Update years in copyright notice for the GDB files.
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "gdb_string.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "frame.h"
39 #include "expression.h"
40 #include "value.h"
41 #include "command.h"
42 #include "language.h"
43 #include "f-lang.h"
44 #include "parser-defs.h"
45 #include "gdbcmd.h"
46 #include "symfile.h" /* for overlay functions */
47 #include "inferior.h"
48 #include "doublest.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "source.h"
52 #include "objfiles.h"
53 #include "exceptions.h"
54 #include "user-regs.h"
55
56 /* Standard set of definitions for printing, dumping, prefixifying,
57 * and evaluating expressions. */
58
59 const struct exp_descriptor exp_descriptor_standard =
60 {
61 print_subexp_standard,
62 operator_length_standard,
63 operator_check_standard,
64 op_name_standard,
65 dump_subexp_body_standard,
66 evaluate_subexp_standard
67 };
68 \f
69 /* Global variables declared in parser-defs.h (and commented there). */
70 struct expression *expout;
71 int expout_size;
72 int expout_ptr;
73 const struct block *expression_context_block;
74 CORE_ADDR expression_context_pc;
75 const struct block *innermost_block;
76 int arglist_len;
77 static struct type_stack type_stack;
78 char *lexptr;
79 char *prev_lexptr;
80 int paren_depth;
81 int comma_terminates;
82
83 /* True if parsing an expression to attempt completion. */
84 int parse_completion;
85
86 /* The index of the last struct expression directly before a '.' or
87 '->'. This is set when parsing and is only used when completing a
88 field name. It is -1 if no dereference operation was found. */
89 static int expout_last_struct = -1;
90
91 /* If we are completing a tagged type name, this will be nonzero. */
92 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
93
94 /* The token for tagged type name completion. */
95 static char *expout_completion_name;
96
97 \f
98 static unsigned int expressiondebug = 0;
99 static void
100 show_expressiondebug (struct ui_file *file, int from_tty,
101 struct cmd_list_element *c, const char *value)
102 {
103 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
104 }
105
106
107 /* Non-zero if an expression parser should set yydebug. */
108 int parser_debug;
109
110 static void
111 show_parserdebug (struct ui_file *file, int from_tty,
112 struct cmd_list_element *c, const char *value)
113 {
114 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
115 }
116
117
118 static void free_funcalls (void *ignore);
119
120 static int prefixify_subexp (struct expression *, struct expression *, int,
121 int);
122
123 static struct expression *parse_exp_in_context (char **, CORE_ADDR,
124 const struct block *, int,
125 int, int *);
126
127 void _initialize_parse (void);
128
129 /* Data structure for saving values of arglist_len for function calls whose
130 arguments contain other function calls. */
131
132 struct funcall
133 {
134 struct funcall *next;
135 int arglist_len;
136 };
137
138 static struct funcall *funcall_chain;
139
140 /* Begin counting arguments for a function call,
141 saving the data about any containing call. */
142
143 void
144 start_arglist (void)
145 {
146 struct funcall *new;
147
148 new = (struct funcall *) xmalloc (sizeof (struct funcall));
149 new->next = funcall_chain;
150 new->arglist_len = arglist_len;
151 arglist_len = 0;
152 funcall_chain = new;
153 }
154
155 /* Return the number of arguments in a function call just terminated,
156 and restore the data for the containing function call. */
157
158 int
159 end_arglist (void)
160 {
161 int val = arglist_len;
162 struct funcall *call = funcall_chain;
163
164 funcall_chain = call->next;
165 arglist_len = call->arglist_len;
166 xfree (call);
167 return val;
168 }
169
170 /* Free everything in the funcall chain.
171 Used when there is an error inside parsing. */
172
173 static void
174 free_funcalls (void *ignore)
175 {
176 struct funcall *call, *next;
177
178 for (call = funcall_chain; call; call = next)
179 {
180 next = call->next;
181 xfree (call);
182 }
183 }
184 \f
185 /* This page contains the functions for adding data to the struct expression
186 being constructed. */
187
188 /* See definition in parser-defs.h. */
189
190 void
191 initialize_expout (int initial_size, const struct language_defn *lang,
192 struct gdbarch *gdbarch)
193 {
194 expout_size = initial_size;
195 expout_ptr = 0;
196 expout = xmalloc (sizeof (struct expression)
197 + EXP_ELEM_TO_BYTES (expout_size));
198 expout->language_defn = lang;
199 expout->gdbarch = gdbarch;
200 }
201
202 /* See definition in parser-defs.h. */
203
204 void
205 reallocate_expout (void)
206 {
207 /* Record the actual number of expression elements, and then
208 reallocate the expression memory so that we free up any
209 excess elements. */
210
211 expout->nelts = expout_ptr;
212 expout = xrealloc ((char *) expout,
213 sizeof (struct expression)
214 + EXP_ELEM_TO_BYTES (expout_ptr));
215 }
216
217 /* Add one element to the end of the expression. */
218
219 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
220 a register through here. */
221
222 static void
223 write_exp_elt (const union exp_element *expelt)
224 {
225 if (expout_ptr >= expout_size)
226 {
227 expout_size *= 2;
228 expout = (struct expression *)
229 xrealloc ((char *) expout, sizeof (struct expression)
230 + EXP_ELEM_TO_BYTES (expout_size));
231 }
232 expout->elts[expout_ptr++] = *expelt;
233 }
234
235 void
236 write_exp_elt_opcode (enum exp_opcode expelt)
237 {
238 union exp_element tmp;
239
240 memset (&tmp, 0, sizeof (union exp_element));
241 tmp.opcode = expelt;
242 write_exp_elt (&tmp);
243 }
244
245 void
246 write_exp_elt_sym (struct symbol *expelt)
247 {
248 union exp_element tmp;
249
250 memset (&tmp, 0, sizeof (union exp_element));
251 tmp.symbol = expelt;
252 write_exp_elt (&tmp);
253 }
254
255 void
256 write_exp_elt_block (const struct block *b)
257 {
258 union exp_element tmp;
259
260 memset (&tmp, 0, sizeof (union exp_element));
261 tmp.block = b;
262 write_exp_elt (&tmp);
263 }
264
265 void
266 write_exp_elt_objfile (struct objfile *objfile)
267 {
268 union exp_element tmp;
269
270 memset (&tmp, 0, sizeof (union exp_element));
271 tmp.objfile = objfile;
272 write_exp_elt (&tmp);
273 }
274
275 void
276 write_exp_elt_longcst (LONGEST expelt)
277 {
278 union exp_element tmp;
279
280 memset (&tmp, 0, sizeof (union exp_element));
281 tmp.longconst = expelt;
282 write_exp_elt (&tmp);
283 }
284
285 void
286 write_exp_elt_dblcst (DOUBLEST expelt)
287 {
288 union exp_element tmp;
289
290 memset (&tmp, 0, sizeof (union exp_element));
291 tmp.doubleconst = expelt;
292 write_exp_elt (&tmp);
293 }
294
295 void
296 write_exp_elt_decfloatcst (gdb_byte expelt[16])
297 {
298 union exp_element tmp;
299 int index;
300
301 for (index = 0; index < 16; index++)
302 tmp.decfloatconst[index] = expelt[index];
303
304 write_exp_elt (&tmp);
305 }
306
307 void
308 write_exp_elt_type (struct type *expelt)
309 {
310 union exp_element tmp;
311
312 memset (&tmp, 0, sizeof (union exp_element));
313 tmp.type = expelt;
314 write_exp_elt (&tmp);
315 }
316
317 void
318 write_exp_elt_intern (struct internalvar *expelt)
319 {
320 union exp_element tmp;
321
322 memset (&tmp, 0, sizeof (union exp_element));
323 tmp.internalvar = expelt;
324 write_exp_elt (&tmp);
325 }
326
327 /* Add a string constant to the end of the expression.
328
329 String constants are stored by first writing an expression element
330 that contains the length of the string, then stuffing the string
331 constant itself into however many expression elements are needed
332 to hold it, and then writing another expression element that contains
333 the length of the string. I.e. an expression element at each end of
334 the string records the string length, so you can skip over the
335 expression elements containing the actual string bytes from either
336 end of the string. Note that this also allows gdb to handle
337 strings with embedded null bytes, as is required for some languages.
338
339 Don't be fooled by the fact that the string is null byte terminated,
340 this is strictly for the convenience of debugging gdb itself.
341 Gdb does not depend up the string being null terminated, since the
342 actual length is recorded in expression elements at each end of the
343 string. The null byte is taken into consideration when computing how
344 many expression elements are required to hold the string constant, of
345 course. */
346
347
348 void
349 write_exp_string (struct stoken str)
350 {
351 int len = str.length;
352 int lenelt;
353 char *strdata;
354
355 /* Compute the number of expression elements required to hold the string
356 (including a null byte terminator), along with one expression element
357 at each end to record the actual string length (not including the
358 null byte terminator). */
359
360 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
361
362 /* Ensure that we have enough available expression elements to store
363 everything. */
364
365 if ((expout_ptr + lenelt) >= expout_size)
366 {
367 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
368 expout = (struct expression *)
369 xrealloc ((char *) expout, (sizeof (struct expression)
370 + EXP_ELEM_TO_BYTES (expout_size)));
371 }
372
373 /* Write the leading length expression element (which advances the current
374 expression element index), then write the string constant followed by a
375 terminating null byte, and then write the trailing length expression
376 element. */
377
378 write_exp_elt_longcst ((LONGEST) len);
379 strdata = (char *) &expout->elts[expout_ptr];
380 memcpy (strdata, str.ptr, len);
381 *(strdata + len) = '\0';
382 expout_ptr += lenelt - 2;
383 write_exp_elt_longcst ((LONGEST) len);
384 }
385
386 /* Add a vector of string constants to the end of the expression.
387
388 This adds an OP_STRING operation, but encodes the contents
389 differently from write_exp_string. The language is expected to
390 handle evaluation of this expression itself.
391
392 After the usual OP_STRING header, TYPE is written into the
393 expression as a long constant. The interpretation of this field is
394 up to the language evaluator.
395
396 Next, each string in VEC is written. The length is written as a
397 long constant, followed by the contents of the string. */
398
399 void
400 write_exp_string_vector (int type, struct stoken_vector *vec)
401 {
402 int i, n_slots, len;
403
404 /* Compute the size. We compute the size in number of slots to
405 avoid issues with string padding. */
406 n_slots = 0;
407 for (i = 0; i < vec->len; ++i)
408 {
409 /* One slot for the length of this element, plus the number of
410 slots needed for this string. */
411 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
412 }
413
414 /* One more slot for the type of the string. */
415 ++n_slots;
416
417 /* Now compute a phony string length. */
418 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
419
420 n_slots += 4;
421 if ((expout_ptr + n_slots) >= expout_size)
422 {
423 expout_size = max (expout_size * 2, expout_ptr + n_slots + 10);
424 expout = (struct expression *)
425 xrealloc ((char *) expout, (sizeof (struct expression)
426 + EXP_ELEM_TO_BYTES (expout_size)));
427 }
428
429 write_exp_elt_opcode (OP_STRING);
430 write_exp_elt_longcst (len);
431 write_exp_elt_longcst (type);
432
433 for (i = 0; i < vec->len; ++i)
434 {
435 write_exp_elt_longcst (vec->tokens[i].length);
436 memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr,
437 vec->tokens[i].length);
438 expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
439 }
440
441 write_exp_elt_longcst (len);
442 write_exp_elt_opcode (OP_STRING);
443 }
444
445 /* Add a bitstring constant to the end of the expression.
446
447 Bitstring constants are stored by first writing an expression element
448 that contains the length of the bitstring (in bits), then stuffing the
449 bitstring constant itself into however many expression elements are
450 needed to hold it, and then writing another expression element that
451 contains the length of the bitstring. I.e. an expression element at
452 each end of the bitstring records the bitstring length, so you can skip
453 over the expression elements containing the actual bitstring bytes from
454 either end of the bitstring. */
455
456 void
457 write_exp_bitstring (struct stoken str)
458 {
459 int bits = str.length; /* length in bits */
460 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
461 int lenelt;
462 char *strdata;
463
464 /* Compute the number of expression elements required to hold the bitstring,
465 along with one expression element at each end to record the actual
466 bitstring length in bits. */
467
468 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
469
470 /* Ensure that we have enough available expression elements to store
471 everything. */
472
473 if ((expout_ptr + lenelt) >= expout_size)
474 {
475 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
476 expout = (struct expression *)
477 xrealloc ((char *) expout, (sizeof (struct expression)
478 + EXP_ELEM_TO_BYTES (expout_size)));
479 }
480
481 /* Write the leading length expression element (which advances the current
482 expression element index), then write the bitstring constant, and then
483 write the trailing length expression element. */
484
485 write_exp_elt_longcst ((LONGEST) bits);
486 strdata = (char *) &expout->elts[expout_ptr];
487 memcpy (strdata, str.ptr, len);
488 expout_ptr += lenelt - 2;
489 write_exp_elt_longcst ((LONGEST) bits);
490 }
491
492 /* Add the appropriate elements for a minimal symbol to the end of
493 the expression. */
494
495 void
496 write_exp_msymbol (struct minimal_symbol *msymbol)
497 {
498 struct objfile *objfile = msymbol_objfile (msymbol);
499 struct gdbarch *gdbarch = get_objfile_arch (objfile);
500
501 CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol);
502 struct obj_section *section = SYMBOL_OBJ_SECTION (msymbol);
503 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
504 CORE_ADDR pc;
505
506 /* The minimal symbol might point to a function descriptor;
507 resolve it to the actual code address instead. */
508 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
509 if (pc != addr)
510 {
511 struct minimal_symbol *ifunc_msym = lookup_minimal_symbol_by_pc (pc);
512
513 /* In this case, assume we have a code symbol instead of
514 a data symbol. */
515
516 if (ifunc_msym != NULL && MSYMBOL_TYPE (ifunc_msym) == mst_text_gnu_ifunc
517 && SYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
518 {
519 /* A function descriptor has been resolved but PC is still in the
520 STT_GNU_IFUNC resolver body (such as because inferior does not
521 run to be able to call it). */
522
523 type = mst_text_gnu_ifunc;
524 }
525 else
526 type = mst_text;
527 section = NULL;
528 addr = pc;
529 }
530
531 if (overlay_debugging)
532 addr = symbol_overlayed_address (addr, section);
533
534 write_exp_elt_opcode (OP_LONG);
535 /* Let's make the type big enough to hold a 64-bit address. */
536 write_exp_elt_type (objfile_type (objfile)->builtin_core_addr);
537 write_exp_elt_longcst ((LONGEST) addr);
538 write_exp_elt_opcode (OP_LONG);
539
540 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
541 {
542 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
543 write_exp_elt_objfile (objfile);
544 write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol);
545 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
546 return;
547 }
548
549 write_exp_elt_opcode (UNOP_MEMVAL);
550 switch (type)
551 {
552 case mst_text:
553 case mst_file_text:
554 case mst_solib_trampoline:
555 write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol);
556 break;
557
558 case mst_text_gnu_ifunc:
559 write_exp_elt_type (objfile_type (objfile)
560 ->nodebug_text_gnu_ifunc_symbol);
561 break;
562
563 case mst_data:
564 case mst_file_data:
565 case mst_bss:
566 case mst_file_bss:
567 write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol);
568 break;
569
570 case mst_slot_got_plt:
571 write_exp_elt_type (objfile_type (objfile)->nodebug_got_plt_symbol);
572 break;
573
574 default:
575 write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol);
576 break;
577 }
578 write_exp_elt_opcode (UNOP_MEMVAL);
579 }
580
581 /* Mark the current index as the starting location of a structure
582 expression. This is used when completing on field names. */
583
584 void
585 mark_struct_expression (void)
586 {
587 gdb_assert (parse_completion
588 && expout_tag_completion_type == TYPE_CODE_UNDEF);
589 expout_last_struct = expout_ptr;
590 }
591
592 /* Indicate that the current parser invocation is completing a tag.
593 TAG is the type code of the tag, and PTR and LENGTH represent the
594 start of the tag name. */
595
596 void
597 mark_completion_tag (enum type_code tag, const char *ptr, int length)
598 {
599 gdb_assert (parse_completion
600 && expout_tag_completion_type == TYPE_CODE_UNDEF
601 && expout_completion_name == NULL
602 && expout_last_struct == -1);
603 gdb_assert (tag == TYPE_CODE_UNION
604 || tag == TYPE_CODE_STRUCT
605 || tag == TYPE_CODE_CLASS
606 || tag == TYPE_CODE_ENUM);
607 expout_tag_completion_type = tag;
608 expout_completion_name = xmalloc (length + 1);
609 memcpy (expout_completion_name, ptr, length);
610 expout_completion_name[length] = '\0';
611 }
612
613 \f
614 /* Recognize tokens that start with '$'. These include:
615
616 $regname A native register name or a "standard
617 register name".
618
619 $variable A convenience variable with a name chosen
620 by the user.
621
622 $digits Value history with index <digits>, starting
623 from the first value which has index 1.
624
625 $$digits Value history with index <digits> relative
626 to the last value. I.e. $$0 is the last
627 value, $$1 is the one previous to that, $$2
628 is the one previous to $$1, etc.
629
630 $ | $0 | $$0 The last value in the value history.
631
632 $$ An abbreviation for the second to the last
633 value in the value history, I.e. $$1 */
634
635 void
636 write_dollar_variable (struct stoken str)
637 {
638 struct symbol *sym = NULL;
639 struct minimal_symbol *msym = NULL;
640 struct internalvar *isym = NULL;
641
642 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
643 and $$digits (equivalent to $<-digits> if you could type that). */
644
645 int negate = 0;
646 int i = 1;
647 /* Double dollar means negate the number and add -1 as well.
648 Thus $$ alone means -1. */
649 if (str.length >= 2 && str.ptr[1] == '$')
650 {
651 negate = 1;
652 i = 2;
653 }
654 if (i == str.length)
655 {
656 /* Just dollars (one or two). */
657 i = -negate;
658 goto handle_last;
659 }
660 /* Is the rest of the token digits? */
661 for (; i < str.length; i++)
662 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
663 break;
664 if (i == str.length)
665 {
666 i = atoi (str.ptr + 1 + negate);
667 if (negate)
668 i = -i;
669 goto handle_last;
670 }
671
672 /* Handle tokens that refer to machine registers:
673 $ followed by a register name. */
674 i = user_reg_map_name_to_regnum (parse_gdbarch,
675 str.ptr + 1, str.length - 1);
676 if (i >= 0)
677 goto handle_register;
678
679 /* Any names starting with $ are probably debugger internal variables. */
680
681 isym = lookup_only_internalvar (copy_name (str) + 1);
682 if (isym)
683 {
684 write_exp_elt_opcode (OP_INTERNALVAR);
685 write_exp_elt_intern (isym);
686 write_exp_elt_opcode (OP_INTERNALVAR);
687 return;
688 }
689
690 /* On some systems, such as HP-UX and hppa-linux, certain system routines
691 have names beginning with $ or $$. Check for those, first. */
692
693 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
694 VAR_DOMAIN, NULL);
695 if (sym)
696 {
697 write_exp_elt_opcode (OP_VAR_VALUE);
698 write_exp_elt_block (block_found); /* set by lookup_symbol */
699 write_exp_elt_sym (sym);
700 write_exp_elt_opcode (OP_VAR_VALUE);
701 return;
702 }
703 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
704 if (msym)
705 {
706 write_exp_msymbol (msym);
707 return;
708 }
709
710 /* Any other names are assumed to be debugger internal variables. */
711
712 write_exp_elt_opcode (OP_INTERNALVAR);
713 write_exp_elt_intern (create_internalvar (copy_name (str) + 1));
714 write_exp_elt_opcode (OP_INTERNALVAR);
715 return;
716 handle_last:
717 write_exp_elt_opcode (OP_LAST);
718 write_exp_elt_longcst ((LONGEST) i);
719 write_exp_elt_opcode (OP_LAST);
720 return;
721 handle_register:
722 write_exp_elt_opcode (OP_REGISTER);
723 str.length--;
724 str.ptr++;
725 write_exp_string (str);
726 write_exp_elt_opcode (OP_REGISTER);
727 return;
728 }
729
730
731 char *
732 find_template_name_end (char *p)
733 {
734 int depth = 1;
735 int just_seen_right = 0;
736 int just_seen_colon = 0;
737 int just_seen_space = 0;
738
739 if (!p || (*p != '<'))
740 return 0;
741
742 while (*++p)
743 {
744 switch (*p)
745 {
746 case '\'':
747 case '\"':
748 case '{':
749 case '}':
750 /* In future, may want to allow these?? */
751 return 0;
752 case '<':
753 depth++; /* start nested template */
754 if (just_seen_colon || just_seen_right || just_seen_space)
755 return 0; /* but not after : or :: or > or space */
756 break;
757 case '>':
758 if (just_seen_colon || just_seen_right)
759 return 0; /* end a (nested?) template */
760 just_seen_right = 1; /* but not after : or :: */
761 if (--depth == 0) /* also disallow >>, insist on > > */
762 return ++p; /* if outermost ended, return */
763 break;
764 case ':':
765 if (just_seen_space || (just_seen_colon > 1))
766 return 0; /* nested class spec coming up */
767 just_seen_colon++; /* we allow :: but not :::: */
768 break;
769 case ' ':
770 break;
771 default:
772 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
773 (*p >= 'A' && *p <= 'Z') ||
774 (*p >= '0' && *p <= '9') ||
775 (*p == '_') || (*p == ',') || /* commas for template args */
776 (*p == '&') || (*p == '*') || /* pointer and ref types */
777 (*p == '(') || (*p == ')') || /* function types */
778 (*p == '[') || (*p == ']'))) /* array types */
779 return 0;
780 }
781 if (*p != ' ')
782 just_seen_space = 0;
783 if (*p != ':')
784 just_seen_colon = 0;
785 if (*p != '>')
786 just_seen_right = 0;
787 }
788 return 0;
789 }
790 \f
791
792 /* Return a null-terminated temporary copy of the name of a string token.
793
794 Tokens that refer to names do so with explicit pointer and length,
795 so they can share the storage that lexptr is parsing.
796 When it is necessary to pass a name to a function that expects
797 a null-terminated string, the substring is copied out
798 into a separate block of storage.
799
800 N.B. A single buffer is reused on each call. */
801
802 char *
803 copy_name (struct stoken token)
804 {
805 /* A temporary buffer for identifiers, so we can null-terminate them.
806 We allocate this with xrealloc. parse_exp_1 used to allocate with
807 alloca, using the size of the whole expression as a conservative
808 estimate of the space needed. However, macro expansion can
809 introduce names longer than the original expression; there's no
810 practical way to know beforehand how large that might be. */
811 static char *namecopy;
812 static size_t namecopy_size;
813
814 /* Make sure there's enough space for the token. */
815 if (namecopy_size < token.length + 1)
816 {
817 namecopy_size = token.length + 1;
818 namecopy = xrealloc (namecopy, token.length + 1);
819 }
820
821 memcpy (namecopy, token.ptr, token.length);
822 namecopy[token.length] = 0;
823
824 return namecopy;
825 }
826 \f
827
828 /* See comments on parser-defs.h. */
829
830 int
831 prefixify_expression (struct expression *expr)
832 {
833 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
834 struct expression *temp;
835 int inpos = expr->nelts, outpos = 0;
836
837 temp = (struct expression *) alloca (len);
838
839 /* Copy the original expression into temp. */
840 memcpy (temp, expr, len);
841
842 return prefixify_subexp (temp, expr, inpos, outpos);
843 }
844
845 /* Return the number of exp_elements in the postfix subexpression
846 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
847
848 int
849 length_of_subexp (struct expression *expr, int endpos)
850 {
851 int oplen, args;
852
853 operator_length (expr, endpos, &oplen, &args);
854
855 while (args > 0)
856 {
857 oplen += length_of_subexp (expr, endpos - oplen);
858 args--;
859 }
860
861 return oplen;
862 }
863
864 /* Sets *OPLENP to the length of the operator whose (last) index is
865 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
866 operator takes. */
867
868 void
869 operator_length (const struct expression *expr, int endpos, int *oplenp,
870 int *argsp)
871 {
872 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
873 oplenp, argsp);
874 }
875
876 /* Default value for operator_length in exp_descriptor vectors. */
877
878 void
879 operator_length_standard (const struct expression *expr, int endpos,
880 int *oplenp, int *argsp)
881 {
882 int oplen = 1;
883 int args = 0;
884 enum f90_range_type range_type;
885 int i;
886
887 if (endpos < 1)
888 error (_("?error in operator_length_standard"));
889
890 i = (int) expr->elts[endpos - 1].opcode;
891
892 switch (i)
893 {
894 /* C++ */
895 case OP_SCOPE:
896 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
897 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
898 break;
899
900 case OP_LONG:
901 case OP_DOUBLE:
902 case OP_DECFLOAT:
903 case OP_VAR_VALUE:
904 oplen = 4;
905 break;
906
907 case OP_TYPE:
908 case OP_BOOL:
909 case OP_LAST:
910 case OP_INTERNALVAR:
911 case OP_VAR_ENTRY_VALUE:
912 oplen = 3;
913 break;
914
915 case OP_COMPLEX:
916 oplen = 3;
917 args = 2;
918 break;
919
920 case OP_FUNCALL:
921 case OP_F77_UNDETERMINED_ARGLIST:
922 oplen = 3;
923 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
924 break;
925
926 case TYPE_INSTANCE:
927 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
928 args = 1;
929 break;
930
931 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
932 oplen = 4;
933 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
934 break;
935
936 case UNOP_MAX:
937 case UNOP_MIN:
938 oplen = 3;
939 break;
940
941 case UNOP_CAST_TYPE:
942 case UNOP_DYNAMIC_CAST:
943 case UNOP_REINTERPRET_CAST:
944 case UNOP_MEMVAL_TYPE:
945 oplen = 1;
946 args = 2;
947 break;
948
949 case BINOP_VAL:
950 case UNOP_CAST:
951 case UNOP_MEMVAL:
952 oplen = 3;
953 args = 1;
954 break;
955
956 case UNOP_MEMVAL_TLS:
957 oplen = 4;
958 args = 1;
959 break;
960
961 case UNOP_ABS:
962 case UNOP_CAP:
963 case UNOP_CHR:
964 case UNOP_FLOAT:
965 case UNOP_HIGH:
966 case UNOP_ODD:
967 case UNOP_ORD:
968 case UNOP_TRUNC:
969 case OP_TYPEOF:
970 case OP_DECLTYPE:
971 oplen = 1;
972 args = 1;
973 break;
974
975 case OP_ADL_FUNC:
976 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
977 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
978 oplen++;
979 oplen++;
980 break;
981
982 case STRUCTOP_STRUCT:
983 case STRUCTOP_PTR:
984 args = 1;
985 /* fall through */
986 case OP_REGISTER:
987 case OP_M2_STRING:
988 case OP_STRING:
989 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
990 NSString constant. */
991 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
992 case OP_NAME:
993 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
994 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
995 break;
996
997 case OP_ARRAY:
998 oplen = 4;
999 args = longest_to_int (expr->elts[endpos - 2].longconst);
1000 args -= longest_to_int (expr->elts[endpos - 3].longconst);
1001 args += 1;
1002 break;
1003
1004 case TERNOP_COND:
1005 case TERNOP_SLICE:
1006 args = 3;
1007 break;
1008
1009 /* Modula-2 */
1010 case MULTI_SUBSCRIPT:
1011 oplen = 3;
1012 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
1013 break;
1014
1015 case BINOP_ASSIGN_MODIFY:
1016 oplen = 3;
1017 args = 2;
1018 break;
1019
1020 /* C++ */
1021 case OP_THIS:
1022 oplen = 2;
1023 break;
1024
1025 case OP_F90_RANGE:
1026 oplen = 3;
1027
1028 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1029 switch (range_type)
1030 {
1031 case LOW_BOUND_DEFAULT:
1032 case HIGH_BOUND_DEFAULT:
1033 args = 1;
1034 break;
1035 case BOTH_BOUND_DEFAULT:
1036 args = 0;
1037 break;
1038 case NONE_BOUND_DEFAULT:
1039 args = 2;
1040 break;
1041 }
1042
1043 break;
1044
1045 default:
1046 args = 1 + (i < (int) BINOP_END);
1047 }
1048
1049 *oplenp = oplen;
1050 *argsp = args;
1051 }
1052
1053 /* Copy the subexpression ending just before index INEND in INEXPR
1054 into OUTEXPR, starting at index OUTBEG.
1055 In the process, convert it from suffix to prefix form.
1056 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1057 Otherwise, it returns the index of the subexpression which is the
1058 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1059
1060 static int
1061 prefixify_subexp (struct expression *inexpr,
1062 struct expression *outexpr, int inend, int outbeg)
1063 {
1064 int oplen;
1065 int args;
1066 int i;
1067 int *arglens;
1068 int result = -1;
1069
1070 operator_length (inexpr, inend, &oplen, &args);
1071
1072 /* Copy the final operator itself, from the end of the input
1073 to the beginning of the output. */
1074 inend -= oplen;
1075 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1076 EXP_ELEM_TO_BYTES (oplen));
1077 outbeg += oplen;
1078
1079 if (expout_last_struct == inend)
1080 result = outbeg - oplen;
1081
1082 /* Find the lengths of the arg subexpressions. */
1083 arglens = (int *) alloca (args * sizeof (int));
1084 for (i = args - 1; i >= 0; i--)
1085 {
1086 oplen = length_of_subexp (inexpr, inend);
1087 arglens[i] = oplen;
1088 inend -= oplen;
1089 }
1090
1091 /* Now copy each subexpression, preserving the order of
1092 the subexpressions, but prefixifying each one.
1093 In this loop, inend starts at the beginning of
1094 the expression this level is working on
1095 and marches forward over the arguments.
1096 outbeg does similarly in the output. */
1097 for (i = 0; i < args; i++)
1098 {
1099 int r;
1100
1101 oplen = arglens[i];
1102 inend += oplen;
1103 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1104 if (r != -1)
1105 {
1106 /* Return immediately. We probably have only parsed a
1107 partial expression, so we don't want to try to reverse
1108 the other operands. */
1109 return r;
1110 }
1111 outbeg += oplen;
1112 }
1113
1114 return result;
1115 }
1116 \f
1117 /* Read an expression from the string *STRINGPTR points to,
1118 parse it, and return a pointer to a struct expression that we malloc.
1119 Use block BLOCK as the lexical context for variable names;
1120 if BLOCK is zero, use the block of the selected stack frame.
1121 Meanwhile, advance *STRINGPTR to point after the expression,
1122 at the first nonwhite character that is not part of the expression
1123 (possibly a null character).
1124
1125 If COMMA is nonzero, stop if a comma is reached. */
1126
1127 struct expression *
1128 parse_exp_1 (char **stringptr, CORE_ADDR pc, const struct block *block,
1129 int comma)
1130 {
1131 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1132 }
1133
1134 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1135 no value is expected from the expression.
1136 OUT_SUBEXP is set when attempting to complete a field name; in this
1137 case it is set to the index of the subexpression on the
1138 left-hand-side of the struct op. If not doing such completion, it
1139 is left untouched. */
1140
1141 static struct expression *
1142 parse_exp_in_context (char **stringptr, CORE_ADDR pc, const struct block *block,
1143 int comma, int void_context_p, int *out_subexp)
1144 {
1145 volatile struct gdb_exception except;
1146 struct cleanup *old_chain;
1147 const struct language_defn *lang = NULL;
1148 int subexp;
1149
1150 lexptr = *stringptr;
1151 prev_lexptr = NULL;
1152
1153 paren_depth = 0;
1154 type_stack.depth = 0;
1155 expout_last_struct = -1;
1156 expout_tag_completion_type = TYPE_CODE_UNDEF;
1157 xfree (expout_completion_name);
1158 expout_completion_name = NULL;
1159
1160 comma_terminates = comma;
1161
1162 if (lexptr == 0 || *lexptr == 0)
1163 error_no_arg (_("expression to compute"));
1164
1165 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1166 funcall_chain = 0;
1167
1168 expression_context_block = block;
1169
1170 /* If no context specified, try using the current frame, if any. */
1171 if (!expression_context_block)
1172 expression_context_block = get_selected_block (&expression_context_pc);
1173 else if (pc == 0)
1174 expression_context_pc = BLOCK_START (expression_context_block);
1175 else
1176 expression_context_pc = pc;
1177
1178 /* Fall back to using the current source static context, if any. */
1179
1180 if (!expression_context_block)
1181 {
1182 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1183 if (cursal.symtab)
1184 expression_context_block
1185 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1186 if (expression_context_block)
1187 expression_context_pc = BLOCK_START (expression_context_block);
1188 }
1189
1190 if (language_mode == language_mode_auto && block != NULL)
1191 {
1192 /* Find the language associated to the given context block.
1193 Default to the current language if it can not be determined.
1194
1195 Note that using the language corresponding to the current frame
1196 can sometimes give unexpected results. For instance, this
1197 routine is often called several times during the inferior
1198 startup phase to re-parse breakpoint expressions after
1199 a new shared library has been loaded. The language associated
1200 to the current frame at this moment is not relevant for
1201 the breakpoint. Using it would therefore be silly, so it seems
1202 better to rely on the current language rather than relying on
1203 the current frame language to parse the expression. That's why
1204 we do the following language detection only if the context block
1205 has been specifically provided. */
1206 struct symbol *func = block_linkage_function (block);
1207
1208 if (func != NULL)
1209 lang = language_def (SYMBOL_LANGUAGE (func));
1210 if (lang == NULL || lang->la_language == language_unknown)
1211 lang = current_language;
1212 }
1213 else
1214 lang = current_language;
1215
1216 initialize_expout (10, lang, get_current_arch ());
1217
1218 TRY_CATCH (except, RETURN_MASK_ALL)
1219 {
1220 if (lang->la_parser ())
1221 lang->la_error (NULL);
1222 }
1223 if (except.reason < 0)
1224 {
1225 if (! parse_completion)
1226 {
1227 xfree (expout);
1228 throw_exception (except);
1229 }
1230 }
1231
1232 discard_cleanups (old_chain);
1233
1234 reallocate_expout ();
1235
1236 /* Convert expression from postfix form as generated by yacc
1237 parser, to a prefix form. */
1238
1239 if (expressiondebug)
1240 dump_raw_expression (expout, gdb_stdlog,
1241 "before conversion to prefix form");
1242
1243 subexp = prefixify_expression (expout);
1244 if (out_subexp)
1245 *out_subexp = subexp;
1246
1247 lang->la_post_parser (&expout, void_context_p);
1248
1249 if (expressiondebug)
1250 dump_prefix_expression (expout, gdb_stdlog);
1251
1252 *stringptr = lexptr;
1253 return expout;
1254 }
1255
1256 /* Parse STRING as an expression, and complain if this fails
1257 to use up all of the contents of STRING. */
1258
1259 struct expression *
1260 parse_expression (char *string)
1261 {
1262 struct expression *exp;
1263
1264 exp = parse_exp_1 (&string, 0, 0, 0);
1265 if (*string)
1266 error (_("Junk after end of expression."));
1267 return exp;
1268 }
1269
1270 /* Parse STRING as an expression. If parsing ends in the middle of a
1271 field reference, return the type of the left-hand-side of the
1272 reference; furthermore, if the parsing ends in the field name,
1273 return the field name in *NAME. If the parsing ends in the middle
1274 of a field reference, but the reference is somehow invalid, throw
1275 an exception. In all other cases, return NULL. Returned non-NULL
1276 *NAME must be freed by the caller. */
1277
1278 struct type *
1279 parse_expression_for_completion (char *string, char **name,
1280 enum type_code *code)
1281 {
1282 struct expression *exp = NULL;
1283 struct value *val;
1284 int subexp;
1285 volatile struct gdb_exception except;
1286
1287 TRY_CATCH (except, RETURN_MASK_ERROR)
1288 {
1289 parse_completion = 1;
1290 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1291 }
1292 parse_completion = 0;
1293 if (except.reason < 0 || ! exp)
1294 return NULL;
1295
1296 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1297 {
1298 *code = expout_tag_completion_type;
1299 *name = expout_completion_name;
1300 expout_completion_name = NULL;
1301 return NULL;
1302 }
1303
1304 if (expout_last_struct == -1)
1305 {
1306 xfree (exp);
1307 return NULL;
1308 }
1309
1310 *name = extract_field_op (exp, &subexp);
1311 if (!*name)
1312 {
1313 xfree (exp);
1314 return NULL;
1315 }
1316
1317 /* This might throw an exception. If so, we want to let it
1318 propagate. */
1319 val = evaluate_subexpression_type (exp, subexp);
1320 /* (*NAME) is a part of the EXP memory block freed below. */
1321 *name = xstrdup (*name);
1322 xfree (exp);
1323
1324 return value_type (val);
1325 }
1326
1327 /* A post-parser that does nothing. */
1328
1329 void
1330 null_post_parser (struct expression **exp, int void_context_p)
1331 {
1332 }
1333
1334 /* Parse floating point value P of length LEN.
1335 Return 0 (false) if invalid, 1 (true) if valid.
1336 The successfully parsed number is stored in D.
1337 *SUFFIX points to the suffix of the number in P.
1338
1339 NOTE: This accepts the floating point syntax that sscanf accepts. */
1340
1341 int
1342 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1343 {
1344 char *copy;
1345 int n, num;
1346
1347 copy = xmalloc (len + 1);
1348 memcpy (copy, p, len);
1349 copy[len] = 0;
1350
1351 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1352 xfree (copy);
1353
1354 /* The sscanf man page suggests not making any assumptions on the effect
1355 of %n on the result, so we don't.
1356 That is why we simply test num == 0. */
1357 if (num == 0)
1358 return 0;
1359
1360 *suffix = p + n;
1361 return 1;
1362 }
1363
1364 /* Parse floating point value P of length LEN, using the C syntax for floats.
1365 Return 0 (false) if invalid, 1 (true) if valid.
1366 The successfully parsed number is stored in *D.
1367 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1368
1369 int
1370 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1371 DOUBLEST *d, struct type **t)
1372 {
1373 const char *suffix;
1374 int suffix_len;
1375 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1376
1377 if (! parse_float (p, len, d, &suffix))
1378 return 0;
1379
1380 suffix_len = p + len - suffix;
1381
1382 if (suffix_len == 0)
1383 *t = builtin_types->builtin_double;
1384 else if (suffix_len == 1)
1385 {
1386 /* Handle suffixes: 'f' for float, 'l' for long double. */
1387 if (tolower (*suffix) == 'f')
1388 *t = builtin_types->builtin_float;
1389 else if (tolower (*suffix) == 'l')
1390 *t = builtin_types->builtin_long_double;
1391 else
1392 return 0;
1393 }
1394 else
1395 return 0;
1396
1397 return 1;
1398 }
1399 \f
1400 /* Stuff for maintaining a stack of types. Currently just used by C, but
1401 probably useful for any language which declares its types "backwards". */
1402
1403 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1404
1405 static void
1406 type_stack_reserve (struct type_stack *stack, int howmuch)
1407 {
1408 if (stack->depth + howmuch >= stack->size)
1409 {
1410 stack->size *= 2;
1411 if (stack->size < howmuch)
1412 stack->size = howmuch;
1413 stack->elements = xrealloc (stack->elements,
1414 stack->size * sizeof (union type_stack_elt));
1415 }
1416 }
1417
1418 /* Ensure that there is a single open slot in the global type stack. */
1419
1420 static void
1421 check_type_stack_depth (void)
1422 {
1423 type_stack_reserve (&type_stack, 1);
1424 }
1425
1426 /* A helper function for insert_type and insert_type_address_space.
1427 This does work of expanding the type stack and inserting the new
1428 element, ELEMENT, into the stack at location SLOT. */
1429
1430 static void
1431 insert_into_type_stack (int slot, union type_stack_elt element)
1432 {
1433 check_type_stack_depth ();
1434
1435 if (slot < type_stack.depth)
1436 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1437 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1438 type_stack.elements[slot] = element;
1439 ++type_stack.depth;
1440 }
1441
1442 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1443 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1444 a qualifier, it is inserted at slot 1 (just above a previous
1445 tp_pointer) if there is anything on the stack, or simply pushed if
1446 the stack is empty. Other values for TP are invalid. */
1447
1448 void
1449 insert_type (enum type_pieces tp)
1450 {
1451 union type_stack_elt element;
1452 int slot;
1453
1454 gdb_assert (tp == tp_pointer || tp == tp_reference
1455 || tp == tp_const || tp == tp_volatile);
1456
1457 /* If there is anything on the stack (we know it will be a
1458 tp_pointer), insert the qualifier above it. Otherwise, simply
1459 push this on the top of the stack. */
1460 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1461 slot = 1;
1462 else
1463 slot = 0;
1464
1465 element.piece = tp;
1466 insert_into_type_stack (slot, element);
1467 }
1468
1469 void
1470 push_type (enum type_pieces tp)
1471 {
1472 check_type_stack_depth ();
1473 type_stack.elements[type_stack.depth++].piece = tp;
1474 }
1475
1476 void
1477 push_type_int (int n)
1478 {
1479 check_type_stack_depth ();
1480 type_stack.elements[type_stack.depth++].int_val = n;
1481 }
1482
1483 /* Insert a tp_space_identifier and the corresponding address space
1484 value into the stack. STRING is the name of an address space, as
1485 recognized by address_space_name_to_int. If the stack is empty,
1486 the new elements are simply pushed. If the stack is not empty,
1487 this function assumes that the first item on the stack is a
1488 tp_pointer, and the new values are inserted above the first
1489 item. */
1490
1491 void
1492 insert_type_address_space (char *string)
1493 {
1494 union type_stack_elt element;
1495 int slot;
1496
1497 /* If there is anything on the stack (we know it will be a
1498 tp_pointer), insert the address space qualifier above it.
1499 Otherwise, simply push this on the top of the stack. */
1500 if (type_stack.depth)
1501 slot = 1;
1502 else
1503 slot = 0;
1504
1505 element.piece = tp_space_identifier;
1506 insert_into_type_stack (slot, element);
1507 element.int_val = address_space_name_to_int (parse_gdbarch, string);
1508 insert_into_type_stack (slot, element);
1509 }
1510
1511 enum type_pieces
1512 pop_type (void)
1513 {
1514 if (type_stack.depth)
1515 return type_stack.elements[--type_stack.depth].piece;
1516 return tp_end;
1517 }
1518
1519 int
1520 pop_type_int (void)
1521 {
1522 if (type_stack.depth)
1523 return type_stack.elements[--type_stack.depth].int_val;
1524 /* "Can't happen". */
1525 return 0;
1526 }
1527
1528 /* Pop a type list element from the global type stack. */
1529
1530 static VEC (type_ptr) *
1531 pop_typelist (void)
1532 {
1533 gdb_assert (type_stack.depth);
1534 return type_stack.elements[--type_stack.depth].typelist_val;
1535 }
1536
1537 /* Pop a type_stack element from the global type stack. */
1538
1539 static struct type_stack *
1540 pop_type_stack (void)
1541 {
1542 gdb_assert (type_stack.depth);
1543 return type_stack.elements[--type_stack.depth].stack_val;
1544 }
1545
1546 /* Append the elements of the type stack FROM to the type stack TO.
1547 Always returns TO. */
1548
1549 struct type_stack *
1550 append_type_stack (struct type_stack *to, struct type_stack *from)
1551 {
1552 type_stack_reserve (to, from->depth);
1553
1554 memcpy (&to->elements[to->depth], &from->elements[0],
1555 from->depth * sizeof (union type_stack_elt));
1556 to->depth += from->depth;
1557
1558 return to;
1559 }
1560
1561 /* Push the type stack STACK as an element on the global type stack. */
1562
1563 void
1564 push_type_stack (struct type_stack *stack)
1565 {
1566 check_type_stack_depth ();
1567 type_stack.elements[type_stack.depth++].stack_val = stack;
1568 push_type (tp_type_stack);
1569 }
1570
1571 /* Copy the global type stack into a newly allocated type stack and
1572 return it. The global stack is cleared. The returned type stack
1573 must be freed with type_stack_cleanup. */
1574
1575 struct type_stack *
1576 get_type_stack (void)
1577 {
1578 struct type_stack *result = XNEW (struct type_stack);
1579
1580 *result = type_stack;
1581 type_stack.depth = 0;
1582 type_stack.size = 0;
1583 type_stack.elements = NULL;
1584
1585 return result;
1586 }
1587
1588 /* A cleanup function that destroys a single type stack. */
1589
1590 void
1591 type_stack_cleanup (void *arg)
1592 {
1593 struct type_stack *stack = arg;
1594
1595 xfree (stack->elements);
1596 xfree (stack);
1597 }
1598
1599 /* Push a function type with arguments onto the global type stack.
1600 LIST holds the argument types. If the final item in LIST is NULL,
1601 then the function will be varargs. */
1602
1603 void
1604 push_typelist (VEC (type_ptr) *list)
1605 {
1606 check_type_stack_depth ();
1607 type_stack.elements[type_stack.depth++].typelist_val = list;
1608 push_type (tp_function_with_arguments);
1609 }
1610
1611 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1612 as modified by all the stuff on the stack. */
1613 struct type *
1614 follow_types (struct type *follow_type)
1615 {
1616 int done = 0;
1617 int make_const = 0;
1618 int make_volatile = 0;
1619 int make_addr_space = 0;
1620 int array_size;
1621
1622 while (!done)
1623 switch (pop_type ())
1624 {
1625 case tp_end:
1626 done = 1;
1627 if (make_const)
1628 follow_type = make_cv_type (make_const,
1629 TYPE_VOLATILE (follow_type),
1630 follow_type, 0);
1631 if (make_volatile)
1632 follow_type = make_cv_type (TYPE_CONST (follow_type),
1633 make_volatile,
1634 follow_type, 0);
1635 if (make_addr_space)
1636 follow_type = make_type_with_address_space (follow_type,
1637 make_addr_space);
1638 make_const = make_volatile = 0;
1639 make_addr_space = 0;
1640 break;
1641 case tp_const:
1642 make_const = 1;
1643 break;
1644 case tp_volatile:
1645 make_volatile = 1;
1646 break;
1647 case tp_space_identifier:
1648 make_addr_space = pop_type_int ();
1649 break;
1650 case tp_pointer:
1651 follow_type = lookup_pointer_type (follow_type);
1652 if (make_const)
1653 follow_type = make_cv_type (make_const,
1654 TYPE_VOLATILE (follow_type),
1655 follow_type, 0);
1656 if (make_volatile)
1657 follow_type = make_cv_type (TYPE_CONST (follow_type),
1658 make_volatile,
1659 follow_type, 0);
1660 if (make_addr_space)
1661 follow_type = make_type_with_address_space (follow_type,
1662 make_addr_space);
1663 make_const = make_volatile = 0;
1664 make_addr_space = 0;
1665 break;
1666 case tp_reference:
1667 follow_type = lookup_reference_type (follow_type);
1668 if (make_const)
1669 follow_type = make_cv_type (make_const,
1670 TYPE_VOLATILE (follow_type),
1671 follow_type, 0);
1672 if (make_volatile)
1673 follow_type = make_cv_type (TYPE_CONST (follow_type),
1674 make_volatile,
1675 follow_type, 0);
1676 if (make_addr_space)
1677 follow_type = make_type_with_address_space (follow_type,
1678 make_addr_space);
1679 make_const = make_volatile = 0;
1680 make_addr_space = 0;
1681 break;
1682 case tp_array:
1683 array_size = pop_type_int ();
1684 /* FIXME-type-allocation: need a way to free this type when we are
1685 done with it. */
1686 follow_type =
1687 lookup_array_range_type (follow_type,
1688 0, array_size >= 0 ? array_size - 1 : 0);
1689 if (array_size < 0)
1690 TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1;
1691 break;
1692 case tp_function:
1693 /* FIXME-type-allocation: need a way to free this type when we are
1694 done with it. */
1695 follow_type = lookup_function_type (follow_type);
1696 break;
1697
1698 case tp_function_with_arguments:
1699 {
1700 VEC (type_ptr) *args = pop_typelist ();
1701
1702 follow_type
1703 = lookup_function_type_with_arguments (follow_type,
1704 VEC_length (type_ptr, args),
1705 VEC_address (type_ptr,
1706 args));
1707 VEC_free (type_ptr, args);
1708 }
1709 break;
1710
1711 case tp_type_stack:
1712 {
1713 struct type_stack *stack = pop_type_stack ();
1714 /* Sort of ugly, but not really much worse than the
1715 alternatives. */
1716 struct type_stack save = type_stack;
1717
1718 type_stack = *stack;
1719 follow_type = follow_types (follow_type);
1720 gdb_assert (type_stack.depth == 0);
1721
1722 type_stack = save;
1723 }
1724 break;
1725 default:
1726 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1727 }
1728 return follow_type;
1729 }
1730 \f
1731 /* This function avoids direct calls to fprintf
1732 in the parser generated debug code. */
1733 void
1734 parser_fprintf (FILE *x, const char *y, ...)
1735 {
1736 va_list args;
1737
1738 va_start (args, y);
1739 if (x == stderr)
1740 vfprintf_unfiltered (gdb_stderr, y, args);
1741 else
1742 {
1743 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1744 vfprintf_unfiltered (gdb_stderr, y, args);
1745 }
1746 va_end (args);
1747 }
1748
1749 /* Implementation of the exp_descriptor method operator_check. */
1750
1751 int
1752 operator_check_standard (struct expression *exp, int pos,
1753 int (*objfile_func) (struct objfile *objfile,
1754 void *data),
1755 void *data)
1756 {
1757 const union exp_element *const elts = exp->elts;
1758 struct type *type = NULL;
1759 struct objfile *objfile = NULL;
1760
1761 /* Extended operators should have been already handled by exp_descriptor
1762 iterate method of its specific language. */
1763 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1764
1765 /* Track the callers of write_exp_elt_type for this table. */
1766
1767 switch (elts[pos].opcode)
1768 {
1769 case BINOP_VAL:
1770 case OP_COMPLEX:
1771 case OP_DECFLOAT:
1772 case OP_DOUBLE:
1773 case OP_LONG:
1774 case OP_SCOPE:
1775 case OP_TYPE:
1776 case UNOP_CAST:
1777 case UNOP_MAX:
1778 case UNOP_MEMVAL:
1779 case UNOP_MIN:
1780 type = elts[pos + 1].type;
1781 break;
1782
1783 case TYPE_INSTANCE:
1784 {
1785 LONGEST arg, nargs = elts[pos + 1].longconst;
1786
1787 for (arg = 0; arg < nargs; arg++)
1788 {
1789 struct type *type = elts[pos + 2 + arg].type;
1790 struct objfile *objfile = TYPE_OBJFILE (type);
1791
1792 if (objfile && (*objfile_func) (objfile, data))
1793 return 1;
1794 }
1795 }
1796 break;
1797
1798 case UNOP_MEMVAL_TLS:
1799 objfile = elts[pos + 1].objfile;
1800 type = elts[pos + 2].type;
1801 break;
1802
1803 case OP_VAR_VALUE:
1804 {
1805 const struct block *const block = elts[pos + 1].block;
1806 const struct symbol *const symbol = elts[pos + 2].symbol;
1807
1808 /* Check objfile where the variable itself is placed.
1809 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1810 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1811 return 1;
1812
1813 /* Check objfile where is placed the code touching the variable. */
1814 objfile = lookup_objfile_from_block (block);
1815
1816 type = SYMBOL_TYPE (symbol);
1817 }
1818 break;
1819 }
1820
1821 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1822
1823 if (type && TYPE_OBJFILE (type)
1824 && (*objfile_func) (TYPE_OBJFILE (type), data))
1825 return 1;
1826 if (objfile && (*objfile_func) (objfile, data))
1827 return 1;
1828
1829 return 0;
1830 }
1831
1832 /* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP.
1833 The functions are never called with NULL OBJFILE. Functions get passed an
1834 arbitrary caller supplied DATA pointer. If any of the functions returns
1835 non-zero value then (any other) non-zero value is immediately returned to
1836 the caller. Otherwise zero is returned after iterating through whole EXP.
1837 */
1838
1839 static int
1840 exp_iterate (struct expression *exp,
1841 int (*objfile_func) (struct objfile *objfile, void *data),
1842 void *data)
1843 {
1844 int endpos;
1845
1846 for (endpos = exp->nelts; endpos > 0; )
1847 {
1848 int pos, args, oplen = 0;
1849
1850 operator_length (exp, endpos, &oplen, &args);
1851 gdb_assert (oplen > 0);
1852
1853 pos = endpos - oplen;
1854 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1855 objfile_func, data))
1856 return 1;
1857
1858 endpos = pos;
1859 }
1860
1861 return 0;
1862 }
1863
1864 /* Helper for exp_uses_objfile. */
1865
1866 static int
1867 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1868 {
1869 struct objfile *objfile = objfile_voidp;
1870
1871 if (exp_objfile->separate_debug_objfile_backlink)
1872 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1873
1874 return exp_objfile == objfile;
1875 }
1876
1877 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1878 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1879 file. */
1880
1881 int
1882 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1883 {
1884 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1885
1886 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1887 }
1888
1889 void
1890 _initialize_parse (void)
1891 {
1892 type_stack.size = 0;
1893 type_stack.depth = 0;
1894 type_stack.elements = NULL;
1895
1896 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1897 &expressiondebug,
1898 _("Set expression debugging."),
1899 _("Show expression debugging."),
1900 _("When non-zero, the internal representation "
1901 "of expressions will be printed."),
1902 NULL,
1903 show_expressiondebug,
1904 &setdebuglist, &showdebuglist);
1905 add_setshow_boolean_cmd ("parser", class_maintenance,
1906 &parser_debug,
1907 _("Set parser debugging."),
1908 _("Show parser debugging."),
1909 _("When non-zero, expression parser "
1910 "tracing will be enabled."),
1911 NULL,
1912 show_parserdebug,
1913 &setdebuglist, &showdebuglist);
1914 }
This page took 0.092564 seconds and 5 git commands to generate.