2012-07-05 Hui Zhu <hui_zhu@mentor.com>
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986, 1989-2001, 2004-2005, 2007-2012 Free Software
4 Foundation, Inc.
5
6 Modified from expread.y by the Department of Computer Science at the
7 State University of New York at Buffalo, 1991.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 /* Parse an expression from text in a string,
25 and return the result as a struct expression pointer.
26 That structure contains arithmetic operations in reverse polish,
27 with constants represented by operations that are followed by special data.
28 See expression.h for the details of the format.
29 What is important here is that it can be built up sequentially
30 during the process of parsing; the lower levels of the tree always
31 come first in the result. */
32
33 #include "defs.h"
34 #include <ctype.h>
35 #include "arch-utils.h"
36 #include "gdb_string.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "frame.h"
40 #include "expression.h"
41 #include "value.h"
42 #include "command.h"
43 #include "language.h"
44 #include "f-lang.h"
45 #include "parser-defs.h"
46 #include "gdbcmd.h"
47 #include "symfile.h" /* for overlay functions */
48 #include "inferior.h"
49 #include "doublest.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "source.h"
53 #include "objfiles.h"
54 #include "exceptions.h"
55 #include "user-regs.h"
56
57 /* Standard set of definitions for printing, dumping, prefixifying,
58 * and evaluating expressions. */
59
60 const struct exp_descriptor exp_descriptor_standard =
61 {
62 print_subexp_standard,
63 operator_length_standard,
64 operator_check_standard,
65 op_name_standard,
66 dump_subexp_body_standard,
67 evaluate_subexp_standard
68 };
69 \f
70 /* Global variables declared in parser-defs.h (and commented there). */
71 struct expression *expout;
72 int expout_size;
73 int expout_ptr;
74 struct block *expression_context_block;
75 CORE_ADDR expression_context_pc;
76 struct block *innermost_block;
77 int arglist_len;
78 union type_stack_elt *type_stack;
79 int type_stack_depth, type_stack_size;
80 char *lexptr;
81 char *prev_lexptr;
82 int paren_depth;
83 int comma_terminates;
84
85 /* True if parsing an expression to find a field reference. This is
86 only used by completion. */
87 int in_parse_field;
88
89 /* The index of the last struct expression directly before a '.' or
90 '->'. This is set when parsing and is only used when completing a
91 field name. It is -1 if no dereference operation was found. */
92 static int expout_last_struct = -1;
93 \f
94 static int expressiondebug = 0;
95 static void
96 show_expressiondebug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
100 }
101
102
103 /* Non-zero if an expression parser should set yydebug. */
104 int parser_debug;
105
106 static void
107 show_parserdebug (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109 {
110 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
111 }
112
113
114 static void free_funcalls (void *ignore);
115
116 static int prefixify_subexp (struct expression *, struct expression *, int,
117 int);
118
119 static struct expression *parse_exp_in_context (char **, CORE_ADDR,
120 struct block *, int,
121 int, int *);
122
123 void _initialize_parse (void);
124
125 /* Data structure for saving values of arglist_len for function calls whose
126 arguments contain other function calls. */
127
128 struct funcall
129 {
130 struct funcall *next;
131 int arglist_len;
132 };
133
134 static struct funcall *funcall_chain;
135
136 /* Begin counting arguments for a function call,
137 saving the data about any containing call. */
138
139 void
140 start_arglist (void)
141 {
142 struct funcall *new;
143
144 new = (struct funcall *) xmalloc (sizeof (struct funcall));
145 new->next = funcall_chain;
146 new->arglist_len = arglist_len;
147 arglist_len = 0;
148 funcall_chain = new;
149 }
150
151 /* Return the number of arguments in a function call just terminated,
152 and restore the data for the containing function call. */
153
154 int
155 end_arglist (void)
156 {
157 int val = arglist_len;
158 struct funcall *call = funcall_chain;
159
160 funcall_chain = call->next;
161 arglist_len = call->arglist_len;
162 xfree (call);
163 return val;
164 }
165
166 /* Free everything in the funcall chain.
167 Used when there is an error inside parsing. */
168
169 static void
170 free_funcalls (void *ignore)
171 {
172 struct funcall *call, *next;
173
174 for (call = funcall_chain; call; call = next)
175 {
176 next = call->next;
177 xfree (call);
178 }
179 }
180 \f
181 /* This page contains the functions for adding data to the struct expression
182 being constructed. */
183
184 /* See definition in parser-defs.h. */
185
186 void
187 initialize_expout (int initial_size, const struct language_defn *lang,
188 struct gdbarch *gdbarch)
189 {
190 expout_size = initial_size;
191 expout_ptr = 0;
192 expout = xmalloc (sizeof (struct expression)
193 + EXP_ELEM_TO_BYTES (expout_size));
194 expout->language_defn = lang;
195 expout->gdbarch = gdbarch;
196 }
197
198 /* See definition in parser-defs.h. */
199
200 void
201 reallocate_expout (void)
202 {
203 /* Record the actual number of expression elements, and then
204 reallocate the expression memory so that we free up any
205 excess elements. */
206
207 expout->nelts = expout_ptr;
208 expout = xrealloc ((char *) expout,
209 sizeof (struct expression)
210 + EXP_ELEM_TO_BYTES (expout_ptr));
211 }
212
213 /* Add one element to the end of the expression. */
214
215 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
216 a register through here. */
217
218 static void
219 write_exp_elt (const union exp_element *expelt)
220 {
221 if (expout_ptr >= expout_size)
222 {
223 expout_size *= 2;
224 expout = (struct expression *)
225 xrealloc ((char *) expout, sizeof (struct expression)
226 + EXP_ELEM_TO_BYTES (expout_size));
227 }
228 expout->elts[expout_ptr++] = *expelt;
229 }
230
231 void
232 write_exp_elt_opcode (enum exp_opcode expelt)
233 {
234 union exp_element tmp;
235
236 memset (&tmp, 0, sizeof (union exp_element));
237 tmp.opcode = expelt;
238 write_exp_elt (&tmp);
239 }
240
241 void
242 write_exp_elt_sym (struct symbol *expelt)
243 {
244 union exp_element tmp;
245
246 memset (&tmp, 0, sizeof (union exp_element));
247 tmp.symbol = expelt;
248 write_exp_elt (&tmp);
249 }
250
251 void
252 write_exp_elt_block (struct block *b)
253 {
254 union exp_element tmp;
255
256 memset (&tmp, 0, sizeof (union exp_element));
257 tmp.block = b;
258 write_exp_elt (&tmp);
259 }
260
261 void
262 write_exp_elt_objfile (struct objfile *objfile)
263 {
264 union exp_element tmp;
265
266 memset (&tmp, 0, sizeof (union exp_element));
267 tmp.objfile = objfile;
268 write_exp_elt (&tmp);
269 }
270
271 void
272 write_exp_elt_longcst (LONGEST expelt)
273 {
274 union exp_element tmp;
275
276 memset (&tmp, 0, sizeof (union exp_element));
277 tmp.longconst = expelt;
278 write_exp_elt (&tmp);
279 }
280
281 void
282 write_exp_elt_dblcst (DOUBLEST expelt)
283 {
284 union exp_element tmp;
285
286 memset (&tmp, 0, sizeof (union exp_element));
287 tmp.doubleconst = expelt;
288 write_exp_elt (&tmp);
289 }
290
291 void
292 write_exp_elt_decfloatcst (gdb_byte expelt[16])
293 {
294 union exp_element tmp;
295 int index;
296
297 for (index = 0; index < 16; index++)
298 tmp.decfloatconst[index] = expelt[index];
299
300 write_exp_elt (&tmp);
301 }
302
303 void
304 write_exp_elt_type (struct type *expelt)
305 {
306 union exp_element tmp;
307
308 memset (&tmp, 0, sizeof (union exp_element));
309 tmp.type = expelt;
310 write_exp_elt (&tmp);
311 }
312
313 void
314 write_exp_elt_intern (struct internalvar *expelt)
315 {
316 union exp_element tmp;
317
318 memset (&tmp, 0, sizeof (union exp_element));
319 tmp.internalvar = expelt;
320 write_exp_elt (&tmp);
321 }
322
323 /* Add a string constant to the end of the expression.
324
325 String constants are stored by first writing an expression element
326 that contains the length of the string, then stuffing the string
327 constant itself into however many expression elements are needed
328 to hold it, and then writing another expression element that contains
329 the length of the string. I.e. an expression element at each end of
330 the string records the string length, so you can skip over the
331 expression elements containing the actual string bytes from either
332 end of the string. Note that this also allows gdb to handle
333 strings with embedded null bytes, as is required for some languages.
334
335 Don't be fooled by the fact that the string is null byte terminated,
336 this is strictly for the convenience of debugging gdb itself.
337 Gdb does not depend up the string being null terminated, since the
338 actual length is recorded in expression elements at each end of the
339 string. The null byte is taken into consideration when computing how
340 many expression elements are required to hold the string constant, of
341 course. */
342
343
344 void
345 write_exp_string (struct stoken str)
346 {
347 int len = str.length;
348 int lenelt;
349 char *strdata;
350
351 /* Compute the number of expression elements required to hold the string
352 (including a null byte terminator), along with one expression element
353 at each end to record the actual string length (not including the
354 null byte terminator). */
355
356 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
357
358 /* Ensure that we have enough available expression elements to store
359 everything. */
360
361 if ((expout_ptr + lenelt) >= expout_size)
362 {
363 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
364 expout = (struct expression *)
365 xrealloc ((char *) expout, (sizeof (struct expression)
366 + EXP_ELEM_TO_BYTES (expout_size)));
367 }
368
369 /* Write the leading length expression element (which advances the current
370 expression element index), then write the string constant followed by a
371 terminating null byte, and then write the trailing length expression
372 element. */
373
374 write_exp_elt_longcst ((LONGEST) len);
375 strdata = (char *) &expout->elts[expout_ptr];
376 memcpy (strdata, str.ptr, len);
377 *(strdata + len) = '\0';
378 expout_ptr += lenelt - 2;
379 write_exp_elt_longcst ((LONGEST) len);
380 }
381
382 /* Add a vector of string constants to the end of the expression.
383
384 This adds an OP_STRING operation, but encodes the contents
385 differently from write_exp_string. The language is expected to
386 handle evaluation of this expression itself.
387
388 After the usual OP_STRING header, TYPE is written into the
389 expression as a long constant. The interpretation of this field is
390 up to the language evaluator.
391
392 Next, each string in VEC is written. The length is written as a
393 long constant, followed by the contents of the string. */
394
395 void
396 write_exp_string_vector (int type, struct stoken_vector *vec)
397 {
398 int i, n_slots, len;
399
400 /* Compute the size. We compute the size in number of slots to
401 avoid issues with string padding. */
402 n_slots = 0;
403 for (i = 0; i < vec->len; ++i)
404 {
405 /* One slot for the length of this element, plus the number of
406 slots needed for this string. */
407 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
408 }
409
410 /* One more slot for the type of the string. */
411 ++n_slots;
412
413 /* Now compute a phony string length. */
414 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
415
416 n_slots += 4;
417 if ((expout_ptr + n_slots) >= expout_size)
418 {
419 expout_size = max (expout_size * 2, expout_ptr + n_slots + 10);
420 expout = (struct expression *)
421 xrealloc ((char *) expout, (sizeof (struct expression)
422 + EXP_ELEM_TO_BYTES (expout_size)));
423 }
424
425 write_exp_elt_opcode (OP_STRING);
426 write_exp_elt_longcst (len);
427 write_exp_elt_longcst (type);
428
429 for (i = 0; i < vec->len; ++i)
430 {
431 write_exp_elt_longcst (vec->tokens[i].length);
432 memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr,
433 vec->tokens[i].length);
434 expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
435 }
436
437 write_exp_elt_longcst (len);
438 write_exp_elt_opcode (OP_STRING);
439 }
440
441 /* Add a bitstring constant to the end of the expression.
442
443 Bitstring constants are stored by first writing an expression element
444 that contains the length of the bitstring (in bits), then stuffing the
445 bitstring constant itself into however many expression elements are
446 needed to hold it, and then writing another expression element that
447 contains the length of the bitstring. I.e. an expression element at
448 each end of the bitstring records the bitstring length, so you can skip
449 over the expression elements containing the actual bitstring bytes from
450 either end of the bitstring. */
451
452 void
453 write_exp_bitstring (struct stoken str)
454 {
455 int bits = str.length; /* length in bits */
456 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
457 int lenelt;
458 char *strdata;
459
460 /* Compute the number of expression elements required to hold the bitstring,
461 along with one expression element at each end to record the actual
462 bitstring length in bits. */
463
464 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
465
466 /* Ensure that we have enough available expression elements to store
467 everything. */
468
469 if ((expout_ptr + lenelt) >= expout_size)
470 {
471 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
472 expout = (struct expression *)
473 xrealloc ((char *) expout, (sizeof (struct expression)
474 + EXP_ELEM_TO_BYTES (expout_size)));
475 }
476
477 /* Write the leading length expression element (which advances the current
478 expression element index), then write the bitstring constant, and then
479 write the trailing length expression element. */
480
481 write_exp_elt_longcst ((LONGEST) bits);
482 strdata = (char *) &expout->elts[expout_ptr];
483 memcpy (strdata, str.ptr, len);
484 expout_ptr += lenelt - 2;
485 write_exp_elt_longcst ((LONGEST) bits);
486 }
487
488 /* Add the appropriate elements for a minimal symbol to the end of
489 the expression. */
490
491 void
492 write_exp_msymbol (struct minimal_symbol *msymbol)
493 {
494 struct objfile *objfile = msymbol_objfile (msymbol);
495 struct gdbarch *gdbarch = get_objfile_arch (objfile);
496
497 CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol);
498 struct obj_section *section = SYMBOL_OBJ_SECTION (msymbol);
499 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
500 CORE_ADDR pc;
501
502 /* The minimal symbol might point to a function descriptor;
503 resolve it to the actual code address instead. */
504 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
505 if (pc != addr)
506 {
507 struct minimal_symbol *ifunc_msym = lookup_minimal_symbol_by_pc (pc);
508
509 /* In this case, assume we have a code symbol instead of
510 a data symbol. */
511
512 if (ifunc_msym != NULL && MSYMBOL_TYPE (ifunc_msym) == mst_text_gnu_ifunc
513 && SYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
514 {
515 /* A function descriptor has been resolved but PC is still in the
516 STT_GNU_IFUNC resolver body (such as because inferior does not
517 run to be able to call it). */
518
519 type = mst_text_gnu_ifunc;
520 }
521 else
522 type = mst_text;
523 section = NULL;
524 addr = pc;
525 }
526
527 if (overlay_debugging)
528 addr = symbol_overlayed_address (addr, section);
529
530 write_exp_elt_opcode (OP_LONG);
531 /* Let's make the type big enough to hold a 64-bit address. */
532 write_exp_elt_type (objfile_type (objfile)->builtin_core_addr);
533 write_exp_elt_longcst ((LONGEST) addr);
534 write_exp_elt_opcode (OP_LONG);
535
536 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
537 {
538 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
539 write_exp_elt_objfile (objfile);
540 write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol);
541 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
542 return;
543 }
544
545 write_exp_elt_opcode (UNOP_MEMVAL);
546 switch (type)
547 {
548 case mst_text:
549 case mst_file_text:
550 case mst_solib_trampoline:
551 write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol);
552 break;
553
554 case mst_text_gnu_ifunc:
555 write_exp_elt_type (objfile_type (objfile)
556 ->nodebug_text_gnu_ifunc_symbol);
557 break;
558
559 case mst_data:
560 case mst_file_data:
561 case mst_bss:
562 case mst_file_bss:
563 write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol);
564 break;
565
566 case mst_slot_got_plt:
567 write_exp_elt_type (objfile_type (objfile)->nodebug_got_plt_symbol);
568 break;
569
570 default:
571 write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol);
572 break;
573 }
574 write_exp_elt_opcode (UNOP_MEMVAL);
575 }
576
577 /* Mark the current index as the starting location of a structure
578 expression. This is used when completing on field names. */
579
580 void
581 mark_struct_expression (void)
582 {
583 expout_last_struct = expout_ptr;
584 }
585
586 \f
587 /* Recognize tokens that start with '$'. These include:
588
589 $regname A native register name or a "standard
590 register name".
591
592 $variable A convenience variable with a name chosen
593 by the user.
594
595 $digits Value history with index <digits>, starting
596 from the first value which has index 1.
597
598 $$digits Value history with index <digits> relative
599 to the last value. I.e. $$0 is the last
600 value, $$1 is the one previous to that, $$2
601 is the one previous to $$1, etc.
602
603 $ | $0 | $$0 The last value in the value history.
604
605 $$ An abbreviation for the second to the last
606 value in the value history, I.e. $$1 */
607
608 void
609 write_dollar_variable (struct stoken str)
610 {
611 struct symbol *sym = NULL;
612 struct minimal_symbol *msym = NULL;
613 struct internalvar *isym = NULL;
614
615 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
616 and $$digits (equivalent to $<-digits> if you could type that). */
617
618 int negate = 0;
619 int i = 1;
620 /* Double dollar means negate the number and add -1 as well.
621 Thus $$ alone means -1. */
622 if (str.length >= 2 && str.ptr[1] == '$')
623 {
624 negate = 1;
625 i = 2;
626 }
627 if (i == str.length)
628 {
629 /* Just dollars (one or two). */
630 i = -negate;
631 goto handle_last;
632 }
633 /* Is the rest of the token digits? */
634 for (; i < str.length; i++)
635 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
636 break;
637 if (i == str.length)
638 {
639 i = atoi (str.ptr + 1 + negate);
640 if (negate)
641 i = -i;
642 goto handle_last;
643 }
644
645 /* Handle tokens that refer to machine registers:
646 $ followed by a register name. */
647 i = user_reg_map_name_to_regnum (parse_gdbarch,
648 str.ptr + 1, str.length - 1);
649 if (i >= 0)
650 goto handle_register;
651
652 /* Any names starting with $ are probably debugger internal variables. */
653
654 isym = lookup_only_internalvar (copy_name (str) + 1);
655 if (isym)
656 {
657 write_exp_elt_opcode (OP_INTERNALVAR);
658 write_exp_elt_intern (isym);
659 write_exp_elt_opcode (OP_INTERNALVAR);
660 return;
661 }
662
663 /* On some systems, such as HP-UX and hppa-linux, certain system routines
664 have names beginning with $ or $$. Check for those, first. */
665
666 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
667 VAR_DOMAIN, (int *) NULL);
668 if (sym)
669 {
670 write_exp_elt_opcode (OP_VAR_VALUE);
671 write_exp_elt_block (block_found); /* set by lookup_symbol */
672 write_exp_elt_sym (sym);
673 write_exp_elt_opcode (OP_VAR_VALUE);
674 return;
675 }
676 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
677 if (msym)
678 {
679 write_exp_msymbol (msym);
680 return;
681 }
682
683 /* Any other names are assumed to be debugger internal variables. */
684
685 write_exp_elt_opcode (OP_INTERNALVAR);
686 write_exp_elt_intern (create_internalvar (copy_name (str) + 1));
687 write_exp_elt_opcode (OP_INTERNALVAR);
688 return;
689 handle_last:
690 write_exp_elt_opcode (OP_LAST);
691 write_exp_elt_longcst ((LONGEST) i);
692 write_exp_elt_opcode (OP_LAST);
693 return;
694 handle_register:
695 write_exp_elt_opcode (OP_REGISTER);
696 str.length--;
697 str.ptr++;
698 write_exp_string (str);
699 write_exp_elt_opcode (OP_REGISTER);
700 return;
701 }
702
703
704 char *
705 find_template_name_end (char *p)
706 {
707 int depth = 1;
708 int just_seen_right = 0;
709 int just_seen_colon = 0;
710 int just_seen_space = 0;
711
712 if (!p || (*p != '<'))
713 return 0;
714
715 while (*++p)
716 {
717 switch (*p)
718 {
719 case '\'':
720 case '\"':
721 case '{':
722 case '}':
723 /* In future, may want to allow these?? */
724 return 0;
725 case '<':
726 depth++; /* start nested template */
727 if (just_seen_colon || just_seen_right || just_seen_space)
728 return 0; /* but not after : or :: or > or space */
729 break;
730 case '>':
731 if (just_seen_colon || just_seen_right)
732 return 0; /* end a (nested?) template */
733 just_seen_right = 1; /* but not after : or :: */
734 if (--depth == 0) /* also disallow >>, insist on > > */
735 return ++p; /* if outermost ended, return */
736 break;
737 case ':':
738 if (just_seen_space || (just_seen_colon > 1))
739 return 0; /* nested class spec coming up */
740 just_seen_colon++; /* we allow :: but not :::: */
741 break;
742 case ' ':
743 break;
744 default:
745 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
746 (*p >= 'A' && *p <= 'Z') ||
747 (*p >= '0' && *p <= '9') ||
748 (*p == '_') || (*p == ',') || /* commas for template args */
749 (*p == '&') || (*p == '*') || /* pointer and ref types */
750 (*p == '(') || (*p == ')') || /* function types */
751 (*p == '[') || (*p == ']'))) /* array types */
752 return 0;
753 }
754 if (*p != ' ')
755 just_seen_space = 0;
756 if (*p != ':')
757 just_seen_colon = 0;
758 if (*p != '>')
759 just_seen_right = 0;
760 }
761 return 0;
762 }
763 \f
764
765 /* Return a null-terminated temporary copy of the name of a string token.
766
767 Tokens that refer to names do so with explicit pointer and length,
768 so they can share the storage that lexptr is parsing.
769 When it is necessary to pass a name to a function that expects
770 a null-terminated string, the substring is copied out
771 into a separate block of storage.
772
773 N.B. A single buffer is reused on each call. */
774
775 char *
776 copy_name (struct stoken token)
777 {
778 /* A temporary buffer for identifiers, so we can null-terminate them.
779 We allocate this with xrealloc. parse_exp_1 used to allocate with
780 alloca, using the size of the whole expression as a conservative
781 estimate of the space needed. However, macro expansion can
782 introduce names longer than the original expression; there's no
783 practical way to know beforehand how large that might be. */
784 static char *namecopy;
785 static size_t namecopy_size;
786
787 /* Make sure there's enough space for the token. */
788 if (namecopy_size < token.length + 1)
789 {
790 namecopy_size = token.length + 1;
791 namecopy = xrealloc (namecopy, token.length + 1);
792 }
793
794 memcpy (namecopy, token.ptr, token.length);
795 namecopy[token.length] = 0;
796
797 return namecopy;
798 }
799 \f
800
801 /* See comments on parser-defs.h. */
802
803 int
804 prefixify_expression (struct expression *expr)
805 {
806 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
807 struct expression *temp;
808 int inpos = expr->nelts, outpos = 0;
809
810 temp = (struct expression *) alloca (len);
811
812 /* Copy the original expression into temp. */
813 memcpy (temp, expr, len);
814
815 return prefixify_subexp (temp, expr, inpos, outpos);
816 }
817
818 /* Return the number of exp_elements in the postfix subexpression
819 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
820
821 int
822 length_of_subexp (struct expression *expr, int endpos)
823 {
824 int oplen, args;
825
826 operator_length (expr, endpos, &oplen, &args);
827
828 while (args > 0)
829 {
830 oplen += length_of_subexp (expr, endpos - oplen);
831 args--;
832 }
833
834 return oplen;
835 }
836
837 /* Sets *OPLENP to the length of the operator whose (last) index is
838 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
839 operator takes. */
840
841 void
842 operator_length (const struct expression *expr, int endpos, int *oplenp,
843 int *argsp)
844 {
845 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
846 oplenp, argsp);
847 }
848
849 /* Default value for operator_length in exp_descriptor vectors. */
850
851 void
852 operator_length_standard (const struct expression *expr, int endpos,
853 int *oplenp, int *argsp)
854 {
855 int oplen = 1;
856 int args = 0;
857 enum f90_range_type range_type;
858 int i;
859
860 if (endpos < 1)
861 error (_("?error in operator_length_standard"));
862
863 i = (int) expr->elts[endpos - 1].opcode;
864
865 switch (i)
866 {
867 /* C++ */
868 case OP_SCOPE:
869 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
870 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
871 break;
872
873 case OP_LONG:
874 case OP_DOUBLE:
875 case OP_DECFLOAT:
876 case OP_VAR_VALUE:
877 oplen = 4;
878 break;
879
880 case OP_TYPE:
881 case OP_BOOL:
882 case OP_LAST:
883 case OP_INTERNALVAR:
884 case OP_VAR_ENTRY_VALUE:
885 oplen = 3;
886 break;
887
888 case OP_COMPLEX:
889 oplen = 3;
890 args = 2;
891 break;
892
893 case OP_FUNCALL:
894 case OP_F77_UNDETERMINED_ARGLIST:
895 oplen = 3;
896 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
897 break;
898
899 case TYPE_INSTANCE:
900 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
901 args = 1;
902 break;
903
904 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
905 oplen = 4;
906 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
907 break;
908
909 case UNOP_MAX:
910 case UNOP_MIN:
911 oplen = 3;
912 break;
913
914 case BINOP_VAL:
915 case UNOP_CAST:
916 case UNOP_DYNAMIC_CAST:
917 case UNOP_REINTERPRET_CAST:
918 case UNOP_MEMVAL:
919 oplen = 3;
920 args = 1;
921 break;
922
923 case UNOP_MEMVAL_TLS:
924 oplen = 4;
925 args = 1;
926 break;
927
928 case UNOP_ABS:
929 case UNOP_CAP:
930 case UNOP_CHR:
931 case UNOP_FLOAT:
932 case UNOP_HIGH:
933 case UNOP_ODD:
934 case UNOP_ORD:
935 case UNOP_TRUNC:
936 oplen = 1;
937 args = 1;
938 break;
939
940 case OP_ADL_FUNC:
941 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
942 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
943 oplen++;
944 oplen++;
945 break;
946
947 case OP_LABELED:
948 case STRUCTOP_STRUCT:
949 case STRUCTOP_PTR:
950 args = 1;
951 /* fall through */
952 case OP_REGISTER:
953 case OP_M2_STRING:
954 case OP_STRING:
955 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
956 NSString constant. */
957 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
958 case OP_NAME:
959 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
960 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
961 break;
962
963 case OP_BITSTRING:
964 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
965 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
966 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
967 break;
968
969 case OP_ARRAY:
970 oplen = 4;
971 args = longest_to_int (expr->elts[endpos - 2].longconst);
972 args -= longest_to_int (expr->elts[endpos - 3].longconst);
973 args += 1;
974 break;
975
976 case TERNOP_COND:
977 case TERNOP_SLICE:
978 case TERNOP_SLICE_COUNT:
979 args = 3;
980 break;
981
982 /* Modula-2 */
983 case MULTI_SUBSCRIPT:
984 oplen = 3;
985 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
986 break;
987
988 case BINOP_ASSIGN_MODIFY:
989 oplen = 3;
990 args = 2;
991 break;
992
993 /* C++ */
994 case OP_THIS:
995 oplen = 2;
996 break;
997
998 case OP_F90_RANGE:
999 oplen = 3;
1000
1001 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1002 switch (range_type)
1003 {
1004 case LOW_BOUND_DEFAULT:
1005 case HIGH_BOUND_DEFAULT:
1006 args = 1;
1007 break;
1008 case BOTH_BOUND_DEFAULT:
1009 args = 0;
1010 break;
1011 case NONE_BOUND_DEFAULT:
1012 args = 2;
1013 break;
1014 }
1015
1016 break;
1017
1018 default:
1019 args = 1 + (i < (int) BINOP_END);
1020 }
1021
1022 *oplenp = oplen;
1023 *argsp = args;
1024 }
1025
1026 /* Copy the subexpression ending just before index INEND in INEXPR
1027 into OUTEXPR, starting at index OUTBEG.
1028 In the process, convert it from suffix to prefix form.
1029 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1030 Otherwise, it returns the index of the subexpression which is the
1031 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1032
1033 static int
1034 prefixify_subexp (struct expression *inexpr,
1035 struct expression *outexpr, int inend, int outbeg)
1036 {
1037 int oplen;
1038 int args;
1039 int i;
1040 int *arglens;
1041 int result = -1;
1042
1043 operator_length (inexpr, inend, &oplen, &args);
1044
1045 /* Copy the final operator itself, from the end of the input
1046 to the beginning of the output. */
1047 inend -= oplen;
1048 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1049 EXP_ELEM_TO_BYTES (oplen));
1050 outbeg += oplen;
1051
1052 if (expout_last_struct == inend)
1053 result = outbeg - oplen;
1054
1055 /* Find the lengths of the arg subexpressions. */
1056 arglens = (int *) alloca (args * sizeof (int));
1057 for (i = args - 1; i >= 0; i--)
1058 {
1059 oplen = length_of_subexp (inexpr, inend);
1060 arglens[i] = oplen;
1061 inend -= oplen;
1062 }
1063
1064 /* Now copy each subexpression, preserving the order of
1065 the subexpressions, but prefixifying each one.
1066 In this loop, inend starts at the beginning of
1067 the expression this level is working on
1068 and marches forward over the arguments.
1069 outbeg does similarly in the output. */
1070 for (i = 0; i < args; i++)
1071 {
1072 int r;
1073
1074 oplen = arglens[i];
1075 inend += oplen;
1076 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1077 if (r != -1)
1078 {
1079 /* Return immediately. We probably have only parsed a
1080 partial expression, so we don't want to try to reverse
1081 the other operands. */
1082 return r;
1083 }
1084 outbeg += oplen;
1085 }
1086
1087 return result;
1088 }
1089 \f
1090 /* Read an expression from the string *STRINGPTR points to,
1091 parse it, and return a pointer to a struct expression that we malloc.
1092 Use block BLOCK as the lexical context for variable names;
1093 if BLOCK is zero, use the block of the selected stack frame.
1094 Meanwhile, advance *STRINGPTR to point after the expression,
1095 at the first nonwhite character that is not part of the expression
1096 (possibly a null character).
1097
1098 If COMMA is nonzero, stop if a comma is reached. */
1099
1100 struct expression *
1101 parse_exp_1 (char **stringptr, CORE_ADDR pc, struct block *block, int comma)
1102 {
1103 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1104 }
1105
1106 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1107 no value is expected from the expression.
1108 OUT_SUBEXP is set when attempting to complete a field name; in this
1109 case it is set to the index of the subexpression on the
1110 left-hand-side of the struct op. If not doing such completion, it
1111 is left untouched. */
1112
1113 static struct expression *
1114 parse_exp_in_context (char **stringptr, CORE_ADDR pc, struct block *block,
1115 int comma, int void_context_p, int *out_subexp)
1116 {
1117 volatile struct gdb_exception except;
1118 struct cleanup *old_chain;
1119 const struct language_defn *lang = NULL;
1120 int subexp;
1121
1122 lexptr = *stringptr;
1123 prev_lexptr = NULL;
1124
1125 paren_depth = 0;
1126 type_stack_depth = 0;
1127 expout_last_struct = -1;
1128
1129 comma_terminates = comma;
1130
1131 if (lexptr == 0 || *lexptr == 0)
1132 error_no_arg (_("expression to compute"));
1133
1134 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1135 funcall_chain = 0;
1136
1137 expression_context_block = block;
1138
1139 /* If no context specified, try using the current frame, if any. */
1140 if (!expression_context_block)
1141 expression_context_block = get_selected_block (&expression_context_pc);
1142 else if (pc == 0)
1143 expression_context_pc = BLOCK_START (expression_context_block);
1144 else
1145 expression_context_pc = pc;
1146
1147 /* Fall back to using the current source static context, if any. */
1148
1149 if (!expression_context_block)
1150 {
1151 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1152 if (cursal.symtab)
1153 expression_context_block
1154 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1155 if (expression_context_block)
1156 expression_context_pc = BLOCK_START (expression_context_block);
1157 }
1158
1159 if (language_mode == language_mode_auto && block != NULL)
1160 {
1161 /* Find the language associated to the given context block.
1162 Default to the current language if it can not be determined.
1163
1164 Note that using the language corresponding to the current frame
1165 can sometimes give unexpected results. For instance, this
1166 routine is often called several times during the inferior
1167 startup phase to re-parse breakpoint expressions after
1168 a new shared library has been loaded. The language associated
1169 to the current frame at this moment is not relevant for
1170 the breakpoint. Using it would therefore be silly, so it seems
1171 better to rely on the current language rather than relying on
1172 the current frame language to parse the expression. That's why
1173 we do the following language detection only if the context block
1174 has been specifically provided. */
1175 struct symbol *func = block_linkage_function (block);
1176
1177 if (func != NULL)
1178 lang = language_def (SYMBOL_LANGUAGE (func));
1179 if (lang == NULL || lang->la_language == language_unknown)
1180 lang = current_language;
1181 }
1182 else
1183 lang = current_language;
1184
1185 initialize_expout (10, lang, get_current_arch ());
1186
1187 TRY_CATCH (except, RETURN_MASK_ALL)
1188 {
1189 if (lang->la_parser ())
1190 lang->la_error (NULL);
1191 }
1192 if (except.reason < 0)
1193 {
1194 if (! in_parse_field)
1195 {
1196 xfree (expout);
1197 throw_exception (except);
1198 }
1199 }
1200
1201 discard_cleanups (old_chain);
1202
1203 reallocate_expout ();
1204
1205 /* Convert expression from postfix form as generated by yacc
1206 parser, to a prefix form. */
1207
1208 if (expressiondebug)
1209 dump_raw_expression (expout, gdb_stdlog,
1210 "before conversion to prefix form");
1211
1212 subexp = prefixify_expression (expout);
1213 if (out_subexp)
1214 *out_subexp = subexp;
1215
1216 lang->la_post_parser (&expout, void_context_p);
1217
1218 if (expressiondebug)
1219 dump_prefix_expression (expout, gdb_stdlog);
1220
1221 *stringptr = lexptr;
1222 return expout;
1223 }
1224
1225 /* Parse STRING as an expression, and complain if this fails
1226 to use up all of the contents of STRING. */
1227
1228 struct expression *
1229 parse_expression (char *string)
1230 {
1231 struct expression *exp;
1232
1233 exp = parse_exp_1 (&string, 0, 0, 0);
1234 if (*string)
1235 error (_("Junk after end of expression."));
1236 return exp;
1237 }
1238
1239 /* Parse STRING as an expression. If parsing ends in the middle of a
1240 field reference, return the type of the left-hand-side of the
1241 reference; furthermore, if the parsing ends in the field name,
1242 return the field name in *NAME. If the parsing ends in the middle
1243 of a field reference, but the reference is somehow invalid, throw
1244 an exception. In all other cases, return NULL. Returned non-NULL
1245 *NAME must be freed by the caller. */
1246
1247 struct type *
1248 parse_field_expression (char *string, char **name)
1249 {
1250 struct expression *exp = NULL;
1251 struct value *val;
1252 int subexp;
1253 volatile struct gdb_exception except;
1254
1255 TRY_CATCH (except, RETURN_MASK_ERROR)
1256 {
1257 in_parse_field = 1;
1258 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1259 }
1260 in_parse_field = 0;
1261 if (except.reason < 0 || ! exp)
1262 return NULL;
1263 if (expout_last_struct == -1)
1264 {
1265 xfree (exp);
1266 return NULL;
1267 }
1268
1269 *name = extract_field_op (exp, &subexp);
1270 if (!*name)
1271 {
1272 xfree (exp);
1273 return NULL;
1274 }
1275
1276 /* This might throw an exception. If so, we want to let it
1277 propagate. */
1278 val = evaluate_subexpression_type (exp, subexp);
1279 /* (*NAME) is a part of the EXP memory block freed below. */
1280 *name = xstrdup (*name);
1281 xfree (exp);
1282
1283 return value_type (val);
1284 }
1285
1286 /* A post-parser that does nothing. */
1287
1288 void
1289 null_post_parser (struct expression **exp, int void_context_p)
1290 {
1291 }
1292
1293 /* Parse floating point value P of length LEN.
1294 Return 0 (false) if invalid, 1 (true) if valid.
1295 The successfully parsed number is stored in D.
1296 *SUFFIX points to the suffix of the number in P.
1297
1298 NOTE: This accepts the floating point syntax that sscanf accepts. */
1299
1300 int
1301 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1302 {
1303 char *copy;
1304 int n, num;
1305
1306 copy = xmalloc (len + 1);
1307 memcpy (copy, p, len);
1308 copy[len] = 0;
1309
1310 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1311 xfree (copy);
1312
1313 /* The sscanf man page suggests not making any assumptions on the effect
1314 of %n on the result, so we don't.
1315 That is why we simply test num == 0. */
1316 if (num == 0)
1317 return 0;
1318
1319 *suffix = p + n;
1320 return 1;
1321 }
1322
1323 /* Parse floating point value P of length LEN, using the C syntax for floats.
1324 Return 0 (false) if invalid, 1 (true) if valid.
1325 The successfully parsed number is stored in *D.
1326 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1327
1328 int
1329 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1330 DOUBLEST *d, struct type **t)
1331 {
1332 const char *suffix;
1333 int suffix_len;
1334 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1335
1336 if (! parse_float (p, len, d, &suffix))
1337 return 0;
1338
1339 suffix_len = p + len - suffix;
1340
1341 if (suffix_len == 0)
1342 *t = builtin_types->builtin_double;
1343 else if (suffix_len == 1)
1344 {
1345 /* Handle suffixes: 'f' for float, 'l' for long double. */
1346 if (tolower (*suffix) == 'f')
1347 *t = builtin_types->builtin_float;
1348 else if (tolower (*suffix) == 'l')
1349 *t = builtin_types->builtin_long_double;
1350 else
1351 return 0;
1352 }
1353 else
1354 return 0;
1355
1356 return 1;
1357 }
1358 \f
1359 /* Stuff for maintaining a stack of types. Currently just used by C, but
1360 probably useful for any language which declares its types "backwards". */
1361
1362 static void
1363 check_type_stack_depth (void)
1364 {
1365 if (type_stack_depth == type_stack_size)
1366 {
1367 type_stack_size *= 2;
1368 type_stack = (union type_stack_elt *)
1369 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1370 }
1371 }
1372
1373 /* A helper function for insert_type and insert_type_address_space.
1374 This does work of expanding the type stack and inserting the new
1375 element, ELEMENT, into the stack at location SLOT. */
1376
1377 static void
1378 insert_into_type_stack (int slot, union type_stack_elt element)
1379 {
1380 check_type_stack_depth ();
1381
1382 if (slot < type_stack_depth)
1383 memmove (&type_stack[slot + 1], &type_stack[slot],
1384 (type_stack_depth - slot) * sizeof (union type_stack_elt));
1385 type_stack[slot] = element;
1386 ++type_stack_depth;
1387 }
1388
1389 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1390 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1391 a qualifier, it is inserted at slot 1 (just above a previous
1392 tp_pointer) if there is anything on the stack, or simply pushed if
1393 the stack is empty. Other values for TP are invalid. */
1394
1395 void
1396 insert_type (enum type_pieces tp)
1397 {
1398 union type_stack_elt element;
1399 int slot;
1400
1401 gdb_assert (tp == tp_pointer || tp == tp_reference
1402 || tp == tp_const || tp == tp_volatile);
1403
1404 /* If there is anything on the stack (we know it will be a
1405 tp_pointer), insert the qualifier above it. Otherwise, simply
1406 push this on the top of the stack. */
1407 if (type_stack_depth && (tp == tp_const || tp == tp_volatile))
1408 slot = 1;
1409 else
1410 slot = 0;
1411
1412 element.piece = tp;
1413 insert_into_type_stack (slot, element);
1414 }
1415
1416 void
1417 push_type (enum type_pieces tp)
1418 {
1419 check_type_stack_depth ();
1420 type_stack[type_stack_depth++].piece = tp;
1421 }
1422
1423 void
1424 push_type_int (int n)
1425 {
1426 check_type_stack_depth ();
1427 type_stack[type_stack_depth++].int_val = n;
1428 }
1429
1430 /* Insert a tp_space_identifier and the corresponding address space
1431 value into the stack. STRING is the name of an address space, as
1432 recognized by address_space_name_to_int. If the stack is empty,
1433 the new elements are simply pushed. If the stack is not empty,
1434 this function assumes that the first item on the stack is a
1435 tp_pointer, and the new values are inserted above the first
1436 item. */
1437
1438 void
1439 insert_type_address_space (char *string)
1440 {
1441 union type_stack_elt element;
1442 int slot;
1443
1444 /* If there is anything on the stack (we know it will be a
1445 tp_pointer), insert the address space qualifier above it.
1446 Otherwise, simply push this on the top of the stack. */
1447 if (type_stack_depth)
1448 slot = 1;
1449 else
1450 slot = 0;
1451
1452 element.piece = tp_space_identifier;
1453 insert_into_type_stack (slot, element);
1454 element.int_val = address_space_name_to_int (parse_gdbarch, string);
1455 insert_into_type_stack (slot, element);
1456 }
1457
1458 enum type_pieces
1459 pop_type (void)
1460 {
1461 if (type_stack_depth)
1462 return type_stack[--type_stack_depth].piece;
1463 return tp_end;
1464 }
1465
1466 int
1467 pop_type_int (void)
1468 {
1469 if (type_stack_depth)
1470 return type_stack[--type_stack_depth].int_val;
1471 /* "Can't happen". */
1472 return 0;
1473 }
1474
1475 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1476 as modified by all the stuff on the stack. */
1477 struct type *
1478 follow_types (struct type *follow_type)
1479 {
1480 int done = 0;
1481 int make_const = 0;
1482 int make_volatile = 0;
1483 int make_addr_space = 0;
1484 int array_size;
1485
1486 while (!done)
1487 switch (pop_type ())
1488 {
1489 case tp_end:
1490 done = 1;
1491 if (make_const)
1492 follow_type = make_cv_type (make_const,
1493 TYPE_VOLATILE (follow_type),
1494 follow_type, 0);
1495 if (make_volatile)
1496 follow_type = make_cv_type (TYPE_CONST (follow_type),
1497 make_volatile,
1498 follow_type, 0);
1499 if (make_addr_space)
1500 follow_type = make_type_with_address_space (follow_type,
1501 make_addr_space);
1502 make_const = make_volatile = 0;
1503 make_addr_space = 0;
1504 break;
1505 case tp_const:
1506 make_const = 1;
1507 break;
1508 case tp_volatile:
1509 make_volatile = 1;
1510 break;
1511 case tp_space_identifier:
1512 make_addr_space = pop_type_int ();
1513 break;
1514 case tp_pointer:
1515 follow_type = lookup_pointer_type (follow_type);
1516 if (make_const)
1517 follow_type = make_cv_type (make_const,
1518 TYPE_VOLATILE (follow_type),
1519 follow_type, 0);
1520 if (make_volatile)
1521 follow_type = make_cv_type (TYPE_CONST (follow_type),
1522 make_volatile,
1523 follow_type, 0);
1524 if (make_addr_space)
1525 follow_type = make_type_with_address_space (follow_type,
1526 make_addr_space);
1527 make_const = make_volatile = 0;
1528 make_addr_space = 0;
1529 break;
1530 case tp_reference:
1531 follow_type = lookup_reference_type (follow_type);
1532 if (make_const)
1533 follow_type = make_cv_type (make_const,
1534 TYPE_VOLATILE (follow_type),
1535 follow_type, 0);
1536 if (make_volatile)
1537 follow_type = make_cv_type (TYPE_CONST (follow_type),
1538 make_volatile,
1539 follow_type, 0);
1540 if (make_addr_space)
1541 follow_type = make_type_with_address_space (follow_type,
1542 make_addr_space);
1543 make_const = make_volatile = 0;
1544 make_addr_space = 0;
1545 break;
1546 case tp_array:
1547 array_size = pop_type_int ();
1548 /* FIXME-type-allocation: need a way to free this type when we are
1549 done with it. */
1550 follow_type =
1551 lookup_array_range_type (follow_type,
1552 0, array_size >= 0 ? array_size - 1 : 0);
1553 if (array_size < 0)
1554 TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1;
1555 break;
1556 case tp_function:
1557 /* FIXME-type-allocation: need a way to free this type when we are
1558 done with it. */
1559 follow_type = lookup_function_type (follow_type);
1560 break;
1561 }
1562 return follow_type;
1563 }
1564 \f
1565 /* This function avoids direct calls to fprintf
1566 in the parser generated debug code. */
1567 void
1568 parser_fprintf (FILE *x, const char *y, ...)
1569 {
1570 va_list args;
1571
1572 va_start (args, y);
1573 if (x == stderr)
1574 vfprintf_unfiltered (gdb_stderr, y, args);
1575 else
1576 {
1577 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1578 vfprintf_unfiltered (gdb_stderr, y, args);
1579 }
1580 va_end (args);
1581 }
1582
1583 /* Implementation of the exp_descriptor method operator_check. */
1584
1585 int
1586 operator_check_standard (struct expression *exp, int pos,
1587 int (*objfile_func) (struct objfile *objfile,
1588 void *data),
1589 void *data)
1590 {
1591 const union exp_element *const elts = exp->elts;
1592 struct type *type = NULL;
1593 struct objfile *objfile = NULL;
1594
1595 /* Extended operators should have been already handled by exp_descriptor
1596 iterate method of its specific language. */
1597 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1598
1599 /* Track the callers of write_exp_elt_type for this table. */
1600
1601 switch (elts[pos].opcode)
1602 {
1603 case BINOP_VAL:
1604 case OP_COMPLEX:
1605 case OP_DECFLOAT:
1606 case OP_DOUBLE:
1607 case OP_LONG:
1608 case OP_SCOPE:
1609 case OP_TYPE:
1610 case UNOP_CAST:
1611 case UNOP_DYNAMIC_CAST:
1612 case UNOP_REINTERPRET_CAST:
1613 case UNOP_MAX:
1614 case UNOP_MEMVAL:
1615 case UNOP_MIN:
1616 type = elts[pos + 1].type;
1617 break;
1618
1619 case TYPE_INSTANCE:
1620 {
1621 LONGEST arg, nargs = elts[pos + 1].longconst;
1622
1623 for (arg = 0; arg < nargs; arg++)
1624 {
1625 struct type *type = elts[pos + 2 + arg].type;
1626 struct objfile *objfile = TYPE_OBJFILE (type);
1627
1628 if (objfile && (*objfile_func) (objfile, data))
1629 return 1;
1630 }
1631 }
1632 break;
1633
1634 case UNOP_MEMVAL_TLS:
1635 objfile = elts[pos + 1].objfile;
1636 type = elts[pos + 2].type;
1637 break;
1638
1639 case OP_VAR_VALUE:
1640 {
1641 const struct block *const block = elts[pos + 1].block;
1642 const struct symbol *const symbol = elts[pos + 2].symbol;
1643
1644 /* Check objfile where the variable itself is placed.
1645 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1646 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1647 return 1;
1648
1649 /* Check objfile where is placed the code touching the variable. */
1650 objfile = lookup_objfile_from_block (block);
1651
1652 type = SYMBOL_TYPE (symbol);
1653 }
1654 break;
1655 }
1656
1657 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1658
1659 if (type && TYPE_OBJFILE (type)
1660 && (*objfile_func) (TYPE_OBJFILE (type), data))
1661 return 1;
1662 if (objfile && (*objfile_func) (objfile, data))
1663 return 1;
1664
1665 return 0;
1666 }
1667
1668 /* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP.
1669 The functions are never called with NULL OBJFILE. Functions get passed an
1670 arbitrary caller supplied DATA pointer. If any of the functions returns
1671 non-zero value then (any other) non-zero value is immediately returned to
1672 the caller. Otherwise zero is returned after iterating through whole EXP.
1673 */
1674
1675 static int
1676 exp_iterate (struct expression *exp,
1677 int (*objfile_func) (struct objfile *objfile, void *data),
1678 void *data)
1679 {
1680 int endpos;
1681
1682 for (endpos = exp->nelts; endpos > 0; )
1683 {
1684 int pos, args, oplen = 0;
1685
1686 operator_length (exp, endpos, &oplen, &args);
1687 gdb_assert (oplen > 0);
1688
1689 pos = endpos - oplen;
1690 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1691 objfile_func, data))
1692 return 1;
1693
1694 endpos = pos;
1695 }
1696
1697 return 0;
1698 }
1699
1700 /* Helper for exp_uses_objfile. */
1701
1702 static int
1703 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1704 {
1705 struct objfile *objfile = objfile_voidp;
1706
1707 if (exp_objfile->separate_debug_objfile_backlink)
1708 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1709
1710 return exp_objfile == objfile;
1711 }
1712
1713 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1714 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1715 file. */
1716
1717 int
1718 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1719 {
1720 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1721
1722 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1723 }
1724
1725 void
1726 _initialize_parse (void)
1727 {
1728 type_stack_size = 80;
1729 type_stack_depth = 0;
1730 type_stack = (union type_stack_elt *)
1731 xmalloc (type_stack_size * sizeof (*type_stack));
1732
1733 add_setshow_zinteger_cmd ("expression", class_maintenance,
1734 &expressiondebug,
1735 _("Set expression debugging."),
1736 _("Show expression debugging."),
1737 _("When non-zero, the internal representation "
1738 "of expressions will be printed."),
1739 NULL,
1740 show_expressiondebug,
1741 &setdebuglist, &showdebuglist);
1742 add_setshow_boolean_cmd ("parser", class_maintenance,
1743 &parser_debug,
1744 _("Set parser debugging."),
1745 _("Show parser debugging."),
1746 _("When non-zero, expression parser "
1747 "tracing will be enabled."),
1748 NULL,
1749 show_parserdebug,
1750 &setdebuglist, &showdebuglist);
1751 }
This page took 0.088786 seconds and 4 git commands to generate.