2004-07-23 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002,
4 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "regcache.h"
29 #include "gdb_assert.h"
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <signal.h>
34 #include <sys/user.h>
35 #include <sys/ioctl.h>
36 #include "gdb_wait.h"
37 #include <fcntl.h>
38 #include <sys/procfs.h>
39 #include <sys/ptrace.h>
40
41 /* Prototypes for supply_gregset etc. */
42 #include "gregset.h"
43 #include "ppc-tdep.h"
44
45 #ifndef PT_READ_U
46 #define PT_READ_U PTRACE_PEEKUSR
47 #endif
48 #ifndef PT_WRITE_U
49 #define PT_WRITE_U PTRACE_POKEUSR
50 #endif
51
52 /* Default the type of the ptrace transfer to int. */
53 #ifndef PTRACE_XFER_TYPE
54 #define PTRACE_XFER_TYPE int
55 #endif
56
57 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
58 configure time check. Some older glibc's (for instance 2.2.1)
59 don't have a specific powerpc version of ptrace.h, and fall back on
60 a generic one. In such cases, sys/ptrace.h defines
61 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
62 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
63 PTRACE_SETVRREGS to be. This also makes a configury check pretty
64 much useless. */
65
66 /* These definitions should really come from the glibc header files,
67 but Glibc doesn't know about the vrregs yet. */
68 #ifndef PTRACE_GETVRREGS
69 #define PTRACE_GETVRREGS 18
70 #define PTRACE_SETVRREGS 19
71 #endif
72
73
74 /* Similarly for the ptrace requests for getting / setting the SPE
75 registers (ev0 -- ev31, acc, and spefscr). See the description of
76 gdb_evrregset_t for details. */
77 #ifndef PTRACE_GETEVRREGS
78 #define PTRACE_GETEVRREGS 20
79 #define PTRACE_SETEVRREGS 21
80 #endif
81
82
83 /* This oddity is because the Linux kernel defines elf_vrregset_t as
84 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
85 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
86 the vrsave as an extra 4 bytes at the end. I opted for creating a
87 flat array of chars, so that it is easier to manipulate for gdb.
88
89 There are 32 vector registers 16 bytes longs, plus a VSCR register
90 which is only 4 bytes long, but is fetched as a 16 bytes
91 quantity. Up to here we have the elf_vrregset_t structure.
92 Appended to this there is space for the VRSAVE register: 4 bytes.
93 Even though this vrsave register is not included in the regset
94 typedef, it is handled by the ptrace requests.
95
96 Note that GNU/Linux doesn't support little endian PPC hardware,
97 therefore the offset at which the real value of the VSCR register
98 is located will be always 12 bytes.
99
100 The layout is like this (where x is the actual value of the vscr reg): */
101
102 /* *INDENT-OFF* */
103 /*
104 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
105 <-------> <-------><-------><->
106 VR0 VR31 VSCR VRSAVE
107 */
108 /* *INDENT-ON* */
109
110 #define SIZEOF_VRREGS 33*16+4
111
112 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
113
114
115 /* On PPC processors that support the the Signal Processing Extension
116 (SPE) APU, the general-purpose registers are 64 bits long.
117 However, the ordinary Linux kernel PTRACE_PEEKUSR / PTRACE_POKEUSR
118 / PT_READ_U / PT_WRITE_U ptrace calls only access the lower half of
119 each register, to allow them to behave the same way they do on
120 non-SPE systems. There's a separate pair of calls,
121 PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that read and write the top
122 halves of all the general-purpose registers at once, along with
123 some SPE-specific registers.
124
125 GDB itself continues to claim the general-purpose registers are 32
126 bits long; the full 64-bit registers are called 'ev0' -- 'ev31'.
127 The ev registers are raw registers, and the GPR's are pseudo-
128 registers mapped onto their lower halves. This means that reading
129 and writing ev registers involves a mix of regset-at-once
130 PTRACE_{GET,SET}EVRREGS calls and register-at-a-time
131 PTRACE_{PEEK,POKE}USR calls.
132
133 This is the structure filled in by PTRACE_GETEVRREGS and written to
134 the inferior's registers by PTRACE_SETEVRREGS. */
135 struct gdb_evrregset_t
136 {
137 unsigned long evr[32];
138 unsigned long long acc;
139 unsigned long spefscr;
140 };
141
142
143 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
144 PTRACE_SETVRREGS requests, for reading and writing the Altivec
145 registers. Zero if we've tried one of them and gotten an
146 error. */
147 int have_ptrace_getvrregs = 1;
148
149
150 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
151 PTRACE_SETEVRREGS requests, for reading and writing the SPE
152 registers. Zero if we've tried one of them and gotten an
153 error. */
154 int have_ptrace_getsetevrregs = 1;
155
156
157 int
158 kernel_u_size (void)
159 {
160 return (sizeof (struct user));
161 }
162
163 /* *INDENT-OFF* */
164 /* registers layout, as presented by the ptrace interface:
165 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
166 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
167 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
168 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
169 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
170 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
171 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
172 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
173 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
174 /* *INDENT_ON * */
175
176 static int
177 ppc_register_u_addr (int regno)
178 {
179 int u_addr = -1;
180 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
181 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
182 interface, and not the wordsize of the program's ABI. */
183 int wordsize = sizeof (PTRACE_XFER_TYPE);
184
185 /* General purpose registers occupy 1 slot each in the buffer */
186 if (regno >= tdep->ppc_gp0_regnum
187 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
188 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
189
190 /* Floating point regs: eight bytes each in both 32- and 64-bit
191 ptrace interfaces. Thus, two slots each in 32-bit interface, one
192 slot each in 64-bit interface. */
193 if (tdep->ppc_fp0_regnum >= 0
194 && regno >= tdep->ppc_fp0_regnum
195 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
196 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
197
198 /* UISA special purpose registers: 1 slot each */
199 if (regno == PC_REGNUM)
200 u_addr = PT_NIP * wordsize;
201 if (regno == tdep->ppc_lr_regnum)
202 u_addr = PT_LNK * wordsize;
203 if (regno == tdep->ppc_cr_regnum)
204 u_addr = PT_CCR * wordsize;
205 if (regno == tdep->ppc_xer_regnum)
206 u_addr = PT_XER * wordsize;
207 if (regno == tdep->ppc_ctr_regnum)
208 u_addr = PT_CTR * wordsize;
209 #ifdef PT_MQ
210 if (regno == tdep->ppc_mq_regnum)
211 u_addr = PT_MQ * wordsize;
212 #endif
213 if (regno == tdep->ppc_ps_regnum)
214 u_addr = PT_MSR * wordsize;
215 if (tdep->ppc_fpscr_regnum >= 0
216 && regno == tdep->ppc_fpscr_regnum)
217 u_addr = PT_FPSCR * wordsize;
218
219 return u_addr;
220 }
221
222 /* The Linux kernel ptrace interface for AltiVec registers uses the
223 registers set mechanism, as opposed to the interface for all the
224 other registers, that stores/fetches each register individually. */
225 static void
226 fetch_altivec_register (int tid, int regno)
227 {
228 int ret;
229 int offset = 0;
230 gdb_vrregset_t regs;
231 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
232 int vrregsize = DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
233
234 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
235 if (ret < 0)
236 {
237 if (errno == EIO)
238 {
239 have_ptrace_getvrregs = 0;
240 return;
241 }
242 perror_with_name ("Unable to fetch AltiVec register");
243 }
244
245 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
246 long on the hardware. We deal only with the lower 4 bytes of the
247 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
248 there is no need to define an offset for it. */
249 if (regno == (tdep->ppc_vrsave_regnum - 1))
250 offset = vrregsize - DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vrsave_regnum);
251
252 regcache_raw_supply (current_regcache, regno,
253 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
254 }
255
256 /* Fetch the top 32 bits of TID's general-purpose registers and the
257 SPE-specific registers, and place the results in EVRREGSET. If we
258 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
259 zeros.
260
261 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
262 PTRACE_SETEVRREGS requests are supported is isolated here, and in
263 set_spe_registers. */
264 static void
265 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
266 {
267 if (have_ptrace_getsetevrregs)
268 {
269 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
270 return;
271 else
272 {
273 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
274 we just return zeros. */
275 if (errno == EIO)
276 have_ptrace_getsetevrregs = 0;
277 else
278 /* Anything else needs to be reported. */
279 perror_with_name ("Unable to fetch SPE registers");
280 }
281 }
282
283 memset (evrregset, 0, sizeof (*evrregset));
284 }
285
286 /* Assuming TID refers to an SPE process, store the full 64-bit value
287 of TID's ev register EV_REGNUM in DEST, getting the high bits from
288 EVRREGS and the low bits from the kernel via ptrace. */
289 static void
290 read_spliced_spe_reg (int tid, int ev_regnum,
291 struct gdb_evrregset_t *evrregs,
292 char *dest)
293 {
294 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
295
296 /* Make sure we're trying to read an EV register; that's all we
297 handle. */
298 gdb_assert (tdep->ppc_ev0_regnum <= ev_regnum
299 && ev_regnum <= tdep->ppc_ev31_regnum);
300
301 /* Make sure the sizes for the splicing add up. */
302 gdb_assert (sizeof (evrregs->evr[0]) + sizeof (PTRACE_XFER_TYPE)
303 == register_size (current_gdbarch, ev_regnum));
304
305 {
306 /* The index of ev_regnum in evrregs->evr[]. */
307 int ev_index = ev_regnum - tdep->ppc_ev0_regnum;
308
309 /* The number of the corresponding general-purpose register, which
310 holds the lower 32 bits of the EV register. */
311 int gpr_regnum = tdep->ppc_gp0_regnum + ev_index;
312
313 /* The offset of gpr_regnum in the process's uarea. */
314 CORE_ADDR gpr_uoffset = ppc_register_u_addr (gpr_regnum);
315
316 /* The low word of the EV register's value. */
317 PTRACE_XFER_TYPE low_word;
318
319 /* The PTRACE_PEEKUSR / PT_READ_U ptrace requests need to be able
320 to return arbitrary register values, so they can't return -1 to
321 indicate an error. So we clear errno, and then check it after
322 the call. */
323 errno = 0;
324 low_word = ptrace (PT_READ_U, tid, (PTRACE_ARG3_TYPE) gpr_uoffset, 0);
325
326 if (errno != 0)
327 {
328 char message[128];
329 sprintf (message, "reading register %s (#%d)",
330 REGISTER_NAME (ev_regnum), ev_regnum);
331 perror_with_name (message);
332 }
333
334 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
335 {
336 memcpy (dest, &evrregs->evr[ev_index],
337 sizeof (evrregs->evr[ev_index]));
338 * (PTRACE_XFER_TYPE *) (dest + sizeof (evrregs->evr[ev_index]))
339 = low_word;
340 }
341 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
342 {
343 * (PTRACE_XFER_TYPE *) dest = low_word;
344 memcpy (dest + sizeof (PTRACE_XFER_TYPE),
345 &evrregs->evr[ev_index], sizeof (evrregs->evr[ev_index]));
346 }
347 else
348 gdb_assert (0);
349 }
350 }
351
352
353 /* On SPE machines, supply the full value of the SPE register REGNO
354 from TID. This handles ev0 -- ev31 and acc, which are 64 bits
355 long, and spefscr, which is 32 bits long. */
356 static void
357 fetch_spe_register (int tid, int regno)
358 {
359 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
360 struct gdb_evrregset_t evrregs;
361
362 get_spe_registers (tid, &evrregs);
363
364 if (tdep->ppc_ev0_regnum <= regno
365 && regno <= tdep->ppc_ev31_regnum)
366 {
367 char buf[MAX_REGISTER_SIZE];
368 read_spliced_spe_reg (tid, regno, &evrregs, buf);
369 regcache_raw_supply (current_regcache, regno, buf);
370 }
371 else if (regno == tdep->ppc_acc_regnum)
372 {
373 gdb_assert (sizeof (evrregs.acc)
374 == register_size (current_gdbarch, regno));
375 regcache_raw_supply (current_regcache, regno, &evrregs.acc);
376 }
377 else if (regno == tdep->ppc_spefscr_regnum)
378 {
379 gdb_assert (sizeof (evrregs.spefscr)
380 == register_size (current_gdbarch, regno));
381 regcache_raw_supply (current_regcache, regno, &evrregs.spefscr);
382 }
383 else
384 gdb_assert (0);
385 }
386
387 static void
388 fetch_register (int tid, int regno)
389 {
390 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
391 /* This isn't really an address. But ptrace thinks of it as one. */
392 CORE_ADDR regaddr = ppc_register_u_addr (regno);
393 int bytes_transferred;
394 unsigned int offset; /* Offset of registers within the u area. */
395 char buf[MAX_REGISTER_SIZE];
396
397 /* Sanity check: this function should only be called to fetch raw
398 registers' values, never pseudoregisters' values. */
399 if (tdep->ppc_gp0_regnum <= regno
400 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
401 gdb_assert (! tdep->ppc_gprs_pseudo_p);
402
403 if (altivec_register_p (regno))
404 {
405 /* If this is the first time through, or if it is not the first
406 time through, and we have comfirmed that there is kernel
407 support for such a ptrace request, then go and fetch the
408 register. */
409 if (have_ptrace_getvrregs)
410 {
411 fetch_altivec_register (tid, regno);
412 return;
413 }
414 /* If we have discovered that there is no ptrace support for
415 AltiVec registers, fall through and return zeroes, because
416 regaddr will be -1 in this case. */
417 }
418 else if (spe_register_p (regno))
419 {
420 fetch_spe_register (tid, regno);
421 return;
422 }
423
424 if (regaddr == -1)
425 {
426 memset (buf, '\0', DEPRECATED_REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
427 regcache_raw_supply (current_regcache, regno, buf);
428 return;
429 }
430
431 /* Read the raw register using PTRACE_XFER_TYPE sized chunks. On a
432 32-bit platform, 64-bit floating-point registers will require two
433 transfers. */
434 for (bytes_transferred = 0;
435 bytes_transferred < register_size (current_gdbarch, regno);
436 bytes_transferred += sizeof (PTRACE_XFER_TYPE))
437 {
438 errno = 0;
439 *(PTRACE_XFER_TYPE *) & buf[bytes_transferred]
440 = ptrace (PT_READ_U, tid, (PTRACE_ARG3_TYPE) regaddr, 0);
441 regaddr += sizeof (PTRACE_XFER_TYPE);
442 if (errno != 0)
443 {
444 char message[128];
445 sprintf (message, "reading register %s (#%d)",
446 REGISTER_NAME (regno), regno);
447 perror_with_name (message);
448 }
449 }
450
451 /* Now supply the register. Keep in mind that the regcache's idea
452 of the register's size may not be a multiple of sizeof
453 (PTRACE_XFER_TYPE). */
454 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
455 {
456 /* Little-endian values are always found at the left end of the
457 bytes transferred. */
458 regcache_raw_supply (current_regcache, regno, buf);
459 }
460 else if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
461 {
462 /* Big-endian values are found at the right end of the bytes
463 transferred. */
464 size_t padding = (bytes_transferred
465 - register_size (current_gdbarch, regno));
466 regcache_raw_supply (current_regcache, regno, buf + padding);
467 }
468 else
469 gdb_assert (0);
470 }
471
472 static void
473 supply_vrregset (gdb_vrregset_t *vrregsetp)
474 {
475 int i;
476 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
477 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
478 int vrregsize = DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
479 int offset = vrregsize - DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vrsave_regnum);
480
481 for (i = 0; i < num_of_vrregs; i++)
482 {
483 /* The last 2 registers of this set are only 32 bit long, not
484 128. However an offset is necessary only for VSCR because it
485 occupies a whole vector, while VRSAVE occupies a full 4 bytes
486 slot. */
487 if (i == (num_of_vrregs - 2))
488 regcache_raw_supply (current_regcache, tdep->ppc_vr0_regnum + i,
489 *vrregsetp + i * vrregsize + offset);
490 else
491 regcache_raw_supply (current_regcache, tdep->ppc_vr0_regnum + i,
492 *vrregsetp + i * vrregsize);
493 }
494 }
495
496 static void
497 fetch_altivec_registers (int tid)
498 {
499 int ret;
500 gdb_vrregset_t regs;
501
502 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
503 if (ret < 0)
504 {
505 if (errno == EIO)
506 {
507 have_ptrace_getvrregs = 0;
508 return;
509 }
510 perror_with_name ("Unable to fetch AltiVec registers");
511 }
512 supply_vrregset (&regs);
513 }
514
515 /* On SPE machines, fetch the full 64 bits of all the general-purpose
516 registers, as well as the SPE-specific registers 'acc' and
517 'spefscr'. */
518 static void
519 fetch_spe_registers (int tid)
520 {
521 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
522 struct gdb_evrregset_t evrregs;
523 int i;
524
525 get_spe_registers (tid, &evrregs);
526
527 /* Splice and supply each of the EV registers. */
528 for (i = 0; i < ppc_num_gprs; i++)
529 {
530 char buf[MAX_REGISTER_SIZE];
531
532 read_spliced_spe_reg (tid, tdep->ppc_ev0_regnum + i, &evrregs, buf);
533 regcache_raw_supply (current_regcache, tdep->ppc_ev0_regnum + i, buf);
534 }
535
536 /* Supply the SPE-specific registers. */
537 regcache_raw_supply (current_regcache, tdep->ppc_acc_regnum, &evrregs.acc);
538 regcache_raw_supply (current_regcache, tdep->ppc_spefscr_regnum,
539 &evrregs.spefscr);
540 }
541
542 static void
543 fetch_ppc_registers (int tid)
544 {
545 int i;
546 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
547
548 if (! tdep->ppc_gprs_pseudo_p)
549 for (i = 0; i < ppc_num_gprs; i++)
550 fetch_register (tid, tdep->ppc_gp0_regnum + i);
551 if (tdep->ppc_fp0_regnum >= 0)
552 for (i = 0; i < ppc_num_fprs; i++)
553 fetch_register (tid, tdep->ppc_fp0_regnum + i);
554 fetch_register (tid, PC_REGNUM);
555 if (tdep->ppc_ps_regnum != -1)
556 fetch_register (tid, tdep->ppc_ps_regnum);
557 if (tdep->ppc_cr_regnum != -1)
558 fetch_register (tid, tdep->ppc_cr_regnum);
559 if (tdep->ppc_lr_regnum != -1)
560 fetch_register (tid, tdep->ppc_lr_regnum);
561 if (tdep->ppc_ctr_regnum != -1)
562 fetch_register (tid, tdep->ppc_ctr_regnum);
563 if (tdep->ppc_xer_regnum != -1)
564 fetch_register (tid, tdep->ppc_xer_regnum);
565 if (tdep->ppc_mq_regnum != -1)
566 fetch_register (tid, tdep->ppc_mq_regnum);
567 if (tdep->ppc_fpscr_regnum != -1)
568 fetch_register (tid, tdep->ppc_fpscr_regnum);
569 if (have_ptrace_getvrregs)
570 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
571 fetch_altivec_registers (tid);
572 if (tdep->ppc_ev0_regnum >= 0)
573 fetch_spe_registers (tid);
574 }
575
576 /* Fetch registers from the child process. Fetch all registers if
577 regno == -1, otherwise fetch all general registers or all floating
578 point registers depending upon the value of regno. */
579 void
580 fetch_inferior_registers (int regno)
581 {
582 /* Overload thread id onto process id */
583 int tid = TIDGET (inferior_ptid);
584
585 /* No thread id, just use process id */
586 if (tid == 0)
587 tid = PIDGET (inferior_ptid);
588
589 if (regno == -1)
590 fetch_ppc_registers (tid);
591 else
592 fetch_register (tid, regno);
593 }
594
595 /* Store one register. */
596 static void
597 store_altivec_register (int tid, int regno)
598 {
599 int ret;
600 int offset = 0;
601 gdb_vrregset_t regs;
602 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
603 int vrregsize = DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
604
605 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
606 if (ret < 0)
607 {
608 if (errno == EIO)
609 {
610 have_ptrace_getvrregs = 0;
611 return;
612 }
613 perror_with_name ("Unable to fetch AltiVec register");
614 }
615
616 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
617 long on the hardware. */
618 if (regno == (tdep->ppc_vrsave_regnum - 1))
619 offset = vrregsize - DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vrsave_regnum);
620
621 regcache_raw_collect (current_regcache, regno,
622 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
623
624 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
625 if (ret < 0)
626 perror_with_name ("Unable to store AltiVec register");
627 }
628
629 /* Assuming TID referrs to an SPE process, set the top halves of TID's
630 general-purpose registers and its SPE-specific registers to the
631 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
632 nothing.
633
634 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
635 PTRACE_SETEVRREGS requests are supported is isolated here, and in
636 get_spe_registers. */
637 static void
638 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
639 {
640 if (have_ptrace_getsetevrregs)
641 {
642 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
643 return;
644 else
645 {
646 /* EIO means that the PTRACE_SETEVRREGS request isn't
647 supported; we fail silently, and don't try the call
648 again. */
649 if (errno == EIO)
650 have_ptrace_getsetevrregs = 0;
651 else
652 /* Anything else needs to be reported. */
653 perror_with_name ("Unable to set SPE registers");
654 }
655 }
656 }
657
658 /* Store the bytes at SRC as the contents of TID's EV register EV_REGNUM.
659 Write the less significant word to TID using ptrace, and copy the
660 more significant word to the appropriate slot in EVRREGS. */
661 static void
662 write_spliced_spe_reg (int tid, int ev_regnum,
663 struct gdb_evrregset_t *evrregs,
664 char *src)
665 {
666 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
667
668 /* Make sure we're trying to write an EV register; that's all we
669 handle. */
670 gdb_assert (tdep->ppc_ev0_regnum <= ev_regnum
671 && ev_regnum <= tdep->ppc_ev31_regnum);
672
673 /* Make sure the sizes for the splicing add up. */
674 gdb_assert (sizeof (evrregs->evr[0]) + sizeof (PTRACE_XFER_TYPE)
675 == register_size (current_gdbarch, ev_regnum));
676
677 {
678 int ev_index = ev_regnum - tdep->ppc_ev0_regnum;
679
680 /* The number of the corresponding general-purpose register, which
681 holds the lower 32 bits of the EV register. */
682 int gpr_regnum = tdep->ppc_gp0_regnum + ev_index;
683
684 /* The offset of gpr_regnum in the process's uarea. */
685 CORE_ADDR gpr_uoffset = ppc_register_u_addr (gpr_regnum);
686
687 /* The PTRACE_POKEUSR / PT_WRITE_U ptrace requests need to be able
688 to return arbitrary register values, so they can't return -1 to
689 indicate an error. So we clear errno, and check it again
690 afterwards. */
691 errno = 0;
692
693 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
694 {
695 memcpy (&evrregs->evr[ev_index], src, sizeof (evrregs->evr[ev_index]));
696 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) gpr_uoffset,
697 * (PTRACE_XFER_TYPE *) (src + sizeof (evrregs->evr[0])));
698 }
699 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
700 {
701 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) gpr_uoffset,
702 * (PTRACE_XFER_TYPE *) src);
703 memcpy (&evrregs->evr[ev_index], src + sizeof (PTRACE_XFER_TYPE),
704 sizeof (evrregs->evr[ev_index]));
705 }
706 else
707 gdb_assert (0);
708
709 if (errno != 0)
710 {
711 char message[128];
712 sprintf (message, "writing register %s (#%d)",
713 REGISTER_NAME (ev_regnum), ev_regnum);
714 perror_with_name (message);
715 }
716 }
717 }
718
719 /* Write GDB's value for the SPE register REGNO to TID. */
720 static void
721 store_spe_register (int tid, int regno)
722 {
723 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
724 struct gdb_evrregset_t evrregs;
725
726 /* We can only read and write the entire EVR register set at a time,
727 so to write just a single register, we do a read-modify-write
728 maneuver. */
729 get_spe_registers (tid, &evrregs);
730
731 if (tdep->ppc_ev0_regnum >= 0
732 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
733 {
734 char buf[MAX_REGISTER_SIZE];
735 regcache_raw_collect (current_regcache, regno, buf);
736 write_spliced_spe_reg (tid, regno, &evrregs, buf);
737 }
738 else if (tdep->ppc_acc_regnum >= 0
739 && regno == tdep->ppc_acc_regnum)
740 {
741 gdb_assert (sizeof (evrregs.acc)
742 == register_size (current_gdbarch, regno));
743 regcache_raw_collect (current_regcache, regno, &evrregs.acc);
744 }
745 else if (tdep->ppc_spefscr_regnum >= 0
746 && regno == tdep->ppc_spefscr_regnum)
747 {
748 gdb_assert (sizeof (evrregs.spefscr)
749 == register_size (current_gdbarch, regno));
750 regcache_raw_collect (current_regcache, regno, &evrregs.spefscr);
751 }
752 else
753 gdb_assert (0);
754
755 /* Write back the modified register set. */
756 set_spe_registers (tid, &evrregs);
757 }
758
759 static void
760 store_register (int tid, int regno)
761 {
762 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
763 /* This isn't really an address. But ptrace thinks of it as one. */
764 CORE_ADDR regaddr = ppc_register_u_addr (regno);
765 int i;
766 size_t bytes_to_transfer;
767 char buf[MAX_REGISTER_SIZE];
768
769 /* Sanity check: this function should only be called to store raw
770 registers' values, never pseudoregisters' values. */
771 if (tdep->ppc_gp0_regnum <= regno
772 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
773 gdb_assert (! tdep->ppc_gprs_pseudo_p);
774
775 if (altivec_register_p (regno))
776 {
777 store_altivec_register (tid, regno);
778 return;
779 }
780 else if (spe_register_p (regno))
781 {
782 store_spe_register (tid, regno);
783 return;
784 }
785
786 if (regaddr == -1)
787 return;
788
789 /* First collect the register. Keep in mind that the regcache's
790 idea of the register's size may not be a multiple of sizeof
791 (PTRACE_XFER_TYPE). */
792 memset (buf, 0, sizeof buf);
793 bytes_to_transfer = align_up (register_size (current_gdbarch, regno),
794 sizeof (PTRACE_XFER_TYPE));
795 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
796 {
797 /* Little-endian values always sit at the left end of the buffer. */
798 regcache_raw_collect (current_regcache, regno, buf);
799 }
800 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
801 {
802 /* Big-endian values sit at the right end of the buffer. */
803 size_t padding = (bytes_to_transfer
804 - register_size (current_gdbarch, regno));
805 regcache_raw_collect (current_regcache, regno, buf + padding);
806 }
807
808 for (i = 0; i < bytes_to_transfer; i += sizeof (PTRACE_XFER_TYPE))
809 {
810 errno = 0;
811 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
812 *(PTRACE_XFER_TYPE *) & buf[i]);
813 regaddr += sizeof (PTRACE_XFER_TYPE);
814
815 if (errno == EIO
816 && regno == tdep->ppc_fpscr_regnum)
817 {
818 /* Some older kernel versions don't allow fpscr to be written. */
819 continue;
820 }
821
822 if (errno != 0)
823 {
824 char message[128];
825 sprintf (message, "writing register %s (#%d)",
826 REGISTER_NAME (regno), regno);
827 perror_with_name (message);
828 }
829 }
830 }
831
832 static void
833 fill_vrregset (gdb_vrregset_t *vrregsetp)
834 {
835 int i;
836 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
837 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
838 int vrregsize = DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
839 int offset = vrregsize - DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vrsave_regnum);
840
841 for (i = 0; i < num_of_vrregs; i++)
842 {
843 /* The last 2 registers of this set are only 32 bit long, not
844 128, but only VSCR is fetched as a 16 bytes quantity. */
845 if (i == (num_of_vrregs - 2))
846 regcache_raw_collect (current_regcache, tdep->ppc_vr0_regnum + i,
847 *vrregsetp + i * vrregsize + offset);
848 else
849 regcache_raw_collect (current_regcache, tdep->ppc_vr0_regnum + i,
850 *vrregsetp + i * vrregsize);
851 }
852 }
853
854 static void
855 store_altivec_registers (int tid)
856 {
857 int ret;
858 gdb_vrregset_t regs;
859
860 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
861 if (ret < 0)
862 {
863 if (errno == EIO)
864 {
865 have_ptrace_getvrregs = 0;
866 return;
867 }
868 perror_with_name ("Couldn't get AltiVec registers");
869 }
870
871 fill_vrregset (&regs);
872
873 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
874 perror_with_name ("Couldn't write AltiVec registers");
875 }
876
877 static void
878 store_spe_registers (int tid)
879 {
880 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
881 struct gdb_evrregset_t evrregs;
882 int i;
883
884 /* The code below should store to every field of evrregs; if that
885 doesn't happen, make it obvious by initializing it with
886 suspicious values. */
887 memset (&evrregs, 42, sizeof (evrregs));
888
889 for (i = 0; i < ppc_num_gprs; i++)
890 {
891 char buf[MAX_REGISTER_SIZE];
892
893 regcache_raw_collect (current_regcache, tdep->ppc_ev0_regnum + i, buf);
894 write_spliced_spe_reg (tid, tdep->ppc_ev0_regnum + i, &evrregs, buf);
895 }
896
897 gdb_assert (sizeof (evrregs.acc)
898 == register_size (current_gdbarch, tdep->ppc_acc_regnum));
899 regcache_raw_collect (current_regcache, tdep->ppc_acc_regnum, &evrregs.acc);
900 gdb_assert (sizeof (evrregs.spefscr)
901 == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
902 regcache_raw_collect (current_regcache, tdep->ppc_acc_regnum, &evrregs.spefscr);
903
904 set_spe_registers (tid, &evrregs);
905 }
906
907 static void
908 store_ppc_registers (int tid)
909 {
910 int i;
911 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
912
913 if (! tdep->ppc_gprs_pseudo_p)
914 for (i = 0; i < ppc_num_gprs; i++)
915 store_register (tid, tdep->ppc_gp0_regnum + i);
916 if (tdep->ppc_fp0_regnum >= 0)
917 for (i = 0; i < ppc_num_fprs; i++)
918 store_register (tid, tdep->ppc_fp0_regnum + i);
919 store_register (tid, PC_REGNUM);
920 if (tdep->ppc_ps_regnum != -1)
921 store_register (tid, tdep->ppc_ps_regnum);
922 if (tdep->ppc_cr_regnum != -1)
923 store_register (tid, tdep->ppc_cr_regnum);
924 if (tdep->ppc_lr_regnum != -1)
925 store_register (tid, tdep->ppc_lr_regnum);
926 if (tdep->ppc_ctr_regnum != -1)
927 store_register (tid, tdep->ppc_ctr_regnum);
928 if (tdep->ppc_xer_regnum != -1)
929 store_register (tid, tdep->ppc_xer_regnum);
930 if (tdep->ppc_mq_regnum != -1)
931 store_register (tid, tdep->ppc_mq_regnum);
932 if (tdep->ppc_fpscr_regnum != -1)
933 store_register (tid, tdep->ppc_fpscr_regnum);
934 if (have_ptrace_getvrregs)
935 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
936 store_altivec_registers (tid);
937 if (tdep->ppc_ev0_regnum >= 0)
938 store_spe_registers (tid);
939 }
940
941 void
942 store_inferior_registers (int regno)
943 {
944 /* Overload thread id onto process id */
945 int tid = TIDGET (inferior_ptid);
946
947 /* No thread id, just use process id */
948 if (tid == 0)
949 tid = PIDGET (inferior_ptid);
950
951 if (regno >= 0)
952 store_register (tid, regno);
953 else
954 store_ppc_registers (tid);
955 }
956
957 void
958 supply_gregset (gdb_gregset_t *gregsetp)
959 {
960 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
961 interface, and not the wordsize of the program's ABI. */
962 int wordsize = sizeof (PTRACE_XFER_TYPE);
963 ppc_linux_supply_gregset (current_regcache, -1, gregsetp,
964 sizeof (gdb_gregset_t), wordsize);
965 }
966
967 static void
968 right_fill_reg (int regnum, void *reg)
969 {
970 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
971 interface, and not the wordsize of the program's ABI. */
972 int wordsize = sizeof (PTRACE_XFER_TYPE);
973 /* Right fill the register. */
974 regcache_raw_collect (current_regcache, regnum,
975 ((bfd_byte *) reg
976 + wordsize
977 - register_size (current_gdbarch, regnum)));
978 }
979
980 void
981 fill_gregset (gdb_gregset_t *gregsetp, int regno)
982 {
983 int regi;
984 elf_greg_t *regp = (elf_greg_t *) gregsetp;
985 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
986 const int elf_ngreg = 48;
987
988
989 /* Start with zeros. */
990 memset (regp, 0, elf_ngreg * sizeof (*regp));
991
992 for (regi = 0; regi < ppc_num_gprs; regi++)
993 {
994 if ((regno == -1) || regno == tdep->ppc_gp0_regnum + regi)
995 right_fill_reg (tdep->ppc_gp0_regnum + regi, (regp + PT_R0 + regi));
996 }
997
998 if ((regno == -1) || regno == PC_REGNUM)
999 right_fill_reg (PC_REGNUM, regp + PT_NIP);
1000 if ((regno == -1) || regno == tdep->ppc_lr_regnum)
1001 right_fill_reg (tdep->ppc_lr_regnum, regp + PT_LNK);
1002 if ((regno == -1) || regno == tdep->ppc_cr_regnum)
1003 regcache_raw_collect (current_regcache, tdep->ppc_cr_regnum,
1004 regp + PT_CCR);
1005 if ((regno == -1) || regno == tdep->ppc_xer_regnum)
1006 regcache_raw_collect (current_regcache, tdep->ppc_xer_regnum,
1007 regp + PT_XER);
1008 if ((regno == -1) || regno == tdep->ppc_ctr_regnum)
1009 right_fill_reg (tdep->ppc_ctr_regnum, regp + PT_CTR);
1010 #ifdef PT_MQ
1011 if (((regno == -1) || regno == tdep->ppc_mq_regnum)
1012 && (tdep->ppc_mq_regnum != -1))
1013 right_fill_reg (tdep->ppc_mq_regnum, regp + PT_MQ);
1014 #endif
1015 if ((regno == -1) || regno == tdep->ppc_ps_regnum)
1016 right_fill_reg (tdep->ppc_ps_regnum, regp + PT_MSR);
1017 }
1018
1019 void
1020 supply_fpregset (gdb_fpregset_t * fpregsetp)
1021 {
1022 ppc_linux_supply_fpregset (NULL, current_regcache, -1, fpregsetp,
1023 sizeof (gdb_fpregset_t));
1024 }
1025
1026 /* Given a pointer to a floating point register set in /proc format
1027 (fpregset_t *), update the register specified by REGNO from gdb's
1028 idea of the current floating point register set. If REGNO is -1,
1029 update them all. */
1030 void
1031 fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
1032 {
1033 int regi;
1034 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1035 bfd_byte *fpp = (void *) fpregsetp;
1036
1037 if (ppc_floating_point_unit_p (current_gdbarch))
1038 {
1039 for (regi = 0; regi < ppc_num_fprs; regi++)
1040 {
1041 if ((regno == -1) || (regno == tdep->ppc_fp0_regnum + regi))
1042 regcache_raw_collect (current_regcache, tdep->ppc_fp0_regnum + regi,
1043 fpp + 8 * regi);
1044 }
1045 if (regno == -1 || regno == tdep->ppc_fpscr_regnum)
1046 right_fill_reg (tdep->ppc_fpscr_regnum, (fpp + 8 * 32));
1047 }
1048 }
This page took 0.051241 seconds and 4 git commands to generate.