, inend);
1026 arglens[i] = oplen;
1027 inend -= oplen;
1028 }
1029
1030 /* Now copy each subexpression, preserving the order of
1031 the subexpressions, but prefixifying each one.
1032 In this loop, inend starts at the beginning of
1033 the expression this level is working on
1034 and marches forward over the arguments.
1035 outbeg does similarly in the output. */
1036 for (i = 0; i < args; i++)
1037 {
1038 oplen = arglens[i];
1039 inend += oplen;
1040 prefixify_subexp (inexpr, outexpr, inend, outbeg);
1041 outbeg += oplen;
1042 }
1043 }
1044 \f
1045 /* This page contains the two entry points to this file. */
1046
1047 /* Read an expression from the string *STRINGPTR points to,
1048 parse it, and return a pointer to a struct expression that we malloc.
1049 Use block BLOCK as the lexical context for variable names;
1050 if BLOCK is zero, use the block of the selected stack frame.
1051 Meanwhile, advance *STRINGPTR to point after the expression,
1052 at the first nonwhite character that is not part of the expression
1053 (possibly a null character).
1054
1055 If COMMA is nonzero, stop if a comma is reached. */
1056
1057 struct expression *
1058 parse_exp_1 (char **stringptr, struct block *block, int comma)
1059 {
1060 return parse_exp_in_context (stringptr, block, comma, 0);
1061 }
1062
1063 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1064 no value is expected from the expression. */
1065
1066 static struct expression *
1067 parse_exp_in_context (char **stringptr, struct block *block, int comma,
1068 int void_context_p)
1069 {
1070 struct cleanup *old_chain;
1071
1072 lexptr = *stringptr;
1073 prev_lexptr = NULL;
1074
1075 paren_depth = 0;
1076 type_stack_depth = 0;
1077
1078 comma_terminates = comma;
1079
1080 if (lexptr == 0 || *lexptr == 0)
1081 error_no_arg (_("expression to compute"));
1082
1083 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1084 funcall_chain = 0;
1085
1086 /* If no context specified, try using the current frame, if any. */
1087
1088 if (!block)
1089 block = get_selected_block (&expression_context_pc);
1090
1091 /* Fall back to using the current source static context, if any. */
1092
1093 if (!block)
1094 {
1095 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1096 if (cursal.symtab)
1097 block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1098 }
1099
1100 /* Save the context, if specified by caller, or found above. */
1101
1102 if (block)
1103 {
1104 expression_context_block = block;
1105 expression_context_pc = BLOCK_START (block);
1106 }
1107
1108 expout_size = 10;
1109 expout_ptr = 0;
1110 expout = (struct expression *)
1111 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
1112 expout->language_defn = current_language;
1113 make_cleanup (free_current_contents, &expout);
1114
1115 if (current_language->la_parser ())
1116 current_language->la_error (NULL);
1117
1118 discard_cleanups (old_chain);
1119
1120 /* Record the actual number of expression elements, and then
1121 reallocate the expression memory so that we free up any
1122 excess elements. */
1123
1124 expout->nelts = expout_ptr;
1125 expout = (struct expression *)
1126 xrealloc ((char *) expout,
1127 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
1128
1129 /* Convert expression from postfix form as generated by yacc
1130 parser, to a prefix form. */
1131
1132 if (expressiondebug)
1133 dump_raw_expression (expout, gdb_stdlog,
1134 "before conversion to prefix form");
1135
1136 prefixify_expression (expout);
1137
1138 current_language->la_post_parser (&expout, void_context_p);
1139
1140 if (expressiondebug)
1141 dump_prefix_expression (expout, gdb_stdlog);
1142
1143 *stringptr = lexptr;
1144 return expout;
1145 }
1146
1147 /* Parse STRING as an expression, and complain if this fails
1148 to use up all of the contents of STRING. */
1149
1150 struct expression *
1151 parse_expression (char *string)
1152 {
1153 struct expression *exp;
1154 exp = parse_exp_1 (&string, 0, 0);
1155 if (*string)
1156 error (_("Junk after end of expression."));
1157 return exp;
1158 }
1159
1160
1161 /* As for parse_expression, except that if VOID_CONTEXT_P, then
1162 no value is expected from the expression. */
1163
1164 struct expression *
1165 parse_expression_in_context (char *string, int void_context_p)
1166 {
1167 struct expression *exp;
1168 exp = parse_exp_in_context (&string, 0, 0, void_context_p);
1169 if (*string != '\000')
1170 error (_("Junk after end of expression."));
1171 return exp;
1172 }
1173
1174 /* A post-parser that does nothing */
1175
1176 void
1177 null_post_parser (struct expression **exp, int void_context_p)
1178 {
1179 }
1180 \f
1181 /* Stuff for maintaining a stack of types. Currently just used by C, but
1182 probably useful for any language which declares its types "backwards". */
1183
1184 static void
1185 check_type_stack_depth (void)
1186 {
1187 if (type_stack_depth == type_stack_size)
1188 {
1189 type_stack_size *= 2;
1190 type_stack = (union type_stack_elt *)
1191 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1192 }
1193 }
1194
1195 void
1196 push_type (enum type_pieces tp)
1197 {
1198 check_type_stack_depth ();
1199 type_stack[type_stack_depth++].piece = tp;
1200 }
1201
1202 void
1203 push_type_int (int n)
1204 {
1205 check_type_stack_depth ();
1206 type_stack[type_stack_depth++].int_val = n;
1207 }
1208
1209 void
1210 push_type_address_space (char *string)
1211 {
1212 push_type_int (address_space_name_to_int (string));
1213 }
1214
1215 enum type_pieces
1216 pop_type (void)
1217 {
1218 if (type_stack_depth)
1219 return type_stack[--type_stack_depth].piece;
1220 return tp_end;
1221 }
1222
1223 int
1224 pop_type_int (void)
1225 {
1226 if (type_stack_depth)
1227 return type_stack[--type_stack_depth].int_val;
1228 /* "Can't happen". */
1229 return 0;
1230 }
1231
1232 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1233 as modified by all the stuff on the stack. */
1234 struct type *
1235 follow_types (struct type *follow_type)
1236 {
1237 int done = 0;
1238 int make_const = 0;
1239 int make_volatile = 0;
1240 int make_addr_space = 0;
1241 int array_size;
1242 struct type *range_type;
1243
1244 while (!done)
1245 switch (pop_type ())
1246 {
1247 case tp_end:
1248 done = 1;
1249 if (make_const)
1250 follow_type = make_cv_type (make_const,
1251 TYPE_VOLATILE (follow_type),
1252 follow_type, 0);
1253 if (make_volatile)
1254 follow_type = make_cv_type (TYPE_CONST (follow_type),
1255 make_volatile,
1256 follow_type, 0);
1257 if (make_addr_space)
1258 follow_type = make_type_with_address_space (follow_type,
1259 make_addr_space);
1260 make_const = make_volatile = 0;
1261 make_addr_space = 0;
1262 break;
1263 case tp_const:
1264 make_const = 1;
1265 break;
1266 case tp_volatile:
1267 make_volatile = 1;
1268 break;
1269 case tp_space_identifier:
1270 make_addr_space = pop_type_int ();
1271 break;
1272 case tp_pointer:
1273 follow_type = lookup_pointer_type (follow_type);
1274 if (make_const)
1275 follow_type = make_cv_type (make_const,
1276 TYPE_VOLATILE (follow_type),
1277 follow_type, 0);
1278 if (make_volatile)
1279 follow_type = make_cv_type (TYPE_CONST (follow_type),
1280 make_volatile,
1281 follow_type, 0);
1282 if (make_addr_space)
1283 follow_type = make_type_with_address_space (follow_type,
1284 make_addr_space);
1285 make_const = make_volatile = 0;
1286 make_addr_space = 0;
1287 break;
1288 case tp_reference:
1289 follow_type = lookup_reference_type (follow_type);
1290 if (make_const)
1291 follow_type = make_cv_type (make_const,
1292 TYPE_VOLATILE (follow_type),
1293 follow_type, 0);
1294 if (make_volatile)
1295 follow_type = make_cv_type (TYPE_CONST (follow_type),
1296 make_volatile,
1297 follow_type, 0);
1298 if (make_addr_space)
1299 follow_type = make_type_with_address_space (follow_type,
1300 make_addr_space);
1301 make_const = make_volatile = 0;
1302 make_addr_space = 0;
1303 break;
1304 case tp_array:
1305 array_size = pop_type_int ();
1306 /* FIXME-type-allocation: need a way to free this type when we are
1307 done with it. */
1308 range_type =
1309 create_range_type ((struct type *) NULL,
1310 builtin_type_int, 0,
1311 array_size >= 0 ? array_size - 1 : 0);
1312 follow_type =
1313 create_array_type ((struct type *) NULL,
1314 follow_type, range_type);
1315 if (array_size < 0)
1316 TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type)
1317 = BOUND_CANNOT_BE_DETERMINED;
1318 break;
1319 case tp_function:
1320 /* FIXME-type-allocation: need a way to free this type when we are
1321 done with it. */
1322 follow_type = lookup_function_type (follow_type);
1323 break;
1324 }
1325 return follow_type;
1326 }
1327 \f
1328 static void build_parse (void);
1329 static void
1330 build_parse (void)
1331 {
1332 int i;
1333
1334 msym_text_symbol_type =
1335 init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
1336 TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
1337 msym_data_symbol_type =
1338 init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
1339 "<data variable, no debug info>", NULL);
1340 msym_unknown_symbol_type =
1341 init_type (TYPE_CODE_INT, 1, 0,
1342 "<variable (not text or data), no debug info>",
1343 NULL);
1344 }
1345
1346 /* This function avoids direct calls to fprintf
1347 in the parser generated debug code. */
1348 void
1349 parser_fprintf (FILE *x, const char *y, ...)
1350 {
1351 va_list args;
1352 va_start (args, y);
1353 if (x == stderr)
1354 vfprintf_unfiltered (gdb_stderr, y, args);
1355 else
1356 {
1357 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1358 vfprintf_unfiltered (gdb_stderr, y, args);
1359 }
1360 va_end (args);
1361 }
1362
1363 void
1364 _initialize_parse (void)
1365 {
1366 type_stack_size = 80;
1367 type_stack_depth = 0;
1368 type_stack = (union type_stack_elt *)
1369 xmalloc (type_stack_size * sizeof (*type_stack));
1370
1371 build_parse ();
1372
1373 /* FIXME - For the moment, handle types by swapping them in and out.
1374 Should be using the per-architecture data-pointer and a large
1375 struct. */
1376 DEPRECATED_REGISTER_GDBARCH_SWAP (msym_text_symbol_type);
1377 DEPRECATED_REGISTER_GDBARCH_SWAP (msym_data_symbol_type);
1378 DEPRECATED_REGISTER_GDBARCH_SWAP (msym_unknown_symbol_type);
1379 deprecated_register_gdbarch_swap (NULL, 0, build_parse);
1380
1381 add_setshow_zinteger_cmd ("expression", class_maintenance,
1382 &expressiondebug, _("\
1383 Set expression debugging."), _("\
1384 Show expression debugging."), _("\
1385 When non-zero, the internal representation of expressions will be printed."),
1386 NULL,
1387 show_expressiondebug,
1388 &setdebuglist, &showdebuglist);
1389 }
This page took 0.056079 seconds and 3 git commands to generate.