* tracepoint.c (trace_start_command): Set trace_running_p.
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1994 Free Software Foundation, Inc.
3 Modified from expread.y by the Department of Computer Science at the
4 State University of New York at Buffalo, 1991.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* Parse an expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result. */
30
31 #include "defs.h"
32 #include "gdb_string.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "frame.h"
36 #include "expression.h"
37 #include "value.h"
38 #include "command.h"
39 #include "language.h"
40 #include "parser-defs.h"
41 \f
42 /* Global variables declared in parser-defs.h (and commented there). */
43 struct expression *expout;
44 int expout_size;
45 int expout_ptr;
46 struct block *expression_context_block;
47 struct block *innermost_block;
48 int arglist_len;
49 union type_stack_elt *type_stack;
50 int type_stack_depth, type_stack_size;
51 char *lexptr;
52 char *namecopy;
53 int paren_depth;
54 int comma_terminates;
55 \f
56 static void
57 free_funcalls PARAMS ((void));
58
59 static void
60 prefixify_expression PARAMS ((struct expression *));
61
62 static void
63 prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int));
64
65 /* Data structure for saving values of arglist_len for function calls whose
66 arguments contain other function calls. */
67
68 struct funcall
69 {
70 struct funcall *next;
71 int arglist_len;
72 };
73
74 static struct funcall *funcall_chain;
75
76 /* Assign machine-independent names to certain registers
77 (unless overridden by the REGISTER_NAMES table) */
78
79 #ifdef NO_STD_REGS
80 unsigned num_std_regs = 0;
81 struct std_regs std_regs[1];
82 #else
83 struct std_regs std_regs[] = {
84
85 #ifdef PC_REGNUM
86 { "pc", PC_REGNUM },
87 #endif
88 #ifdef FP_REGNUM
89 { "fp", FP_REGNUM },
90 #endif
91 #ifdef SP_REGNUM
92 { "sp", SP_REGNUM },
93 #endif
94 #ifdef PS_REGNUM
95 { "ps", PS_REGNUM },
96 #endif
97
98 };
99
100 unsigned num_std_regs = (sizeof std_regs / sizeof std_regs[0]);
101
102 #endif
103
104 /* The generic method for targets to specify how their registers are named.
105 The mapping can be derived from three sources: reg_names; std_regs; or
106 a target specific alias hook. */
107
108 int
109 target_map_name_to_register (str, len)
110 char *str;
111 int len;
112 {
113 int i;
114
115 /* First search architectural register name space. */
116 for (i = 0; i < NUM_REGS; i++)
117 if (reg_names[i] && len == strlen (reg_names[i])
118 && STREQN (str, reg_names[i], len))
119 {
120 return i;
121 }
122
123 /* Try standard aliases */
124 for (i = 0; i < num_std_regs; i++)
125 if (std_regs[i].name && len == strlen (std_regs[i].name)
126 && STREQN (str, std_regs[i].name, len))
127 {
128 return std_regs[i].regnum;
129 }
130
131 /* Try target specific aliases */
132 #ifdef REGISTER_NAME_ALIAS_HOOK
133 return REGISTER_NAME_ALIAS_HOOK (str, len);
134 #endif
135
136 return -1;
137 }
138
139 /* Begin counting arguments for a function call,
140 saving the data about any containing call. */
141
142 void
143 start_arglist ()
144 {
145 register struct funcall *new;
146
147 new = (struct funcall *) xmalloc (sizeof (struct funcall));
148 new->next = funcall_chain;
149 new->arglist_len = arglist_len;
150 arglist_len = 0;
151 funcall_chain = new;
152 }
153
154 /* Return the number of arguments in a function call just terminated,
155 and restore the data for the containing function call. */
156
157 int
158 end_arglist ()
159 {
160 register int val = arglist_len;
161 register struct funcall *call = funcall_chain;
162 funcall_chain = call->next;
163 arglist_len = call->arglist_len;
164 free ((PTR)call);
165 return val;
166 }
167
168 /* Free everything in the funcall chain.
169 Used when there is an error inside parsing. */
170
171 static void
172 free_funcalls ()
173 {
174 register struct funcall *call, *next;
175
176 for (call = funcall_chain; call; call = next)
177 {
178 next = call->next;
179 free ((PTR)call);
180 }
181 }
182 \f
183 /* This page contains the functions for adding data to the struct expression
184 being constructed. */
185
186 /* Add one element to the end of the expression. */
187
188 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
189 a register through here */
190
191 void
192 write_exp_elt (expelt)
193 union exp_element expelt;
194 {
195 if (expout_ptr >= expout_size)
196 {
197 expout_size *= 2;
198 expout = (struct expression *)
199 xrealloc ((char *) expout, sizeof (struct expression)
200 + EXP_ELEM_TO_BYTES (expout_size));
201 }
202 expout->elts[expout_ptr++] = expelt;
203 }
204
205 void
206 write_exp_elt_opcode (expelt)
207 enum exp_opcode expelt;
208 {
209 union exp_element tmp;
210
211 tmp.opcode = expelt;
212
213 write_exp_elt (tmp);
214 }
215
216 void
217 write_exp_elt_sym (expelt)
218 struct symbol *expelt;
219 {
220 union exp_element tmp;
221
222 tmp.symbol = expelt;
223
224 write_exp_elt (tmp);
225 }
226
227 void
228 write_exp_elt_block (b)
229 struct block *b;
230 {
231 union exp_element tmp;
232 tmp.block = b;
233 write_exp_elt (tmp);
234 }
235
236 void
237 write_exp_elt_longcst (expelt)
238 LONGEST expelt;
239 {
240 union exp_element tmp;
241
242 tmp.longconst = expelt;
243
244 write_exp_elt (tmp);
245 }
246
247 void
248 write_exp_elt_dblcst (expelt)
249 DOUBLEST expelt;
250 {
251 union exp_element tmp;
252
253 tmp.doubleconst = expelt;
254
255 write_exp_elt (tmp);
256 }
257
258 void
259 write_exp_elt_type (expelt)
260 struct type *expelt;
261 {
262 union exp_element tmp;
263
264 tmp.type = expelt;
265
266 write_exp_elt (tmp);
267 }
268
269 void
270 write_exp_elt_intern (expelt)
271 struct internalvar *expelt;
272 {
273 union exp_element tmp;
274
275 tmp.internalvar = expelt;
276
277 write_exp_elt (tmp);
278 }
279
280 /* Add a string constant to the end of the expression.
281
282 String constants are stored by first writing an expression element
283 that contains the length of the string, then stuffing the string
284 constant itself into however many expression elements are needed
285 to hold it, and then writing another expression element that contains
286 the length of the string. I.E. an expression element at each end of
287 the string records the string length, so you can skip over the
288 expression elements containing the actual string bytes from either
289 end of the string. Note that this also allows gdb to handle
290 strings with embedded null bytes, as is required for some languages.
291
292 Don't be fooled by the fact that the string is null byte terminated,
293 this is strictly for the convenience of debugging gdb itself. Gdb
294 Gdb does not depend up the string being null terminated, since the
295 actual length is recorded in expression elements at each end of the
296 string. The null byte is taken into consideration when computing how
297 many expression elements are required to hold the string constant, of
298 course. */
299
300
301 void
302 write_exp_string (str)
303 struct stoken str;
304 {
305 register int len = str.length;
306 register int lenelt;
307 register char *strdata;
308
309 /* Compute the number of expression elements required to hold the string
310 (including a null byte terminator), along with one expression element
311 at each end to record the actual string length (not including the
312 null byte terminator). */
313
314 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
315
316 /* Ensure that we have enough available expression elements to store
317 everything. */
318
319 if ((expout_ptr + lenelt) >= expout_size)
320 {
321 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
322 expout = (struct expression *)
323 xrealloc ((char *) expout, (sizeof (struct expression)
324 + EXP_ELEM_TO_BYTES (expout_size)));
325 }
326
327 /* Write the leading length expression element (which advances the current
328 expression element index), then write the string constant followed by a
329 terminating null byte, and then write the trailing length expression
330 element. */
331
332 write_exp_elt_longcst ((LONGEST) len);
333 strdata = (char *) &expout->elts[expout_ptr];
334 memcpy (strdata, str.ptr, len);
335 *(strdata + len) = '\0';
336 expout_ptr += lenelt - 2;
337 write_exp_elt_longcst ((LONGEST) len);
338 }
339
340 /* Add a bitstring constant to the end of the expression.
341
342 Bitstring constants are stored by first writing an expression element
343 that contains the length of the bitstring (in bits), then stuffing the
344 bitstring constant itself into however many expression elements are
345 needed to hold it, and then writing another expression element that
346 contains the length of the bitstring. I.E. an expression element at
347 each end of the bitstring records the bitstring length, so you can skip
348 over the expression elements containing the actual bitstring bytes from
349 either end of the bitstring. */
350
351 void
352 write_exp_bitstring (str)
353 struct stoken str;
354 {
355 register int bits = str.length; /* length in bits */
356 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
357 register int lenelt;
358 register char *strdata;
359
360 /* Compute the number of expression elements required to hold the bitstring,
361 along with one expression element at each end to record the actual
362 bitstring length in bits. */
363
364 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
365
366 /* Ensure that we have enough available expression elements to store
367 everything. */
368
369 if ((expout_ptr + lenelt) >= expout_size)
370 {
371 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
372 expout = (struct expression *)
373 xrealloc ((char *) expout, (sizeof (struct expression)
374 + EXP_ELEM_TO_BYTES (expout_size)));
375 }
376
377 /* Write the leading length expression element (which advances the current
378 expression element index), then write the bitstring constant, and then
379 write the trailing length expression element. */
380
381 write_exp_elt_longcst ((LONGEST) bits);
382 strdata = (char *) &expout->elts[expout_ptr];
383 memcpy (strdata, str.ptr, len);
384 expout_ptr += lenelt - 2;
385 write_exp_elt_longcst ((LONGEST) bits);
386 }
387
388 /* Add the appropriate elements for a minimal symbol to the end of
389 the expression. The rationale behind passing in text_symbol_type and
390 data_symbol_type was so that Modula-2 could pass in WORD for
391 data_symbol_type. Perhaps it still is useful to have those types vary
392 based on the language, but they no longer have names like "int", so
393 the initial rationale is gone. */
394
395 static struct type *msym_text_symbol_type;
396 static struct type *msym_data_symbol_type;
397 static struct type *msym_unknown_symbol_type;
398
399 void
400 write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type)
401 struct minimal_symbol *msymbol;
402 struct type *text_symbol_type;
403 struct type *data_symbol_type;
404 {
405 write_exp_elt_opcode (OP_LONG);
406 write_exp_elt_type (lookup_pointer_type (builtin_type_void));
407 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
408 write_exp_elt_opcode (OP_LONG);
409
410 write_exp_elt_opcode (UNOP_MEMVAL);
411 switch (msymbol -> type)
412 {
413 case mst_text:
414 case mst_file_text:
415 case mst_solib_trampoline:
416 write_exp_elt_type (msym_text_symbol_type);
417 break;
418
419 case mst_data:
420 case mst_file_data:
421 case mst_bss:
422 case mst_file_bss:
423 write_exp_elt_type (msym_data_symbol_type);
424 break;
425
426 default:
427 write_exp_elt_type (msym_unknown_symbol_type);
428 break;
429 }
430 write_exp_elt_opcode (UNOP_MEMVAL);
431 }
432 \f
433 /* Recognize tokens that start with '$'. These include:
434
435 $regname A native register name or a "standard
436 register name".
437
438 $variable A convenience variable with a name chosen
439 by the user.
440
441 $digits Value history with index <digits>, starting
442 from the first value which has index 1.
443
444 $$digits Value history with index <digits> relative
445 to the last value. I.E. $$0 is the last
446 value, $$1 is the one previous to that, $$2
447 is the one previous to $$1, etc.
448
449 $ | $0 | $$0 The last value in the value history.
450
451 $$ An abbreviation for the second to the last
452 value in the value history, I.E. $$1
453
454 */
455
456 void
457 write_dollar_variable (str)
458 struct stoken str;
459 {
460 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
461 and $$digits (equivalent to $<-digits> if you could type that). */
462
463 int negate = 0;
464 int i = 1;
465 /* Double dollar means negate the number and add -1 as well.
466 Thus $$ alone means -1. */
467 if (str.length >= 2 && str.ptr[1] == '$')
468 {
469 negate = 1;
470 i = 2;
471 }
472 if (i == str.length)
473 {
474 /* Just dollars (one or two) */
475 i = - negate;
476 goto handle_last;
477 }
478 /* Is the rest of the token digits? */
479 for (; i < str.length; i++)
480 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
481 break;
482 if (i == str.length)
483 {
484 i = atoi (str.ptr + 1 + negate);
485 if (negate)
486 i = - i;
487 goto handle_last;
488 }
489
490 /* Handle tokens that refer to machine registers:
491 $ followed by a register name. */
492 i = target_map_name_to_register( str.ptr + 1, str.length - 1 );
493 if( i >= 0 )
494 goto handle_register;
495
496 /* Any other names starting in $ are debugger internal variables. */
497
498 write_exp_elt_opcode (OP_INTERNALVAR);
499 write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
500 write_exp_elt_opcode (OP_INTERNALVAR);
501 return;
502 handle_last:
503 write_exp_elt_opcode (OP_LAST);
504 write_exp_elt_longcst ((LONGEST) i);
505 write_exp_elt_opcode (OP_LAST);
506 return;
507 handle_register:
508 write_exp_elt_opcode (OP_REGISTER);
509 write_exp_elt_longcst (i);
510 write_exp_elt_opcode (OP_REGISTER);
511 return;
512 }
513 \f
514 /* Return a null-terminated temporary copy of the name
515 of a string token. */
516
517 char *
518 copy_name (token)
519 struct stoken token;
520 {
521 memcpy (namecopy, token.ptr, token.length);
522 namecopy[token.length] = 0;
523 return namecopy;
524 }
525 \f
526 /* Reverse an expression from suffix form (in which it is constructed)
527 to prefix form (in which we can conveniently print or execute it). */
528
529 static void
530 prefixify_expression (expr)
531 register struct expression *expr;
532 {
533 register int len =
534 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
535 register struct expression *temp;
536 register int inpos = expr->nelts, outpos = 0;
537
538 temp = (struct expression *) alloca (len);
539
540 /* Copy the original expression into temp. */
541 memcpy (temp, expr, len);
542
543 prefixify_subexp (temp, expr, inpos, outpos);
544 }
545
546 /* Return the number of exp_elements in the subexpression of EXPR
547 whose last exp_element is at index ENDPOS - 1 in EXPR. */
548
549 int
550 length_of_subexp (expr, endpos)
551 register struct expression *expr;
552 register int endpos;
553 {
554 register int oplen = 1;
555 register int args = 0;
556 register int i;
557
558 if (endpos < 1)
559 error ("?error in length_of_subexp");
560
561 i = (int) expr->elts[endpos - 1].opcode;
562
563 switch (i)
564 {
565 /* C++ */
566 case OP_SCOPE:
567 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
568 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
569 break;
570
571 case OP_LONG:
572 case OP_DOUBLE:
573 case OP_VAR_VALUE:
574 oplen = 4;
575 break;
576
577 case OP_TYPE:
578 case OP_BOOL:
579 case OP_LAST:
580 case OP_REGISTER:
581 case OP_INTERNALVAR:
582 oplen = 3;
583 break;
584
585 case OP_COMPLEX:
586 oplen = 1;
587 args = 2;
588 break;
589
590 case OP_FUNCALL:
591 case OP_F77_UNDETERMINED_ARGLIST:
592 oplen = 3;
593 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
594 break;
595
596 case UNOP_MAX:
597 case UNOP_MIN:
598 oplen = 3;
599 break;
600
601 case BINOP_VAL:
602 case UNOP_CAST:
603 case UNOP_MEMVAL:
604 oplen = 3;
605 args = 1;
606 break;
607
608 case UNOP_ABS:
609 case UNOP_CAP:
610 case UNOP_CHR:
611 case UNOP_FLOAT:
612 case UNOP_HIGH:
613 case UNOP_ODD:
614 case UNOP_ORD:
615 case UNOP_TRUNC:
616 oplen = 1;
617 args = 1;
618 break;
619
620 case OP_LABELED:
621 case STRUCTOP_STRUCT:
622 case STRUCTOP_PTR:
623 args = 1;
624 /* fall through */
625 case OP_M2_STRING:
626 case OP_STRING:
627 case OP_NAME:
628 case OP_EXPRSTRING:
629 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
630 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
631 break;
632
633 case OP_BITSTRING:
634 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
635 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
636 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
637 break;
638
639 case OP_ARRAY:
640 oplen = 4;
641 args = longest_to_int (expr->elts[endpos - 2].longconst);
642 args -= longest_to_int (expr->elts[endpos - 3].longconst);
643 args += 1;
644 break;
645
646 case TERNOP_COND:
647 case TERNOP_SLICE:
648 case TERNOP_SLICE_COUNT:
649 args = 3;
650 break;
651
652 /* Modula-2 */
653 case MULTI_SUBSCRIPT:
654 oplen = 3;
655 args = 1 + longest_to_int (expr->elts[endpos- 2].longconst);
656 break;
657
658 case BINOP_ASSIGN_MODIFY:
659 oplen = 3;
660 args = 2;
661 break;
662
663 /* C++ */
664 case OP_THIS:
665 oplen = 2;
666 break;
667
668 default:
669 args = 1 + (i < (int) BINOP_END);
670 }
671
672 while (args > 0)
673 {
674 oplen += length_of_subexp (expr, endpos - oplen);
675 args--;
676 }
677
678 return oplen;
679 }
680
681 /* Copy the subexpression ending just before index INEND in INEXPR
682 into OUTEXPR, starting at index OUTBEG.
683 In the process, convert it from suffix to prefix form. */
684
685 static void
686 prefixify_subexp (inexpr, outexpr, inend, outbeg)
687 register struct expression *inexpr;
688 struct expression *outexpr;
689 register int inend;
690 int outbeg;
691 {
692 register int oplen = 1;
693 register int args = 0;
694 register int i;
695 int *arglens;
696 enum exp_opcode opcode;
697
698 /* Compute how long the last operation is (in OPLEN),
699 and also how many preceding subexpressions serve as
700 arguments for it (in ARGS). */
701
702 opcode = inexpr->elts[inend - 1].opcode;
703 switch (opcode)
704 {
705 /* C++ */
706 case OP_SCOPE:
707 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
708 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
709 break;
710
711 case OP_LONG:
712 case OP_DOUBLE:
713 case OP_VAR_VALUE:
714 oplen = 4;
715 break;
716
717 case OP_TYPE:
718 case OP_BOOL:
719 case OP_LAST:
720 case OP_REGISTER:
721 case OP_INTERNALVAR:
722 oplen = 3;
723 break;
724
725 case OP_COMPLEX:
726 oplen = 1;
727 args = 2;
728 break;
729
730 case OP_FUNCALL:
731 case OP_F77_UNDETERMINED_ARGLIST:
732 oplen = 3;
733 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
734 break;
735
736 case UNOP_MIN:
737 case UNOP_MAX:
738 oplen = 3;
739 break;
740
741 case UNOP_CAST:
742 case UNOP_MEMVAL:
743 oplen = 3;
744 args = 1;
745 break;
746
747 case UNOP_ABS:
748 case UNOP_CAP:
749 case UNOP_CHR:
750 case UNOP_FLOAT:
751 case UNOP_HIGH:
752 case UNOP_ODD:
753 case UNOP_ORD:
754 case UNOP_TRUNC:
755 oplen=1;
756 args=1;
757 break;
758
759 case STRUCTOP_STRUCT:
760 case STRUCTOP_PTR:
761 case OP_LABELED:
762 args = 1;
763 /* fall through */
764 case OP_M2_STRING:
765 case OP_STRING:
766 case OP_NAME:
767 case OP_EXPRSTRING:
768 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
769 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
770 break;
771
772 case OP_BITSTRING:
773 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
774 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
775 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
776 break;
777
778 case OP_ARRAY:
779 oplen = 4;
780 args = longest_to_int (inexpr->elts[inend - 2].longconst);
781 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
782 args += 1;
783 break;
784
785 case TERNOP_COND:
786 case TERNOP_SLICE:
787 case TERNOP_SLICE_COUNT:
788 args = 3;
789 break;
790
791 case BINOP_ASSIGN_MODIFY:
792 oplen = 3;
793 args = 2;
794 break;
795
796 /* Modula-2 */
797 case MULTI_SUBSCRIPT:
798 oplen = 3;
799 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
800 break;
801
802 /* C++ */
803 case OP_THIS:
804 oplen = 2;
805 break;
806
807 default:
808 args = 1 + ((int) opcode < (int) BINOP_END);
809 }
810
811 /* Copy the final operator itself, from the end of the input
812 to the beginning of the output. */
813 inend -= oplen;
814 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
815 EXP_ELEM_TO_BYTES (oplen));
816 outbeg += oplen;
817
818 /* Find the lengths of the arg subexpressions. */
819 arglens = (int *) alloca (args * sizeof (int));
820 for (i = args - 1; i >= 0; i--)
821 {
822 oplen = length_of_subexp (inexpr, inend);
823 arglens[i] = oplen;
824 inend -= oplen;
825 }
826
827 /* Now copy each subexpression, preserving the order of
828 the subexpressions, but prefixifying each one.
829 In this loop, inend starts at the beginning of
830 the expression this level is working on
831 and marches forward over the arguments.
832 outbeg does similarly in the output. */
833 for (i = 0; i < args; i++)
834 {
835 oplen = arglens[i];
836 inend += oplen;
837 prefixify_subexp (inexpr, outexpr, inend, outbeg);
838 outbeg += oplen;
839 }
840 }
841 \f
842 /* This page contains the two entry points to this file. */
843
844 /* Read an expression from the string *STRINGPTR points to,
845 parse it, and return a pointer to a struct expression that we malloc.
846 Use block BLOCK as the lexical context for variable names;
847 if BLOCK is zero, use the block of the selected stack frame.
848 Meanwhile, advance *STRINGPTR to point after the expression,
849 at the first nonwhite character that is not part of the expression
850 (possibly a null character).
851
852 If COMMA is nonzero, stop if a comma is reached. */
853
854 struct expression *
855 parse_exp_1 (stringptr, block, comma)
856 char **stringptr;
857 struct block *block;
858 int comma;
859 {
860 struct cleanup *old_chain;
861
862 lexptr = *stringptr;
863
864 paren_depth = 0;
865 type_stack_depth = 0;
866
867 comma_terminates = comma;
868
869 if (lexptr == 0 || *lexptr == 0)
870 error_no_arg ("expression to compute");
871
872 old_chain = make_cleanup (free_funcalls, 0);
873 funcall_chain = 0;
874
875 expression_context_block = block ? block : get_selected_block ();
876
877 namecopy = (char *) alloca (strlen (lexptr) + 1);
878 expout_size = 10;
879 expout_ptr = 0;
880 expout = (struct expression *)
881 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
882 expout->language_defn = current_language;
883 make_cleanup (free_current_contents, &expout);
884
885 if (current_language->la_parser ())
886 current_language->la_error (NULL);
887
888 discard_cleanups (old_chain);
889
890 /* Record the actual number of expression elements, and then
891 reallocate the expression memory so that we free up any
892 excess elements. */
893
894 expout->nelts = expout_ptr;
895 expout = (struct expression *)
896 xrealloc ((char *) expout,
897 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
898
899 /* Convert expression from postfix form as generated by yacc
900 parser, to a prefix form. */
901
902 DUMP_EXPRESSION (expout, gdb_stdout, "before conversion to prefix form");
903 prefixify_expression (expout);
904 DUMP_EXPRESSION (expout, gdb_stdout, "after conversion to prefix form");
905
906 *stringptr = lexptr;
907 return expout;
908 }
909
910 /* Parse STRING as an expression, and complain if this fails
911 to use up all of the contents of STRING. */
912
913 struct expression *
914 parse_expression (string)
915 char *string;
916 {
917 register struct expression *exp;
918 exp = parse_exp_1 (&string, 0, 0);
919 if (*string)
920 error ("Junk after end of expression.");
921 return exp;
922 }
923 \f
924 /* Stuff for maintaining a stack of types. Currently just used by C, but
925 probably useful for any language which declares its types "backwards". */
926
927 void
928 push_type (tp)
929 enum type_pieces tp;
930 {
931 if (type_stack_depth == type_stack_size)
932 {
933 type_stack_size *= 2;
934 type_stack = (union type_stack_elt *)
935 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
936 }
937 type_stack[type_stack_depth++].piece = tp;
938 }
939
940 void
941 push_type_int (n)
942 int n;
943 {
944 if (type_stack_depth == type_stack_size)
945 {
946 type_stack_size *= 2;
947 type_stack = (union type_stack_elt *)
948 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
949 }
950 type_stack[type_stack_depth++].int_val = n;
951 }
952
953 enum type_pieces
954 pop_type ()
955 {
956 if (type_stack_depth)
957 return type_stack[--type_stack_depth].piece;
958 return tp_end;
959 }
960
961 int
962 pop_type_int ()
963 {
964 if (type_stack_depth)
965 return type_stack[--type_stack_depth].int_val;
966 /* "Can't happen". */
967 return 0;
968 }
969
970 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
971 as modified by all the stuff on the stack. */
972 struct type *
973 follow_types (follow_type)
974 struct type *follow_type;
975 {
976 int done = 0;
977 int array_size;
978 struct type *range_type;
979
980 while (!done)
981 switch (pop_type ())
982 {
983 case tp_end:
984 done = 1;
985 break;
986 case tp_pointer:
987 follow_type = lookup_pointer_type (follow_type);
988 break;
989 case tp_reference:
990 follow_type = lookup_reference_type (follow_type);
991 break;
992 case tp_array:
993 array_size = pop_type_int ();
994 /* FIXME-type-allocation: need a way to free this type when we are
995 done with it. */
996 range_type =
997 create_range_type ((struct type *) NULL,
998 builtin_type_int, 0,
999 array_size >= 0 ? array_size - 1 : 0);
1000 follow_type =
1001 create_array_type ((struct type *) NULL,
1002 follow_type, range_type);
1003 if (array_size < 0)
1004 TYPE_ARRAY_UPPER_BOUND_TYPE(follow_type)
1005 = BOUND_CANNOT_BE_DETERMINED;
1006 break;
1007 case tp_function:
1008 /* FIXME-type-allocation: need a way to free this type when we are
1009 done with it. */
1010 follow_type = lookup_function_type (follow_type);
1011 break;
1012 }
1013 return follow_type;
1014 }
1015 \f
1016 void
1017 _initialize_parse ()
1018 {
1019 type_stack_size = 80;
1020 type_stack_depth = 0;
1021 type_stack = (union type_stack_elt *)
1022 xmalloc (type_stack_size * sizeof (*type_stack));
1023
1024 msym_text_symbol_type =
1025 init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
1026 TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
1027 msym_data_symbol_type =
1028 init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
1029 "<data variable, no debug info>", NULL);
1030 msym_unknown_symbol_type =
1031 init_type (TYPE_CODE_INT, 1, 0,
1032 "<variable (not text or data), no debug info>",
1033 NULL);
1034 }
This page took 0.050032 seconds and 4 git commands to generate.