2002-08-15 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2 Copyright 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4 Modified from expread.y by the Department of Computer Science at the
5 State University of New York at Buffalo, 1991.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* Parse an expression from text in a string,
25 and return the result as a struct expression pointer.
26 That structure contains arithmetic operations in reverse polish,
27 with constants represented by operations that are followed by special data.
28 See expression.h for the details of the format.
29 What is important here is that it can be built up sequentially
30 during the process of parsing; the lower levels of the tree always
31 come first in the result. */
32
33 #include <ctype.h>
34
35 #include "defs.h"
36 #include "gdb_string.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "frame.h"
40 #include "expression.h"
41 #include "value.h"
42 #include "command.h"
43 #include "language.h"
44 #include "parser-defs.h"
45 #include "gdbcmd.h"
46 #include "symfile.h" /* for overlay functions */
47 #include "inferior.h" /* for NUM_PSEUDO_REGS. NOTE: replace
48 with "gdbarch.h" when appropriate. */
49 #include "doublest.h"
50 #include "builtin-regs.h"
51 #include "gdb_assert.h"
52
53 \f
54 /* Symbols which architectures can redefine. */
55
56 /* Some systems have routines whose names start with `$'. Giving this
57 macro a non-zero value tells GDB's expression parser to check for
58 such routines when parsing tokens that begin with `$'.
59
60 On HP-UX, certain system routines (millicode) have names beginning
61 with `$' or `$$'. For example, `$$dyncall' is a millicode routine
62 that handles inter-space procedure calls on PA-RISC. */
63 #ifndef SYMBOLS_CAN_START_WITH_DOLLAR
64 #define SYMBOLS_CAN_START_WITH_DOLLAR (0)
65 #endif
66
67
68 \f
69 /* Global variables declared in parser-defs.h (and commented there). */
70 struct expression *expout;
71 int expout_size;
72 int expout_ptr;
73 struct block *expression_context_block;
74 CORE_ADDR expression_context_pc;
75 struct block *innermost_block;
76 int arglist_len;
77 union type_stack_elt *type_stack;
78 int type_stack_depth, type_stack_size;
79 char *lexptr;
80 char *prev_lexptr;
81 char *namecopy;
82 int paren_depth;
83 int comma_terminates;
84 \f
85 static int expressiondebug = 0;
86
87 extern int hp_som_som_object_present;
88
89 static void free_funcalls (void *ignore);
90
91 static void prefixify_expression (struct expression *);
92
93 static void
94 prefixify_subexp (struct expression *, struct expression *, int, int);
95
96 void _initialize_parse (void);
97
98 /* Data structure for saving values of arglist_len for function calls whose
99 arguments contain other function calls. */
100
101 struct funcall
102 {
103 struct funcall *next;
104 int arglist_len;
105 };
106
107 static struct funcall *funcall_chain;
108
109 /* The generic method for targets to specify how their registers are
110 named. The mapping can be derived from two sources: REGISTER_NAME;
111 or builtin regs. */
112
113 int
114 target_map_name_to_register (char *str, int len)
115 {
116 int i;
117
118 /* Search register name space. */
119 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
120 if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i))
121 && STREQN (str, REGISTER_NAME (i), len))
122 {
123 return i;
124 }
125
126 /* Try builtin registers. */
127 i = builtin_reg_map_name_to_regnum (str, len);
128 if (i >= 0)
129 {
130 gdb_assert (i >= NUM_REGS + NUM_PSEUDO_REGS);
131 return i;
132 }
133
134 /* Try builtin registers. */
135 i = builtin_reg_map_name_to_regnum (str, len);
136 if (i >= 0)
137 {
138 gdb_assert (i >= NUM_REGS + NUM_PSEUDO_REGS);
139 return i;
140 }
141
142 return -1;
143 }
144
145 /* Begin counting arguments for a function call,
146 saving the data about any containing call. */
147
148 void
149 start_arglist (void)
150 {
151 register struct funcall *new;
152
153 new = (struct funcall *) xmalloc (sizeof (struct funcall));
154 new->next = funcall_chain;
155 new->arglist_len = arglist_len;
156 arglist_len = 0;
157 funcall_chain = new;
158 }
159
160 /* Return the number of arguments in a function call just terminated,
161 and restore the data for the containing function call. */
162
163 int
164 end_arglist (void)
165 {
166 register int val = arglist_len;
167 register struct funcall *call = funcall_chain;
168 funcall_chain = call->next;
169 arglist_len = call->arglist_len;
170 xfree (call);
171 return val;
172 }
173
174 /* Free everything in the funcall chain.
175 Used when there is an error inside parsing. */
176
177 static void
178 free_funcalls (void *ignore)
179 {
180 register struct funcall *call, *next;
181
182 for (call = funcall_chain; call; call = next)
183 {
184 next = call->next;
185 xfree (call);
186 }
187 }
188 \f
189 /* This page contains the functions for adding data to the struct expression
190 being constructed. */
191
192 /* Add one element to the end of the expression. */
193
194 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
195 a register through here */
196
197 void
198 write_exp_elt (union exp_element expelt)
199 {
200 if (expout_ptr >= expout_size)
201 {
202 expout_size *= 2;
203 expout = (struct expression *)
204 xrealloc ((char *) expout, sizeof (struct expression)
205 + EXP_ELEM_TO_BYTES (expout_size));
206 }
207 expout->elts[expout_ptr++] = expelt;
208 }
209
210 void
211 write_exp_elt_opcode (enum exp_opcode expelt)
212 {
213 union exp_element tmp;
214
215 tmp.opcode = expelt;
216
217 write_exp_elt (tmp);
218 }
219
220 void
221 write_exp_elt_sym (struct symbol *expelt)
222 {
223 union exp_element tmp;
224
225 tmp.symbol = expelt;
226
227 write_exp_elt (tmp);
228 }
229
230 void
231 write_exp_elt_block (struct block *b)
232 {
233 union exp_element tmp;
234 tmp.block = b;
235 write_exp_elt (tmp);
236 }
237
238 void
239 write_exp_elt_longcst (LONGEST expelt)
240 {
241 union exp_element tmp;
242
243 tmp.longconst = expelt;
244
245 write_exp_elt (tmp);
246 }
247
248 void
249 write_exp_elt_dblcst (DOUBLEST expelt)
250 {
251 union exp_element tmp;
252
253 tmp.doubleconst = expelt;
254
255 write_exp_elt (tmp);
256 }
257
258 void
259 write_exp_elt_type (struct type *expelt)
260 {
261 union exp_element tmp;
262
263 tmp.type = expelt;
264
265 write_exp_elt (tmp);
266 }
267
268 void
269 write_exp_elt_intern (struct internalvar *expelt)
270 {
271 union exp_element tmp;
272
273 tmp.internalvar = expelt;
274
275 write_exp_elt (tmp);
276 }
277
278 /* Add a string constant to the end of the expression.
279
280 String constants are stored by first writing an expression element
281 that contains the length of the string, then stuffing the string
282 constant itself into however many expression elements are needed
283 to hold it, and then writing another expression element that contains
284 the length of the string. I.E. an expression element at each end of
285 the string records the string length, so you can skip over the
286 expression elements containing the actual string bytes from either
287 end of the string. Note that this also allows gdb to handle
288 strings with embedded null bytes, as is required for some languages.
289
290 Don't be fooled by the fact that the string is null byte terminated,
291 this is strictly for the convenience of debugging gdb itself. Gdb
292 Gdb does not depend up the string being null terminated, since the
293 actual length is recorded in expression elements at each end of the
294 string. The null byte is taken into consideration when computing how
295 many expression elements are required to hold the string constant, of
296 course. */
297
298
299 void
300 write_exp_string (struct stoken str)
301 {
302 register int len = str.length;
303 register int lenelt;
304 register char *strdata;
305
306 /* Compute the number of expression elements required to hold the string
307 (including a null byte terminator), along with one expression element
308 at each end to record the actual string length (not including the
309 null byte terminator). */
310
311 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
312
313 /* Ensure that we have enough available expression elements to store
314 everything. */
315
316 if ((expout_ptr + lenelt) >= expout_size)
317 {
318 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
319 expout = (struct expression *)
320 xrealloc ((char *) expout, (sizeof (struct expression)
321 + EXP_ELEM_TO_BYTES (expout_size)));
322 }
323
324 /* Write the leading length expression element (which advances the current
325 expression element index), then write the string constant followed by a
326 terminating null byte, and then write the trailing length expression
327 element. */
328
329 write_exp_elt_longcst ((LONGEST) len);
330 strdata = (char *) &expout->elts[expout_ptr];
331 memcpy (strdata, str.ptr, len);
332 *(strdata + len) = '\0';
333 expout_ptr += lenelt - 2;
334 write_exp_elt_longcst ((LONGEST) len);
335 }
336
337 /* Add a bitstring constant to the end of the expression.
338
339 Bitstring constants are stored by first writing an expression element
340 that contains the length of the bitstring (in bits), then stuffing the
341 bitstring constant itself into however many expression elements are
342 needed to hold it, and then writing another expression element that
343 contains the length of the bitstring. I.E. an expression element at
344 each end of the bitstring records the bitstring length, so you can skip
345 over the expression elements containing the actual bitstring bytes from
346 either end of the bitstring. */
347
348 void
349 write_exp_bitstring (struct stoken str)
350 {
351 register int bits = str.length; /* length in bits */
352 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
353 register int lenelt;
354 register char *strdata;
355
356 /* Compute the number of expression elements required to hold the bitstring,
357 along with one expression element at each end to record the actual
358 bitstring length in bits. */
359
360 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
361
362 /* Ensure that we have enough available expression elements to store
363 everything. */
364
365 if ((expout_ptr + lenelt) >= expout_size)
366 {
367 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
368 expout = (struct expression *)
369 xrealloc ((char *) expout, (sizeof (struct expression)
370 + EXP_ELEM_TO_BYTES (expout_size)));
371 }
372
373 /* Write the leading length expression element (which advances the current
374 expression element index), then write the bitstring constant, and then
375 write the trailing length expression element. */
376
377 write_exp_elt_longcst ((LONGEST) bits);
378 strdata = (char *) &expout->elts[expout_ptr];
379 memcpy (strdata, str.ptr, len);
380 expout_ptr += lenelt - 2;
381 write_exp_elt_longcst ((LONGEST) bits);
382 }
383
384 /* Add the appropriate elements for a minimal symbol to the end of
385 the expression. The rationale behind passing in text_symbol_type and
386 data_symbol_type was so that Modula-2 could pass in WORD for
387 data_symbol_type. Perhaps it still is useful to have those types vary
388 based on the language, but they no longer have names like "int", so
389 the initial rationale is gone. */
390
391 static struct type *msym_text_symbol_type;
392 static struct type *msym_data_symbol_type;
393 static struct type *msym_unknown_symbol_type;
394
395 void
396 write_exp_msymbol (struct minimal_symbol *msymbol,
397 struct type *text_symbol_type,
398 struct type *data_symbol_type)
399 {
400 CORE_ADDR addr;
401
402 write_exp_elt_opcode (OP_LONG);
403 /* Let's make the type big enough to hold a 64-bit address. */
404 write_exp_elt_type (builtin_type_CORE_ADDR);
405
406 addr = SYMBOL_VALUE_ADDRESS (msymbol);
407 if (overlay_debugging)
408 addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol));
409 write_exp_elt_longcst ((LONGEST) addr);
410
411 write_exp_elt_opcode (OP_LONG);
412
413 write_exp_elt_opcode (UNOP_MEMVAL);
414 switch (msymbol->type)
415 {
416 case mst_text:
417 case mst_file_text:
418 case mst_solib_trampoline:
419 write_exp_elt_type (msym_text_symbol_type);
420 break;
421
422 case mst_data:
423 case mst_file_data:
424 case mst_bss:
425 case mst_file_bss:
426 write_exp_elt_type (msym_data_symbol_type);
427 break;
428
429 default:
430 write_exp_elt_type (msym_unknown_symbol_type);
431 break;
432 }
433 write_exp_elt_opcode (UNOP_MEMVAL);
434 }
435 \f
436 /* Recognize tokens that start with '$'. These include:
437
438 $regname A native register name or a "standard
439 register name".
440
441 $variable A convenience variable with a name chosen
442 by the user.
443
444 $digits Value history with index <digits>, starting
445 from the first value which has index 1.
446
447 $$digits Value history with index <digits> relative
448 to the last value. I.E. $$0 is the last
449 value, $$1 is the one previous to that, $$2
450 is the one previous to $$1, etc.
451
452 $ | $0 | $$0 The last value in the value history.
453
454 $$ An abbreviation for the second to the last
455 value in the value history, I.E. $$1
456
457 */
458
459 void
460 write_dollar_variable (struct stoken str)
461 {
462 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
463 and $$digits (equivalent to $<-digits> if you could type that). */
464
465 int negate = 0;
466 int i = 1;
467 /* Double dollar means negate the number and add -1 as well.
468 Thus $$ alone means -1. */
469 if (str.length >= 2 && str.ptr[1] == '$')
470 {
471 negate = 1;
472 i = 2;
473 }
474 if (i == str.length)
475 {
476 /* Just dollars (one or two) */
477 i = -negate;
478 goto handle_last;
479 }
480 /* Is the rest of the token digits? */
481 for (; i < str.length; i++)
482 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
483 break;
484 if (i == str.length)
485 {
486 i = atoi (str.ptr + 1 + negate);
487 if (negate)
488 i = -i;
489 goto handle_last;
490 }
491
492 /* Handle tokens that refer to machine registers:
493 $ followed by a register name. */
494 i = target_map_name_to_register (str.ptr + 1, str.length - 1);
495 if (i >= 0)
496 goto handle_register;
497
498 if (SYMBOLS_CAN_START_WITH_DOLLAR)
499 {
500 struct symbol *sym = NULL;
501 struct minimal_symbol *msym = NULL;
502
503 /* On HP-UX, certain system routines (millicode) have names beginning
504 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
505 calls on PA-RISC. Check for those, first. */
506
507 /* This code is not enabled on non HP-UX systems, since worst case
508 symbol table lookup performance is awful, to put it mildly. */
509
510 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
511 VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL);
512 if (sym)
513 {
514 write_exp_elt_opcode (OP_VAR_VALUE);
515 write_exp_elt_block (block_found); /* set by lookup_symbol */
516 write_exp_elt_sym (sym);
517 write_exp_elt_opcode (OP_VAR_VALUE);
518 return;
519 }
520 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
521 if (msym)
522 {
523 write_exp_msymbol (msym,
524 lookup_function_type (builtin_type_int),
525 builtin_type_int);
526 return;
527 }
528 }
529
530 /* Any other names starting in $ are debugger internal variables. */
531
532 write_exp_elt_opcode (OP_INTERNALVAR);
533 write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
534 write_exp_elt_opcode (OP_INTERNALVAR);
535 return;
536 handle_last:
537 write_exp_elt_opcode (OP_LAST);
538 write_exp_elt_longcst ((LONGEST) i);
539 write_exp_elt_opcode (OP_LAST);
540 return;
541 handle_register:
542 write_exp_elt_opcode (OP_REGISTER);
543 write_exp_elt_longcst (i);
544 write_exp_elt_opcode (OP_REGISTER);
545 return;
546 }
547
548
549 /* Parse a string that is possibly a namespace / nested class
550 specification, i.e., something of the form A::B::C::x. Input
551 (NAME) is the entire string; LEN is the current valid length; the
552 output is a string, TOKEN, which points to the largest recognized
553 prefix which is a series of namespaces or classes. CLASS_PREFIX is
554 another output, which records whether a nested class spec was
555 recognized (= 1) or a fully qualified variable name was found (=
556 0). ARGPTR is side-effected (if non-NULL) to point to beyond the
557 string recognized and consumed by this routine.
558
559 The return value is a pointer to the symbol for the base class or
560 variable if found, or NULL if not found. Callers must check this
561 first -- if NULL, the outputs may not be correct.
562
563 This function is used c-exp.y. This is used specifically to get
564 around HP aCC (and possibly other compilers), which insists on
565 generating names with embedded colons for namespace or nested class
566 members.
567
568 (Argument LEN is currently unused. 1997-08-27)
569
570 Callers must free memory allocated for the output string TOKEN. */
571
572 static const char coloncolon[2] =
573 {':', ':'};
574
575 struct symbol *
576 parse_nested_classes_for_hpacc (char *name, int len, char **token,
577 int *class_prefix, char **argptr)
578 {
579 /* Comment below comes from decode_line_1 which has very similar
580 code, which is called for "break" command parsing. */
581
582 /* We have what looks like a class or namespace
583 scope specification (A::B), possibly with many
584 levels of namespaces or classes (A::B::C::D).
585
586 Some versions of the HP ANSI C++ compiler (as also possibly
587 other compilers) generate class/function/member names with
588 embedded double-colons if they are inside namespaces. To
589 handle this, we loop a few times, considering larger and
590 larger prefixes of the string as though they were single
591 symbols. So, if the initially supplied string is
592 A::B::C::D::foo, we have to look up "A", then "A::B",
593 then "A::B::C", then "A::B::C::D", and finally
594 "A::B::C::D::foo" as single, monolithic symbols, because
595 A, B, C or D may be namespaces.
596
597 Note that namespaces can nest only inside other
598 namespaces, and not inside classes. So we need only
599 consider *prefixes* of the string; there is no need to look up
600 "B::C" separately as a symbol in the previous example. */
601
602 register char *p;
603 char *start, *end;
604 char *prefix = NULL;
605 char *tmp;
606 struct symbol *sym_class = NULL;
607 struct symbol *sym_var = NULL;
608 struct type *t;
609 int prefix_len = 0;
610 int done = 0;
611 char *q;
612
613 /* Check for HP-compiled executable -- in other cases
614 return NULL, and caller must default to standard GDB
615 behaviour. */
616
617 if (!hp_som_som_object_present)
618 return (struct symbol *) NULL;
619
620 p = name;
621
622 /* Skip over whitespace and possible global "::" */
623 while (*p && (*p == ' ' || *p == '\t'))
624 p++;
625 if (p[0] == ':' && p[1] == ':')
626 p += 2;
627 while (*p && (*p == ' ' || *p == '\t'))
628 p++;
629
630 while (1)
631 {
632 /* Get to the end of the next namespace or class spec. */
633 /* If we're looking at some non-token, fail immediately */
634 start = p;
635 if (!(isalpha (*p) || *p == '$' || *p == '_'))
636 return (struct symbol *) NULL;
637 p++;
638 while (*p && (isalnum (*p) || *p == '$' || *p == '_'))
639 p++;
640
641 if (*p == '<')
642 {
643 /* If we have the start of a template specification,
644 scan right ahead to its end */
645 q = find_template_name_end (p);
646 if (q)
647 p = q;
648 }
649
650 end = p;
651
652 /* Skip over "::" and whitespace for next time around */
653 while (*p && (*p == ' ' || *p == '\t'))
654 p++;
655 if (p[0] == ':' && p[1] == ':')
656 p += 2;
657 while (*p && (*p == ' ' || *p == '\t'))
658 p++;
659
660 /* Done with tokens? */
661 if (!*p || !(isalpha (*p) || *p == '$' || *p == '_'))
662 done = 1;
663
664 tmp = (char *) alloca (prefix_len + end - start + 3);
665 if (prefix)
666 {
667 memcpy (tmp, prefix, prefix_len);
668 memcpy (tmp + prefix_len, coloncolon, 2);
669 memcpy (tmp + prefix_len + 2, start, end - start);
670 tmp[prefix_len + 2 + end - start] = '\000';
671 }
672 else
673 {
674 memcpy (tmp, start, end - start);
675 tmp[end - start] = '\000';
676 }
677
678 prefix = tmp;
679 prefix_len = strlen (prefix);
680
681 /* See if the prefix we have now is something we know about */
682
683 if (!done)
684 {
685 /* More tokens to process, so this must be a class/namespace */
686 sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
687 0, (struct symtab **) NULL);
688 }
689 else
690 {
691 /* No more tokens, so try as a variable first */
692 sym_var = lookup_symbol (prefix, 0, VAR_NAMESPACE,
693 0, (struct symtab **) NULL);
694 /* If failed, try as class/namespace */
695 if (!sym_var)
696 sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
697 0, (struct symtab **) NULL);
698 }
699
700 if (sym_var ||
701 (sym_class &&
702 (t = check_typedef (SYMBOL_TYPE (sym_class)),
703 (TYPE_CODE (t) == TYPE_CODE_STRUCT
704 || TYPE_CODE (t) == TYPE_CODE_UNION))))
705 {
706 /* We found a valid token */
707 *token = (char *) xmalloc (prefix_len + 1);
708 memcpy (*token, prefix, prefix_len);
709 (*token)[prefix_len] = '\000';
710 break;
711 }
712
713 /* No variable or class/namespace found, no more tokens */
714 if (done)
715 return (struct symbol *) NULL;
716 }
717
718 /* Out of loop, so we must have found a valid token */
719 if (sym_var)
720 *class_prefix = 0;
721 else
722 *class_prefix = 1;
723
724 if (argptr)
725 *argptr = done ? p : end;
726
727 return sym_var ? sym_var : sym_class; /* found */
728 }
729
730 char *
731 find_template_name_end (char *p)
732 {
733 int depth = 1;
734 int just_seen_right = 0;
735 int just_seen_colon = 0;
736 int just_seen_space = 0;
737
738 if (!p || (*p != '<'))
739 return 0;
740
741 while (*++p)
742 {
743 switch (*p)
744 {
745 case '\'':
746 case '\"':
747 case '{':
748 case '}':
749 /* In future, may want to allow these?? */
750 return 0;
751 case '<':
752 depth++; /* start nested template */
753 if (just_seen_colon || just_seen_right || just_seen_space)
754 return 0; /* but not after : or :: or > or space */
755 break;
756 case '>':
757 if (just_seen_colon || just_seen_right)
758 return 0; /* end a (nested?) template */
759 just_seen_right = 1; /* but not after : or :: */
760 if (--depth == 0) /* also disallow >>, insist on > > */
761 return ++p; /* if outermost ended, return */
762 break;
763 case ':':
764 if (just_seen_space || (just_seen_colon > 1))
765 return 0; /* nested class spec coming up */
766 just_seen_colon++; /* we allow :: but not :::: */
767 break;
768 case ' ':
769 break;
770 default:
771 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
772 (*p >= 'A' && *p <= 'Z') ||
773 (*p >= '0' && *p <= '9') ||
774 (*p == '_') || (*p == ',') || /* commas for template args */
775 (*p == '&') || (*p == '*') || /* pointer and ref types */
776 (*p == '(') || (*p == ')') || /* function types */
777 (*p == '[') || (*p == ']'))) /* array types */
778 return 0;
779 }
780 if (*p != ' ')
781 just_seen_space = 0;
782 if (*p != ':')
783 just_seen_colon = 0;
784 if (*p != '>')
785 just_seen_right = 0;
786 }
787 return 0;
788 }
789 \f
790
791
792 /* Return a null-terminated temporary copy of the name
793 of a string token. */
794
795 char *
796 copy_name (struct stoken token)
797 {
798 memcpy (namecopy, token.ptr, token.length);
799 namecopy[token.length] = 0;
800 return namecopy;
801 }
802 \f
803 /* Reverse an expression from suffix form (in which it is constructed)
804 to prefix form (in which we can conveniently print or execute it). */
805
806 static void
807 prefixify_expression (register struct expression *expr)
808 {
809 register int len =
810 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
811 register struct expression *temp;
812 register int inpos = expr->nelts, outpos = 0;
813
814 temp = (struct expression *) alloca (len);
815
816 /* Copy the original expression into temp. */
817 memcpy (temp, expr, len);
818
819 prefixify_subexp (temp, expr, inpos, outpos);
820 }
821
822 /* Return the number of exp_elements in the subexpression of EXPR
823 whose last exp_element is at index ENDPOS - 1 in EXPR. */
824
825 int
826 length_of_subexp (register struct expression *expr, register int endpos)
827 {
828 register int oplen = 1;
829 register int args = 0;
830 register int i;
831
832 if (endpos < 1)
833 error ("?error in length_of_subexp");
834
835 i = (int) expr->elts[endpos - 1].opcode;
836
837 switch (i)
838 {
839 /* C++ */
840 case OP_SCOPE:
841 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
842 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
843 break;
844
845 case OP_LONG:
846 case OP_DOUBLE:
847 case OP_VAR_VALUE:
848 oplen = 4;
849 break;
850
851 case OP_TYPE:
852 case OP_BOOL:
853 case OP_LAST:
854 case OP_REGISTER:
855 case OP_INTERNALVAR:
856 oplen = 3;
857 break;
858
859 case OP_COMPLEX:
860 oplen = 1;
861 args = 2;
862 break;
863
864 case OP_FUNCALL:
865 case OP_F77_UNDETERMINED_ARGLIST:
866 oplen = 3;
867 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
868 break;
869
870 case UNOP_MAX:
871 case UNOP_MIN:
872 oplen = 3;
873 break;
874
875 case BINOP_VAL:
876 case UNOP_CAST:
877 case UNOP_MEMVAL:
878 oplen = 3;
879 args = 1;
880 break;
881
882 case UNOP_ABS:
883 case UNOP_CAP:
884 case UNOP_CHR:
885 case UNOP_FLOAT:
886 case UNOP_HIGH:
887 case UNOP_ODD:
888 case UNOP_ORD:
889 case UNOP_TRUNC:
890 oplen = 1;
891 args = 1;
892 break;
893
894 case OP_LABELED:
895 case STRUCTOP_STRUCT:
896 case STRUCTOP_PTR:
897 args = 1;
898 /* fall through */
899 case OP_M2_STRING:
900 case OP_STRING:
901 case OP_NAME:
902 case OP_EXPRSTRING:
903 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
904 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
905 break;
906
907 case OP_BITSTRING:
908 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
909 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
910 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
911 break;
912
913 case OP_ARRAY:
914 oplen = 4;
915 args = longest_to_int (expr->elts[endpos - 2].longconst);
916 args -= longest_to_int (expr->elts[endpos - 3].longconst);
917 args += 1;
918 break;
919
920 case TERNOP_COND:
921 case TERNOP_SLICE:
922 case TERNOP_SLICE_COUNT:
923 args = 3;
924 break;
925
926 /* Modula-2 */
927 case MULTI_SUBSCRIPT:
928 oplen = 3;
929 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
930 break;
931
932 case BINOP_ASSIGN_MODIFY:
933 oplen = 3;
934 args = 2;
935 break;
936
937 /* C++ */
938 case OP_THIS:
939 oplen = 2;
940 break;
941
942 default:
943 args = 1 + (i < (int) BINOP_END);
944 }
945
946 while (args > 0)
947 {
948 oplen += length_of_subexp (expr, endpos - oplen);
949 args--;
950 }
951
952 return oplen;
953 }
954
955 /* Copy the subexpression ending just before index INEND in INEXPR
956 into OUTEXPR, starting at index OUTBEG.
957 In the process, convert it from suffix to prefix form. */
958
959 static void
960 prefixify_subexp (register struct expression *inexpr,
961 struct expression *outexpr, register int inend, int outbeg)
962 {
963 register int oplen = 1;
964 register int args = 0;
965 register int i;
966 int *arglens;
967 enum exp_opcode opcode;
968
969 /* Compute how long the last operation is (in OPLEN),
970 and also how many preceding subexpressions serve as
971 arguments for it (in ARGS). */
972
973 opcode = inexpr->elts[inend - 1].opcode;
974 switch (opcode)
975 {
976 /* C++ */
977 case OP_SCOPE:
978 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
979 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
980 break;
981
982 case OP_LONG:
983 case OP_DOUBLE:
984 case OP_VAR_VALUE:
985 oplen = 4;
986 break;
987
988 case OP_TYPE:
989 case OP_BOOL:
990 case OP_LAST:
991 case OP_REGISTER:
992 case OP_INTERNALVAR:
993 oplen = 3;
994 break;
995
996 case OP_COMPLEX:
997 oplen = 1;
998 args = 2;
999 break;
1000
1001 case OP_FUNCALL:
1002 case OP_F77_UNDETERMINED_ARGLIST:
1003 oplen = 3;
1004 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
1005 break;
1006
1007 case UNOP_MIN:
1008 case UNOP_MAX:
1009 oplen = 3;
1010 break;
1011
1012 case UNOP_CAST:
1013 case UNOP_MEMVAL:
1014 oplen = 3;
1015 args = 1;
1016 break;
1017
1018 case UNOP_ABS:
1019 case UNOP_CAP:
1020 case UNOP_CHR:
1021 case UNOP_FLOAT:
1022 case UNOP_HIGH:
1023 case UNOP_ODD:
1024 case UNOP_ORD:
1025 case UNOP_TRUNC:
1026 oplen = 1;
1027 args = 1;
1028 break;
1029
1030 case STRUCTOP_STRUCT:
1031 case STRUCTOP_PTR:
1032 case OP_LABELED:
1033 args = 1;
1034 /* fall through */
1035 case OP_M2_STRING:
1036 case OP_STRING:
1037 case OP_NAME:
1038 case OP_EXPRSTRING:
1039 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1040 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
1041 break;
1042
1043 case OP_BITSTRING:
1044 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1045 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1046 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
1047 break;
1048
1049 case OP_ARRAY:
1050 oplen = 4;
1051 args = longest_to_int (inexpr->elts[inend - 2].longconst);
1052 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
1053 args += 1;
1054 break;
1055
1056 case TERNOP_COND:
1057 case TERNOP_SLICE:
1058 case TERNOP_SLICE_COUNT:
1059 args = 3;
1060 break;
1061
1062 case BINOP_ASSIGN_MODIFY:
1063 oplen = 3;
1064 args = 2;
1065 break;
1066
1067 /* Modula-2 */
1068 case MULTI_SUBSCRIPT:
1069 oplen = 3;
1070 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
1071 break;
1072
1073 /* C++ */
1074 case OP_THIS:
1075 oplen = 2;
1076 break;
1077
1078 default:
1079 args = 1 + ((int) opcode < (int) BINOP_END);
1080 }
1081
1082 /* Copy the final operator itself, from the end of the input
1083 to the beginning of the output. */
1084 inend -= oplen;
1085 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1086 EXP_ELEM_TO_BYTES (oplen));
1087 outbeg += oplen;
1088
1089 /* Find the lengths of the arg subexpressions. */
1090 arglens = (int *) alloca (args * sizeof (int));
1091 for (i = args - 1; i >= 0; i--)
1092 {
1093 oplen = length_of_subexp (inexpr, inend);
1094 arglens[i] = oplen;
1095 inend -= oplen;
1096 }
1097
1098 /* Now copy each subexpression, preserving the order of
1099 the subexpressions, but prefixifying each one.
1100 In this loop, inend starts at the beginning of
1101 the expression this level is working on
1102 and marches forward over the arguments.
1103 outbeg does similarly in the output. */
1104 for (i = 0; i < args; i++)
1105 {
1106 oplen = arglens[i];
1107 inend += oplen;
1108 prefixify_subexp (inexpr, outexpr, inend, outbeg);
1109 outbeg += oplen;
1110 }
1111 }
1112 \f
1113 /* This page contains the two entry points to this file. */
1114
1115 /* Read an expression from the string *STRINGPTR points to,
1116 parse it, and return a pointer to a struct expression that we malloc.
1117 Use block BLOCK as the lexical context for variable names;
1118 if BLOCK is zero, use the block of the selected stack frame.
1119 Meanwhile, advance *STRINGPTR to point after the expression,
1120 at the first nonwhite character that is not part of the expression
1121 (possibly a null character).
1122
1123 If COMMA is nonzero, stop if a comma is reached. */
1124
1125 struct expression *
1126 parse_exp_1 (char **stringptr, struct block *block, int comma)
1127 {
1128 struct cleanup *old_chain;
1129
1130 lexptr = *stringptr;
1131 prev_lexptr = NULL;
1132
1133 paren_depth = 0;
1134 type_stack_depth = 0;
1135
1136 comma_terminates = comma;
1137
1138 if (lexptr == 0 || *lexptr == 0)
1139 error_no_arg ("expression to compute");
1140
1141 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1142 funcall_chain = 0;
1143
1144 if (block)
1145 {
1146 expression_context_block = block;
1147 expression_context_pc = block->startaddr;
1148 }
1149 else
1150 expression_context_block = get_selected_block (&expression_context_pc);
1151
1152 namecopy = (char *) alloca (strlen (lexptr) + 1);
1153 expout_size = 10;
1154 expout_ptr = 0;
1155 expout = (struct expression *)
1156 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
1157 expout->language_defn = current_language;
1158 make_cleanup (free_current_contents, &expout);
1159
1160 if (current_language->la_parser ())
1161 current_language->la_error (NULL);
1162
1163 discard_cleanups (old_chain);
1164
1165 /* Record the actual number of expression elements, and then
1166 reallocate the expression memory so that we free up any
1167 excess elements. */
1168
1169 expout->nelts = expout_ptr;
1170 expout = (struct expression *)
1171 xrealloc ((char *) expout,
1172 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
1173
1174 /* Convert expression from postfix form as generated by yacc
1175 parser, to a prefix form. */
1176
1177 if (expressiondebug)
1178 dump_prefix_expression (expout, gdb_stdlog,
1179 "before conversion to prefix form");
1180
1181 prefixify_expression (expout);
1182
1183 if (expressiondebug)
1184 dump_postfix_expression (expout, gdb_stdlog,
1185 "after conversion to prefix form");
1186
1187 *stringptr = lexptr;
1188 return expout;
1189 }
1190
1191 /* Parse STRING as an expression, and complain if this fails
1192 to use up all of the contents of STRING. */
1193
1194 struct expression *
1195 parse_expression (char *string)
1196 {
1197 register struct expression *exp;
1198 exp = parse_exp_1 (&string, 0, 0);
1199 if (*string)
1200 error ("Junk after end of expression.");
1201 return exp;
1202 }
1203 \f
1204 /* Stuff for maintaining a stack of types. Currently just used by C, but
1205 probably useful for any language which declares its types "backwards". */
1206
1207 static void
1208 check_type_stack_depth (void)
1209 {
1210 if (type_stack_depth == type_stack_size)
1211 {
1212 type_stack_size *= 2;
1213 type_stack = (union type_stack_elt *)
1214 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1215 }
1216 }
1217
1218 void
1219 push_type (enum type_pieces tp)
1220 {
1221 check_type_stack_depth ();
1222 type_stack[type_stack_depth++].piece = tp;
1223 }
1224
1225 void
1226 push_type_int (int n)
1227 {
1228 check_type_stack_depth ();
1229 type_stack[type_stack_depth++].int_val = n;
1230 }
1231
1232 void
1233 push_type_address_space (char *string)
1234 {
1235 push_type_int (address_space_name_to_int (string));
1236 }
1237
1238 enum type_pieces
1239 pop_type (void)
1240 {
1241 if (type_stack_depth)
1242 return type_stack[--type_stack_depth].piece;
1243 return tp_end;
1244 }
1245
1246 int
1247 pop_type_int (void)
1248 {
1249 if (type_stack_depth)
1250 return type_stack[--type_stack_depth].int_val;
1251 /* "Can't happen". */
1252 return 0;
1253 }
1254
1255 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1256 as modified by all the stuff on the stack. */
1257 struct type *
1258 follow_types (struct type *follow_type)
1259 {
1260 int done = 0;
1261 int make_const = 0;
1262 int make_volatile = 0;
1263 int make_addr_space = 0;
1264 int array_size;
1265 struct type *range_type;
1266
1267 while (!done)
1268 switch (pop_type ())
1269 {
1270 case tp_end:
1271 done = 1;
1272 if (make_const)
1273 follow_type = make_cv_type (make_const,
1274 TYPE_VOLATILE (follow_type),
1275 follow_type, 0);
1276 if (make_volatile)
1277 follow_type = make_cv_type (TYPE_CONST (follow_type),
1278 make_volatile,
1279 follow_type, 0);
1280 if (make_addr_space)
1281 follow_type = make_type_with_address_space (follow_type,
1282 make_addr_space);
1283 make_const = make_volatile = 0;
1284 make_addr_space = 0;
1285 break;
1286 case tp_const:
1287 make_const = 1;
1288 break;
1289 case tp_volatile:
1290 make_volatile = 1;
1291 break;
1292 case tp_space_identifier:
1293 make_addr_space = pop_type_int ();
1294 break;
1295 case tp_pointer:
1296 follow_type = lookup_pointer_type (follow_type);
1297 if (make_const)
1298 follow_type = make_cv_type (make_const,
1299 TYPE_VOLATILE (follow_type),
1300 follow_type, 0);
1301 if (make_volatile)
1302 follow_type = make_cv_type (TYPE_CONST (follow_type),
1303 make_volatile,
1304 follow_type, 0);
1305 if (make_addr_space)
1306 follow_type = make_type_with_address_space (follow_type,
1307 make_addr_space);
1308 make_const = make_volatile = 0;
1309 make_addr_space = 0;
1310 break;
1311 case tp_reference:
1312 follow_type = lookup_reference_type (follow_type);
1313 if (make_const)
1314 follow_type = make_cv_type (make_const,
1315 TYPE_VOLATILE (follow_type),
1316 follow_type, 0);
1317 if (make_volatile)
1318 follow_type = make_cv_type (TYPE_CONST (follow_type),
1319 make_volatile,
1320 follow_type, 0);
1321 if (make_addr_space)
1322 follow_type = make_type_with_address_space (follow_type,
1323 make_addr_space);
1324 make_const = make_volatile = 0;
1325 make_addr_space = 0;
1326 break;
1327 case tp_array:
1328 array_size = pop_type_int ();
1329 /* FIXME-type-allocation: need a way to free this type when we are
1330 done with it. */
1331 range_type =
1332 create_range_type ((struct type *) NULL,
1333 builtin_type_int, 0,
1334 array_size >= 0 ? array_size - 1 : 0);
1335 follow_type =
1336 create_array_type ((struct type *) NULL,
1337 follow_type, range_type);
1338 if (array_size < 0)
1339 TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type)
1340 = BOUND_CANNOT_BE_DETERMINED;
1341 break;
1342 case tp_function:
1343 /* FIXME-type-allocation: need a way to free this type when we are
1344 done with it. */
1345 follow_type = lookup_function_type (follow_type);
1346 break;
1347 }
1348 return follow_type;
1349 }
1350 \f
1351 static void build_parse (void);
1352 static void
1353 build_parse (void)
1354 {
1355 int i;
1356
1357 msym_text_symbol_type =
1358 init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
1359 TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
1360 msym_data_symbol_type =
1361 init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
1362 "<data variable, no debug info>", NULL);
1363 msym_unknown_symbol_type =
1364 init_type (TYPE_CODE_INT, 1, 0,
1365 "<variable (not text or data), no debug info>",
1366 NULL);
1367 }
1368
1369 /* This function avoids direct calls to fprintf
1370 in the parser generated debug code. */
1371 void
1372 parser_fprintf (FILE *x, const char *y, ...)
1373 {
1374 va_list args;
1375 va_start (args, y);
1376 if (x == stderr)
1377 vfprintf_unfiltered (gdb_stderr, y, args);
1378 else
1379 {
1380 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1381 vfprintf_unfiltered (gdb_stderr, y, args);
1382 }
1383 va_end (args);
1384 }
1385
1386 void
1387 _initialize_parse (void)
1388 {
1389 type_stack_size = 80;
1390 type_stack_depth = 0;
1391 type_stack = (union type_stack_elt *)
1392 xmalloc (type_stack_size * sizeof (*type_stack));
1393
1394 build_parse ();
1395
1396 /* FIXME - For the moment, handle types by swapping them in and out.
1397 Should be using the per-architecture data-pointer and a large
1398 struct. */
1399 register_gdbarch_swap (&msym_text_symbol_type, sizeof (msym_text_symbol_type), NULL);
1400 register_gdbarch_swap (&msym_data_symbol_type, sizeof (msym_data_symbol_type), NULL);
1401 register_gdbarch_swap (&msym_unknown_symbol_type, sizeof (msym_unknown_symbol_type), NULL);
1402
1403 register_gdbarch_swap (NULL, 0, build_parse);
1404
1405 add_show_from_set (
1406 add_set_cmd ("expression", class_maintenance, var_zinteger,
1407 (char *) &expressiondebug,
1408 "Set expression debugging.\n\
1409 When non-zero, the internal representation of expressions will be printed.",
1410 &setdebuglist),
1411 &showdebuglist);
1412 }
This page took 0.059385 seconds and 4 git commands to generate.