Change the layout of the PowerPC E500 raw register cache to allow
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002,
4 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "regcache.h"
29 #include "gdb_assert.h"
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <signal.h>
34 #include <sys/user.h>
35 #include <sys/ioctl.h>
36 #include "gdb_wait.h"
37 #include <fcntl.h>
38 #include <sys/procfs.h>
39 #include <sys/ptrace.h>
40
41 /* Prototypes for supply_gregset etc. */
42 #include "gregset.h"
43 #include "ppc-tdep.h"
44
45 #ifndef PT_READ_U
46 #define PT_READ_U PTRACE_PEEKUSR
47 #endif
48 #ifndef PT_WRITE_U
49 #define PT_WRITE_U PTRACE_POKEUSR
50 #endif
51
52 /* Default the type of the ptrace transfer to int. */
53 #ifndef PTRACE_XFER_TYPE
54 #define PTRACE_XFER_TYPE int
55 #endif
56
57 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
58 configure time check. Some older glibc's (for instance 2.2.1)
59 don't have a specific powerpc version of ptrace.h, and fall back on
60 a generic one. In such cases, sys/ptrace.h defines
61 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
62 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
63 PTRACE_SETVRREGS to be. This also makes a configury check pretty
64 much useless. */
65
66 /* These definitions should really come from the glibc header files,
67 but Glibc doesn't know about the vrregs yet. */
68 #ifndef PTRACE_GETVRREGS
69 #define PTRACE_GETVRREGS 18
70 #define PTRACE_SETVRREGS 19
71 #endif
72
73
74 /* Similarly for the ptrace requests for getting / setting the SPE
75 registers (ev0 -- ev31, acc, and spefscr). See the description of
76 gdb_evrregset_t for details. */
77 #ifndef PTRACE_GETEVRREGS
78 #define PTRACE_GETEVRREGS 20
79 #define PTRACE_SETEVRREGS 21
80 #endif
81
82
83 /* This oddity is because the Linux kernel defines elf_vrregset_t as
84 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
85 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
86 the vrsave as an extra 4 bytes at the end. I opted for creating a
87 flat array of chars, so that it is easier to manipulate for gdb.
88
89 There are 32 vector registers 16 bytes longs, plus a VSCR register
90 which is only 4 bytes long, but is fetched as a 16 bytes
91 quantity. Up to here we have the elf_vrregset_t structure.
92 Appended to this there is space for the VRSAVE register: 4 bytes.
93 Even though this vrsave register is not included in the regset
94 typedef, it is handled by the ptrace requests.
95
96 Note that GNU/Linux doesn't support little endian PPC hardware,
97 therefore the offset at which the real value of the VSCR register
98 is located will be always 12 bytes.
99
100 The layout is like this (where x is the actual value of the vscr reg): */
101
102 /* *INDENT-OFF* */
103 /*
104 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
105 <-------> <-------><-------><->
106 VR0 VR31 VSCR VRSAVE
107 */
108 /* *INDENT-ON* */
109
110 #define SIZEOF_VRREGS 33*16+4
111
112 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
113
114
115 /* On PPC processors that support the the Signal Processing Extension
116 (SPE) APU, the general-purpose registers are 64 bits long.
117 However, the ordinary Linux kernel PTRACE_PEEKUSR / PTRACE_POKEUSR
118 / PT_READ_U / PT_WRITE_U ptrace calls only access the lower half of
119 each register, to allow them to behave the same way they do on
120 non-SPE systems. There's a separate pair of calls,
121 PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that read and write the top
122 halves of all the general-purpose registers at once, along with
123 some SPE-specific registers.
124
125 GDB itself continues to claim the general-purpose registers are 32
126 bits long. It has unnamed raw registers that hold the upper halves
127 of the gprs, and the the full 64-bit SIMD views of the registers,
128 'ev0' -- 'ev31', are pseudo-registers that splice the top and
129 bottom halves together.
130
131 This is the structure filled in by PTRACE_GETEVRREGS and written to
132 the inferior's registers by PTRACE_SETEVRREGS. */
133 struct gdb_evrregset_t
134 {
135 unsigned long evr[32];
136 unsigned long long acc;
137 unsigned long spefscr;
138 };
139
140
141 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
142 PTRACE_SETVRREGS requests, for reading and writing the Altivec
143 registers. Zero if we've tried one of them and gotten an
144 error. */
145 int have_ptrace_getvrregs = 1;
146
147
148 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
149 PTRACE_SETEVRREGS requests, for reading and writing the SPE
150 registers. Zero if we've tried one of them and gotten an
151 error. */
152 int have_ptrace_getsetevrregs = 1;
153
154
155 int
156 kernel_u_size (void)
157 {
158 return (sizeof (struct user));
159 }
160
161 /* *INDENT-OFF* */
162 /* registers layout, as presented by the ptrace interface:
163 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
164 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
165 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
166 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
167 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
168 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
169 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
170 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
171 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
172 /* *INDENT_ON * */
173
174 static int
175 ppc_register_u_addr (int regno)
176 {
177 int u_addr = -1;
178 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
179 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
180 interface, and not the wordsize of the program's ABI. */
181 int wordsize = sizeof (PTRACE_XFER_TYPE);
182
183 /* General purpose registers occupy 1 slot each in the buffer */
184 if (regno >= tdep->ppc_gp0_regnum
185 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
186 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
187
188 /* Floating point regs: eight bytes each in both 32- and 64-bit
189 ptrace interfaces. Thus, two slots each in 32-bit interface, one
190 slot each in 64-bit interface. */
191 if (tdep->ppc_fp0_regnum >= 0
192 && regno >= tdep->ppc_fp0_regnum
193 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
194 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
195
196 /* UISA special purpose registers: 1 slot each */
197 if (regno == PC_REGNUM)
198 u_addr = PT_NIP * wordsize;
199 if (regno == tdep->ppc_lr_regnum)
200 u_addr = PT_LNK * wordsize;
201 if (regno == tdep->ppc_cr_regnum)
202 u_addr = PT_CCR * wordsize;
203 if (regno == tdep->ppc_xer_regnum)
204 u_addr = PT_XER * wordsize;
205 if (regno == tdep->ppc_ctr_regnum)
206 u_addr = PT_CTR * wordsize;
207 #ifdef PT_MQ
208 if (regno == tdep->ppc_mq_regnum)
209 u_addr = PT_MQ * wordsize;
210 #endif
211 if (regno == tdep->ppc_ps_regnum)
212 u_addr = PT_MSR * wordsize;
213 if (tdep->ppc_fpscr_regnum >= 0
214 && regno == tdep->ppc_fpscr_regnum)
215 u_addr = PT_FPSCR * wordsize;
216
217 return u_addr;
218 }
219
220 /* The Linux kernel ptrace interface for AltiVec registers uses the
221 registers set mechanism, as opposed to the interface for all the
222 other registers, that stores/fetches each register individually. */
223 static void
224 fetch_altivec_register (int tid, int regno)
225 {
226 int ret;
227 int offset = 0;
228 gdb_vrregset_t regs;
229 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
230 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
231
232 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
233 if (ret < 0)
234 {
235 if (errno == EIO)
236 {
237 have_ptrace_getvrregs = 0;
238 return;
239 }
240 perror_with_name ("Unable to fetch AltiVec register");
241 }
242
243 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
244 long on the hardware. We deal only with the lower 4 bytes of the
245 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
246 there is no need to define an offset for it. */
247 if (regno == (tdep->ppc_vrsave_regnum - 1))
248 offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
249
250 regcache_raw_supply (current_regcache, regno,
251 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
252 }
253
254 /* Fetch the top 32 bits of TID's general-purpose registers and the
255 SPE-specific registers, and place the results in EVRREGSET. If we
256 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
257 zeros.
258
259 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
260 PTRACE_SETEVRREGS requests are supported is isolated here, and in
261 set_spe_registers. */
262 static void
263 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
264 {
265 if (have_ptrace_getsetevrregs)
266 {
267 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
268 return;
269 else
270 {
271 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
272 we just return zeros. */
273 if (errno == EIO)
274 have_ptrace_getsetevrregs = 0;
275 else
276 /* Anything else needs to be reported. */
277 perror_with_name ("Unable to fetch SPE registers");
278 }
279 }
280
281 memset (evrregset, 0, sizeof (*evrregset));
282 }
283
284 /* Supply values from TID for SPE-specific raw registers: the upper
285 halves of the GPRs, the accumulator, and the spefscr. REGNO must
286 be the number of an upper half register, acc, spefscr, or -1 to
287 supply the values of all registers. */
288 static void
289 fetch_spe_register (int tid, int regno)
290 {
291 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
292 struct gdb_evrregset_t evrregs;
293
294 gdb_assert (sizeof (evrregs.evr[0])
295 == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
296 gdb_assert (sizeof (evrregs.acc)
297 == register_size (current_gdbarch, tdep->ppc_acc_regnum));
298 gdb_assert (sizeof (evrregs.spefscr)
299 == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
300
301 get_spe_registers (tid, &evrregs);
302
303 if (regno == -1)
304 {
305 int i;
306
307 for (i = 0; i < ppc_num_gprs; i++)
308 regcache_raw_supply (current_regcache, tdep->ppc_ev0_upper_regnum + i,
309 &evrregs.evr[i]);
310 }
311 else if (tdep->ppc_ev0_upper_regnum <= regno
312 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
313 regcache_raw_supply (current_regcache, regno,
314 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
315
316 if (regno == -1
317 || regno == tdep->ppc_acc_regnum)
318 regcache_raw_supply (current_regcache, tdep->ppc_acc_regnum, &evrregs.acc);
319
320 if (regno == -1
321 || regno == tdep->ppc_spefscr_regnum)
322 regcache_raw_supply (current_regcache, tdep->ppc_spefscr_regnum,
323 &evrregs.spefscr);
324 }
325
326 static void
327 fetch_register (int tid, int regno)
328 {
329 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
330 /* This isn't really an address. But ptrace thinks of it as one. */
331 CORE_ADDR regaddr = ppc_register_u_addr (regno);
332 int bytes_transferred;
333 unsigned int offset; /* Offset of registers within the u area. */
334 char buf[MAX_REGISTER_SIZE];
335
336 if (altivec_register_p (regno))
337 {
338 /* If this is the first time through, or if it is not the first
339 time through, and we have comfirmed that there is kernel
340 support for such a ptrace request, then go and fetch the
341 register. */
342 if (have_ptrace_getvrregs)
343 {
344 fetch_altivec_register (tid, regno);
345 return;
346 }
347 /* If we have discovered that there is no ptrace support for
348 AltiVec registers, fall through and return zeroes, because
349 regaddr will be -1 in this case. */
350 }
351 else if (spe_register_p (regno))
352 {
353 fetch_spe_register (tid, regno);
354 return;
355 }
356
357 if (regaddr == -1)
358 {
359 memset (buf, '\0', register_size (current_gdbarch, regno)); /* Supply zeroes */
360 regcache_raw_supply (current_regcache, regno, buf);
361 return;
362 }
363
364 /* Read the raw register using PTRACE_XFER_TYPE sized chunks. On a
365 32-bit platform, 64-bit floating-point registers will require two
366 transfers. */
367 for (bytes_transferred = 0;
368 bytes_transferred < register_size (current_gdbarch, regno);
369 bytes_transferred += sizeof (PTRACE_XFER_TYPE))
370 {
371 errno = 0;
372 *(PTRACE_XFER_TYPE *) & buf[bytes_transferred]
373 = ptrace (PT_READ_U, tid, (PTRACE_ARG3_TYPE) regaddr, 0);
374 regaddr += sizeof (PTRACE_XFER_TYPE);
375 if (errno != 0)
376 {
377 char message[128];
378 sprintf (message, "reading register %s (#%d)",
379 REGISTER_NAME (regno), regno);
380 perror_with_name (message);
381 }
382 }
383
384 /* Now supply the register. Keep in mind that the regcache's idea
385 of the register's size may not be a multiple of sizeof
386 (PTRACE_XFER_TYPE). */
387 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
388 {
389 /* Little-endian values are always found at the left end of the
390 bytes transferred. */
391 regcache_raw_supply (current_regcache, regno, buf);
392 }
393 else if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
394 {
395 /* Big-endian values are found at the right end of the bytes
396 transferred. */
397 size_t padding = (bytes_transferred
398 - register_size (current_gdbarch, regno));
399 regcache_raw_supply (current_regcache, regno, buf + padding);
400 }
401 else
402 gdb_assert (0);
403 }
404
405 static void
406 supply_vrregset (gdb_vrregset_t *vrregsetp)
407 {
408 int i;
409 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
410 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
411 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
412 int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
413
414 for (i = 0; i < num_of_vrregs; i++)
415 {
416 /* The last 2 registers of this set are only 32 bit long, not
417 128. However an offset is necessary only for VSCR because it
418 occupies a whole vector, while VRSAVE occupies a full 4 bytes
419 slot. */
420 if (i == (num_of_vrregs - 2))
421 regcache_raw_supply (current_regcache, tdep->ppc_vr0_regnum + i,
422 *vrregsetp + i * vrregsize + offset);
423 else
424 regcache_raw_supply (current_regcache, tdep->ppc_vr0_regnum + i,
425 *vrregsetp + i * vrregsize);
426 }
427 }
428
429 static void
430 fetch_altivec_registers (int tid)
431 {
432 int ret;
433 gdb_vrregset_t regs;
434
435 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
436 if (ret < 0)
437 {
438 if (errno == EIO)
439 {
440 have_ptrace_getvrregs = 0;
441 return;
442 }
443 perror_with_name ("Unable to fetch AltiVec registers");
444 }
445 supply_vrregset (&regs);
446 }
447
448 static void
449 fetch_ppc_registers (int tid)
450 {
451 int i;
452 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
453
454 for (i = 0; i < ppc_num_gprs; i++)
455 fetch_register (tid, tdep->ppc_gp0_regnum + i);
456 if (tdep->ppc_fp0_regnum >= 0)
457 for (i = 0; i < ppc_num_fprs; i++)
458 fetch_register (tid, tdep->ppc_fp0_regnum + i);
459 fetch_register (tid, PC_REGNUM);
460 if (tdep->ppc_ps_regnum != -1)
461 fetch_register (tid, tdep->ppc_ps_regnum);
462 if (tdep->ppc_cr_regnum != -1)
463 fetch_register (tid, tdep->ppc_cr_regnum);
464 if (tdep->ppc_lr_regnum != -1)
465 fetch_register (tid, tdep->ppc_lr_regnum);
466 if (tdep->ppc_ctr_regnum != -1)
467 fetch_register (tid, tdep->ppc_ctr_regnum);
468 if (tdep->ppc_xer_regnum != -1)
469 fetch_register (tid, tdep->ppc_xer_regnum);
470 if (tdep->ppc_mq_regnum != -1)
471 fetch_register (tid, tdep->ppc_mq_regnum);
472 if (tdep->ppc_fpscr_regnum != -1)
473 fetch_register (tid, tdep->ppc_fpscr_regnum);
474 if (have_ptrace_getvrregs)
475 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
476 fetch_altivec_registers (tid);
477 if (tdep->ppc_ev0_upper_regnum >= 0)
478 fetch_spe_register (tid, -1);
479 }
480
481 /* Fetch registers from the child process. Fetch all registers if
482 regno == -1, otherwise fetch all general registers or all floating
483 point registers depending upon the value of regno. */
484 void
485 fetch_inferior_registers (int regno)
486 {
487 /* Overload thread id onto process id */
488 int tid = TIDGET (inferior_ptid);
489
490 /* No thread id, just use process id */
491 if (tid == 0)
492 tid = PIDGET (inferior_ptid);
493
494 if (regno == -1)
495 fetch_ppc_registers (tid);
496 else
497 fetch_register (tid, regno);
498 }
499
500 /* Store one register. */
501 static void
502 store_altivec_register (int tid, int regno)
503 {
504 int ret;
505 int offset = 0;
506 gdb_vrregset_t regs;
507 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
508 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
509
510 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
511 if (ret < 0)
512 {
513 if (errno == EIO)
514 {
515 have_ptrace_getvrregs = 0;
516 return;
517 }
518 perror_with_name ("Unable to fetch AltiVec register");
519 }
520
521 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
522 long on the hardware. */
523 if (regno == (tdep->ppc_vrsave_regnum - 1))
524 offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
525
526 regcache_raw_collect (current_regcache, regno,
527 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
528
529 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
530 if (ret < 0)
531 perror_with_name ("Unable to store AltiVec register");
532 }
533
534 /* Assuming TID referrs to an SPE process, set the top halves of TID's
535 general-purpose registers and its SPE-specific registers to the
536 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
537 nothing.
538
539 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
540 PTRACE_SETEVRREGS requests are supported is isolated here, and in
541 get_spe_registers. */
542 static void
543 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
544 {
545 if (have_ptrace_getsetevrregs)
546 {
547 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
548 return;
549 else
550 {
551 /* EIO means that the PTRACE_SETEVRREGS request isn't
552 supported; we fail silently, and don't try the call
553 again. */
554 if (errno == EIO)
555 have_ptrace_getsetevrregs = 0;
556 else
557 /* Anything else needs to be reported. */
558 perror_with_name ("Unable to set SPE registers");
559 }
560 }
561 }
562
563 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
564 If REGNO is -1, write the values of all the SPE-specific
565 registers. */
566 static void
567 store_spe_register (int tid, int regno)
568 {
569 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
570 struct gdb_evrregset_t evrregs;
571
572 gdb_assert (sizeof (evrregs.evr[0])
573 == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
574 gdb_assert (sizeof (evrregs.acc)
575 == register_size (current_gdbarch, tdep->ppc_acc_regnum));
576 gdb_assert (sizeof (evrregs.spefscr)
577 == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
578
579 if (regno == -1)
580 /* Since we're going to write out every register, the code below
581 should store to every field of evrregs; if that doesn't happen,
582 make it obvious by initializing it with suspicious values. */
583 memset (&evrregs, 42, sizeof (evrregs));
584 else
585 /* We can only read and write the entire EVR register set at a
586 time, so to write just a single register, we do a
587 read-modify-write maneuver. */
588 get_spe_registers (tid, &evrregs);
589
590 if (regno == -1)
591 {
592 int i;
593
594 for (i = 0; i < ppc_num_gprs; i++)
595 regcache_raw_collect (current_regcache,
596 tdep->ppc_ev0_upper_regnum + i,
597 &evrregs.evr[i]);
598 }
599 else if (tdep->ppc_ev0_upper_regnum <= regno
600 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
601 regcache_raw_collect (current_regcache, regno,
602 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
603
604 if (regno == -1
605 || regno == tdep->ppc_acc_regnum)
606 regcache_raw_collect (current_regcache,
607 tdep->ppc_acc_regnum,
608 &evrregs.acc);
609
610 if (regno == -1
611 || regno == tdep->ppc_spefscr_regnum)
612 regcache_raw_collect (current_regcache,
613 tdep->ppc_spefscr_regnum,
614 &evrregs.spefscr);
615
616 /* Write back the modified register set. */
617 set_spe_registers (tid, &evrregs);
618 }
619
620 static void
621 store_register (int tid, int regno)
622 {
623 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
624 /* This isn't really an address. But ptrace thinks of it as one. */
625 CORE_ADDR regaddr = ppc_register_u_addr (regno);
626 int i;
627 size_t bytes_to_transfer;
628 char buf[MAX_REGISTER_SIZE];
629
630 if (altivec_register_p (regno))
631 {
632 store_altivec_register (tid, regno);
633 return;
634 }
635 else if (spe_register_p (regno))
636 {
637 store_spe_register (tid, regno);
638 return;
639 }
640
641 if (regaddr == -1)
642 return;
643
644 /* First collect the register. Keep in mind that the regcache's
645 idea of the register's size may not be a multiple of sizeof
646 (PTRACE_XFER_TYPE). */
647 memset (buf, 0, sizeof buf);
648 bytes_to_transfer = align_up (register_size (current_gdbarch, regno),
649 sizeof (PTRACE_XFER_TYPE));
650 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
651 {
652 /* Little-endian values always sit at the left end of the buffer. */
653 regcache_raw_collect (current_regcache, regno, buf);
654 }
655 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
656 {
657 /* Big-endian values sit at the right end of the buffer. */
658 size_t padding = (bytes_to_transfer
659 - register_size (current_gdbarch, regno));
660 regcache_raw_collect (current_regcache, regno, buf + padding);
661 }
662
663 for (i = 0; i < bytes_to_transfer; i += sizeof (PTRACE_XFER_TYPE))
664 {
665 errno = 0;
666 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
667 *(PTRACE_XFER_TYPE *) & buf[i]);
668 regaddr += sizeof (PTRACE_XFER_TYPE);
669
670 if (errno == EIO
671 && regno == tdep->ppc_fpscr_regnum)
672 {
673 /* Some older kernel versions don't allow fpscr to be written. */
674 continue;
675 }
676
677 if (errno != 0)
678 {
679 char message[128];
680 sprintf (message, "writing register %s (#%d)",
681 REGISTER_NAME (regno), regno);
682 perror_with_name (message);
683 }
684 }
685 }
686
687 static void
688 fill_vrregset (gdb_vrregset_t *vrregsetp)
689 {
690 int i;
691 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
692 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
693 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
694 int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
695
696 for (i = 0; i < num_of_vrregs; i++)
697 {
698 /* The last 2 registers of this set are only 32 bit long, not
699 128, but only VSCR is fetched as a 16 bytes quantity. */
700 if (i == (num_of_vrregs - 2))
701 regcache_raw_collect (current_regcache, tdep->ppc_vr0_regnum + i,
702 *vrregsetp + i * vrregsize + offset);
703 else
704 regcache_raw_collect (current_regcache, tdep->ppc_vr0_regnum + i,
705 *vrregsetp + i * vrregsize);
706 }
707 }
708
709 static void
710 store_altivec_registers (int tid)
711 {
712 int ret;
713 gdb_vrregset_t regs;
714
715 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
716 if (ret < 0)
717 {
718 if (errno == EIO)
719 {
720 have_ptrace_getvrregs = 0;
721 return;
722 }
723 perror_with_name ("Couldn't get AltiVec registers");
724 }
725
726 fill_vrregset (&regs);
727
728 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
729 perror_with_name ("Couldn't write AltiVec registers");
730 }
731
732 static void
733 store_ppc_registers (int tid)
734 {
735 int i;
736 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
737
738 for (i = 0; i < ppc_num_gprs; i++)
739 store_register (tid, tdep->ppc_gp0_regnum + i);
740 if (tdep->ppc_fp0_regnum >= 0)
741 for (i = 0; i < ppc_num_fprs; i++)
742 store_register (tid, tdep->ppc_fp0_regnum + i);
743 store_register (tid, PC_REGNUM);
744 if (tdep->ppc_ps_regnum != -1)
745 store_register (tid, tdep->ppc_ps_regnum);
746 if (tdep->ppc_cr_regnum != -1)
747 store_register (tid, tdep->ppc_cr_regnum);
748 if (tdep->ppc_lr_regnum != -1)
749 store_register (tid, tdep->ppc_lr_regnum);
750 if (tdep->ppc_ctr_regnum != -1)
751 store_register (tid, tdep->ppc_ctr_regnum);
752 if (tdep->ppc_xer_regnum != -1)
753 store_register (tid, tdep->ppc_xer_regnum);
754 if (tdep->ppc_mq_regnum != -1)
755 store_register (tid, tdep->ppc_mq_regnum);
756 if (tdep->ppc_fpscr_regnum != -1)
757 store_register (tid, tdep->ppc_fpscr_regnum);
758 if (have_ptrace_getvrregs)
759 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
760 store_altivec_registers (tid);
761 if (tdep->ppc_ev0_upper_regnum >= 0)
762 store_spe_register (tid, -1);
763 }
764
765 void
766 store_inferior_registers (int regno)
767 {
768 /* Overload thread id onto process id */
769 int tid = TIDGET (inferior_ptid);
770
771 /* No thread id, just use process id */
772 if (tid == 0)
773 tid = PIDGET (inferior_ptid);
774
775 if (regno >= 0)
776 store_register (tid, regno);
777 else
778 store_ppc_registers (tid);
779 }
780
781 void
782 supply_gregset (gdb_gregset_t *gregsetp)
783 {
784 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
785 interface, and not the wordsize of the program's ABI. */
786 int wordsize = sizeof (PTRACE_XFER_TYPE);
787 ppc_linux_supply_gregset (current_regcache, -1, gregsetp,
788 sizeof (gdb_gregset_t), wordsize);
789 }
790
791 static void
792 right_fill_reg (int regnum, void *reg)
793 {
794 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
795 interface, and not the wordsize of the program's ABI. */
796 int wordsize = sizeof (PTRACE_XFER_TYPE);
797 /* Right fill the register. */
798 regcache_raw_collect (current_regcache, regnum,
799 ((bfd_byte *) reg
800 + wordsize
801 - register_size (current_gdbarch, regnum)));
802 }
803
804 void
805 fill_gregset (gdb_gregset_t *gregsetp, int regno)
806 {
807 int regi;
808 elf_greg_t *regp = (elf_greg_t *) gregsetp;
809 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
810 const int elf_ngreg = 48;
811
812
813 /* Start with zeros. */
814 memset (regp, 0, elf_ngreg * sizeof (*regp));
815
816 for (regi = 0; regi < ppc_num_gprs; regi++)
817 {
818 if ((regno == -1) || regno == tdep->ppc_gp0_regnum + regi)
819 right_fill_reg (tdep->ppc_gp0_regnum + regi, (regp + PT_R0 + regi));
820 }
821
822 if ((regno == -1) || regno == PC_REGNUM)
823 right_fill_reg (PC_REGNUM, regp + PT_NIP);
824 if ((regno == -1) || regno == tdep->ppc_lr_regnum)
825 right_fill_reg (tdep->ppc_lr_regnum, regp + PT_LNK);
826 if ((regno == -1) || regno == tdep->ppc_cr_regnum)
827 regcache_raw_collect (current_regcache, tdep->ppc_cr_regnum,
828 regp + PT_CCR);
829 if ((regno == -1) || regno == tdep->ppc_xer_regnum)
830 regcache_raw_collect (current_regcache, tdep->ppc_xer_regnum,
831 regp + PT_XER);
832 if ((regno == -1) || regno == tdep->ppc_ctr_regnum)
833 right_fill_reg (tdep->ppc_ctr_regnum, regp + PT_CTR);
834 #ifdef PT_MQ
835 if (((regno == -1) || regno == tdep->ppc_mq_regnum)
836 && (tdep->ppc_mq_regnum != -1))
837 right_fill_reg (tdep->ppc_mq_regnum, regp + PT_MQ);
838 #endif
839 if ((regno == -1) || regno == tdep->ppc_ps_regnum)
840 right_fill_reg (tdep->ppc_ps_regnum, regp + PT_MSR);
841 }
842
843 void
844 supply_fpregset (gdb_fpregset_t * fpregsetp)
845 {
846 ppc_linux_supply_fpregset (NULL, current_regcache, -1, fpregsetp,
847 sizeof (gdb_fpregset_t));
848 }
849
850 /* Given a pointer to a floating point register set in /proc format
851 (fpregset_t *), update the register specified by REGNO from gdb's
852 idea of the current floating point register set. If REGNO is -1,
853 update them all. */
854 void
855 fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
856 {
857 int regi;
858 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
859 bfd_byte *fpp = (void *) fpregsetp;
860
861 if (ppc_floating_point_unit_p (current_gdbarch))
862 {
863 for (regi = 0; regi < ppc_num_fprs; regi++)
864 {
865 if ((regno == -1) || (regno == tdep->ppc_fp0_regnum + regi))
866 regcache_raw_collect (current_regcache, tdep->ppc_fp0_regnum + regi,
867 fpp + 8 * regi);
868 }
869 if (regno == -1 || regno == tdep->ppc_fpscr_regnum)
870 right_fill_reg (tdep->ppc_fpscr_regnum, (fpp + 8 * 32));
871 }
872 }
This page took 0.062096 seconds and 4 git commands to generate.