2005-07-11 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002,
4 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "regcache.h"
29 #include "gdb_assert.h"
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <signal.h>
34 #include <sys/user.h>
35 #include <sys/ioctl.h>
36 #include "gdb_wait.h"
37 #include <fcntl.h>
38 #include <sys/procfs.h>
39 #include <sys/ptrace.h>
40
41 /* Prototypes for supply_gregset etc. */
42 #include "gregset.h"
43 #include "ppc-tdep.h"
44
45 #ifndef PT_READ_U
46 #define PT_READ_U PTRACE_PEEKUSR
47 #endif
48 #ifndef PT_WRITE_U
49 #define PT_WRITE_U PTRACE_POKEUSR
50 #endif
51
52 /* Default the type of the ptrace transfer to int. */
53 #ifndef PTRACE_XFER_TYPE
54 #define PTRACE_XFER_TYPE int
55 #endif
56
57 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
58 configure time check. Some older glibc's (for instance 2.2.1)
59 don't have a specific powerpc version of ptrace.h, and fall back on
60 a generic one. In such cases, sys/ptrace.h defines
61 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
62 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
63 PTRACE_SETVRREGS to be. This also makes a configury check pretty
64 much useless. */
65
66 /* These definitions should really come from the glibc header files,
67 but Glibc doesn't know about the vrregs yet. */
68 #ifndef PTRACE_GETVRREGS
69 #define PTRACE_GETVRREGS 18
70 #define PTRACE_SETVRREGS 19
71 #endif
72
73
74 /* Similarly for the ptrace requests for getting / setting the SPE
75 registers (ev0 -- ev31, acc, and spefscr). See the description of
76 gdb_evrregset_t for details. */
77 #ifndef PTRACE_GETEVRREGS
78 #define PTRACE_GETEVRREGS 20
79 #define PTRACE_SETEVRREGS 21
80 #endif
81
82
83 /* This oddity is because the Linux kernel defines elf_vrregset_t as
84 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
85 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
86 the vrsave as an extra 4 bytes at the end. I opted for creating a
87 flat array of chars, so that it is easier to manipulate for gdb.
88
89 There are 32 vector registers 16 bytes longs, plus a VSCR register
90 which is only 4 bytes long, but is fetched as a 16 bytes
91 quantity. Up to here we have the elf_vrregset_t structure.
92 Appended to this there is space for the VRSAVE register: 4 bytes.
93 Even though this vrsave register is not included in the regset
94 typedef, it is handled by the ptrace requests.
95
96 Note that GNU/Linux doesn't support little endian PPC hardware,
97 therefore the offset at which the real value of the VSCR register
98 is located will be always 12 bytes.
99
100 The layout is like this (where x is the actual value of the vscr reg): */
101
102 /* *INDENT-OFF* */
103 /*
104 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
105 <-------> <-------><-------><->
106 VR0 VR31 VSCR VRSAVE
107 */
108 /* *INDENT-ON* */
109
110 #define SIZEOF_VRREGS 33*16+4
111
112 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
113
114
115 /* On PPC processors that support the the Signal Processing Extension
116 (SPE) APU, the general-purpose registers are 64 bits long.
117 However, the ordinary Linux kernel PTRACE_PEEKUSR / PTRACE_POKEUSR
118 / PT_READ_U / PT_WRITE_U ptrace calls only access the lower half of
119 each register, to allow them to behave the same way they do on
120 non-SPE systems. There's a separate pair of calls,
121 PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that read and write the top
122 halves of all the general-purpose registers at once, along with
123 some SPE-specific registers.
124
125 GDB itself continues to claim the general-purpose registers are 32
126 bits long. It has unnamed raw registers that hold the upper halves
127 of the gprs, and the the full 64-bit SIMD views of the registers,
128 'ev0' -- 'ev31', are pseudo-registers that splice the top and
129 bottom halves together.
130
131 This is the structure filled in by PTRACE_GETEVRREGS and written to
132 the inferior's registers by PTRACE_SETEVRREGS. */
133 struct gdb_evrregset_t
134 {
135 unsigned long evr[32];
136 unsigned long long acc;
137 unsigned long spefscr;
138 };
139
140
141 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
142 PTRACE_SETVRREGS requests, for reading and writing the Altivec
143 registers. Zero if we've tried one of them and gotten an
144 error. */
145 int have_ptrace_getvrregs = 1;
146
147
148 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
149 PTRACE_SETEVRREGS requests, for reading and writing the SPE
150 registers. Zero if we've tried one of them and gotten an
151 error. */
152 int have_ptrace_getsetevrregs = 1;
153
154
155 int
156 kernel_u_size (void)
157 {
158 return (sizeof (struct user));
159 }
160
161 /* *INDENT-OFF* */
162 /* registers layout, as presented by the ptrace interface:
163 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
164 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
165 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
166 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
167 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
168 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
169 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
170 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
171 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
172 /* *INDENT_ON * */
173
174 static int
175 ppc_register_u_addr (int regno)
176 {
177 int u_addr = -1;
178 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
179 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
180 interface, and not the wordsize of the program's ABI. */
181 int wordsize = sizeof (PTRACE_XFER_TYPE);
182
183 /* General purpose registers occupy 1 slot each in the buffer */
184 if (regno >= tdep->ppc_gp0_regnum
185 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
186 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
187
188 /* Floating point regs: eight bytes each in both 32- and 64-bit
189 ptrace interfaces. Thus, two slots each in 32-bit interface, one
190 slot each in 64-bit interface. */
191 if (tdep->ppc_fp0_regnum >= 0
192 && regno >= tdep->ppc_fp0_regnum
193 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
194 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
195
196 /* UISA special purpose registers: 1 slot each */
197 if (regno == PC_REGNUM)
198 u_addr = PT_NIP * wordsize;
199 if (regno == tdep->ppc_lr_regnum)
200 u_addr = PT_LNK * wordsize;
201 if (regno == tdep->ppc_cr_regnum)
202 u_addr = PT_CCR * wordsize;
203 if (regno == tdep->ppc_xer_regnum)
204 u_addr = PT_XER * wordsize;
205 if (regno == tdep->ppc_ctr_regnum)
206 u_addr = PT_CTR * wordsize;
207 #ifdef PT_MQ
208 if (regno == tdep->ppc_mq_regnum)
209 u_addr = PT_MQ * wordsize;
210 #endif
211 if (regno == tdep->ppc_ps_regnum)
212 u_addr = PT_MSR * wordsize;
213 if (tdep->ppc_fpscr_regnum >= 0
214 && regno == tdep->ppc_fpscr_regnum)
215 {
216 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
217 kernel headers incorrectly contained the 32-bit definition of
218 PT_FPSCR. For the 32-bit definition, floating-point
219 registers occupy two 32-bit "slots", and the FPSCR lives in
220 the secondhalf of such a slot-pair (hence +1). For 64-bit,
221 the FPSCR instead occupies the full 64-bit 2-word-slot and
222 hence no adjustment is necessary. Hack around this. */
223 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
224 u_addr = (48 + 32) * wordsize;
225 else
226 u_addr = PT_FPSCR * wordsize;
227 }
228 return u_addr;
229 }
230
231 /* The Linux kernel ptrace interface for AltiVec registers uses the
232 registers set mechanism, as opposed to the interface for all the
233 other registers, that stores/fetches each register individually. */
234 static void
235 fetch_altivec_register (int tid, int regno)
236 {
237 int ret;
238 int offset = 0;
239 gdb_vrregset_t regs;
240 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
241 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
242
243 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
244 if (ret < 0)
245 {
246 if (errno == EIO)
247 {
248 have_ptrace_getvrregs = 0;
249 return;
250 }
251 perror_with_name (_("Unable to fetch AltiVec register"));
252 }
253
254 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
255 long on the hardware. We deal only with the lower 4 bytes of the
256 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
257 there is no need to define an offset for it. */
258 if (regno == (tdep->ppc_vrsave_regnum - 1))
259 offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
260
261 regcache_raw_supply (current_regcache, regno,
262 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
263 }
264
265 /* Fetch the top 32 bits of TID's general-purpose registers and the
266 SPE-specific registers, and place the results in EVRREGSET. If we
267 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
268 zeros.
269
270 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
271 PTRACE_SETEVRREGS requests are supported is isolated here, and in
272 set_spe_registers. */
273 static void
274 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
275 {
276 if (have_ptrace_getsetevrregs)
277 {
278 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
279 return;
280 else
281 {
282 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
283 we just return zeros. */
284 if (errno == EIO)
285 have_ptrace_getsetevrregs = 0;
286 else
287 /* Anything else needs to be reported. */
288 perror_with_name (_("Unable to fetch SPE registers"));
289 }
290 }
291
292 memset (evrregset, 0, sizeof (*evrregset));
293 }
294
295 /* Supply values from TID for SPE-specific raw registers: the upper
296 halves of the GPRs, the accumulator, and the spefscr. REGNO must
297 be the number of an upper half register, acc, spefscr, or -1 to
298 supply the values of all registers. */
299 static void
300 fetch_spe_register (int tid, int regno)
301 {
302 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
303 struct gdb_evrregset_t evrregs;
304
305 gdb_assert (sizeof (evrregs.evr[0])
306 == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
307 gdb_assert (sizeof (evrregs.acc)
308 == register_size (current_gdbarch, tdep->ppc_acc_regnum));
309 gdb_assert (sizeof (evrregs.spefscr)
310 == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
311
312 get_spe_registers (tid, &evrregs);
313
314 if (regno == -1)
315 {
316 int i;
317
318 for (i = 0; i < ppc_num_gprs; i++)
319 regcache_raw_supply (current_regcache, tdep->ppc_ev0_upper_regnum + i,
320 &evrregs.evr[i]);
321 }
322 else if (tdep->ppc_ev0_upper_regnum <= regno
323 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
324 regcache_raw_supply (current_regcache, regno,
325 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
326
327 if (regno == -1
328 || regno == tdep->ppc_acc_regnum)
329 regcache_raw_supply (current_regcache, tdep->ppc_acc_regnum, &evrregs.acc);
330
331 if (regno == -1
332 || regno == tdep->ppc_spefscr_regnum)
333 regcache_raw_supply (current_regcache, tdep->ppc_spefscr_regnum,
334 &evrregs.spefscr);
335 }
336
337 static void
338 fetch_register (int tid, int regno)
339 {
340 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
341 /* This isn't really an address. But ptrace thinks of it as one. */
342 CORE_ADDR regaddr = ppc_register_u_addr (regno);
343 int bytes_transferred;
344 unsigned int offset; /* Offset of registers within the u area. */
345 char buf[MAX_REGISTER_SIZE];
346
347 if (altivec_register_p (regno))
348 {
349 /* If this is the first time through, or if it is not the first
350 time through, and we have comfirmed that there is kernel
351 support for such a ptrace request, then go and fetch the
352 register. */
353 if (have_ptrace_getvrregs)
354 {
355 fetch_altivec_register (tid, regno);
356 return;
357 }
358 /* If we have discovered that there is no ptrace support for
359 AltiVec registers, fall through and return zeroes, because
360 regaddr will be -1 in this case. */
361 }
362 else if (spe_register_p (regno))
363 {
364 fetch_spe_register (tid, regno);
365 return;
366 }
367
368 if (regaddr == -1)
369 {
370 memset (buf, '\0', register_size (current_gdbarch, regno)); /* Supply zeroes */
371 regcache_raw_supply (current_regcache, regno, buf);
372 return;
373 }
374
375 /* Read the raw register using PTRACE_XFER_TYPE sized chunks. On a
376 32-bit platform, 64-bit floating-point registers will require two
377 transfers. */
378 for (bytes_transferred = 0;
379 bytes_transferred < register_size (current_gdbarch, regno);
380 bytes_transferred += sizeof (PTRACE_XFER_TYPE))
381 {
382 errno = 0;
383 *(PTRACE_XFER_TYPE *) & buf[bytes_transferred]
384 = ptrace (PT_READ_U, tid, (PTRACE_ARG3_TYPE) regaddr, 0);
385 regaddr += sizeof (PTRACE_XFER_TYPE);
386 if (errno != 0)
387 {
388 char message[128];
389 sprintf (message, "reading register %s (#%d)",
390 REGISTER_NAME (regno), regno);
391 perror_with_name (message);
392 }
393 }
394
395 /* Now supply the register. Keep in mind that the regcache's idea
396 of the register's size may not be a multiple of sizeof
397 (PTRACE_XFER_TYPE). */
398 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
399 {
400 /* Little-endian values are always found at the left end of the
401 bytes transferred. */
402 regcache_raw_supply (current_regcache, regno, buf);
403 }
404 else if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
405 {
406 /* Big-endian values are found at the right end of the bytes
407 transferred. */
408 size_t padding = (bytes_transferred
409 - register_size (current_gdbarch, regno));
410 regcache_raw_supply (current_regcache, regno, buf + padding);
411 }
412 else
413 internal_error (__FILE__, __LINE__,
414 _("fetch_register: unexpected byte order: %d"),
415 gdbarch_byte_order (current_gdbarch));
416 }
417
418 static void
419 supply_vrregset (gdb_vrregset_t *vrregsetp)
420 {
421 int i;
422 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
423 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
424 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
425 int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
426
427 for (i = 0; i < num_of_vrregs; i++)
428 {
429 /* The last 2 registers of this set are only 32 bit long, not
430 128. However an offset is necessary only for VSCR because it
431 occupies a whole vector, while VRSAVE occupies a full 4 bytes
432 slot. */
433 if (i == (num_of_vrregs - 2))
434 regcache_raw_supply (current_regcache, tdep->ppc_vr0_regnum + i,
435 *vrregsetp + i * vrregsize + offset);
436 else
437 regcache_raw_supply (current_regcache, tdep->ppc_vr0_regnum + i,
438 *vrregsetp + i * vrregsize);
439 }
440 }
441
442 static void
443 fetch_altivec_registers (int tid)
444 {
445 int ret;
446 gdb_vrregset_t regs;
447
448 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
449 if (ret < 0)
450 {
451 if (errno == EIO)
452 {
453 have_ptrace_getvrregs = 0;
454 return;
455 }
456 perror_with_name (_("Unable to fetch AltiVec registers"));
457 }
458 supply_vrregset (&regs);
459 }
460
461 static void
462 fetch_ppc_registers (int tid)
463 {
464 int i;
465 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
466
467 for (i = 0; i < ppc_num_gprs; i++)
468 fetch_register (tid, tdep->ppc_gp0_regnum + i);
469 if (tdep->ppc_fp0_regnum >= 0)
470 for (i = 0; i < ppc_num_fprs; i++)
471 fetch_register (tid, tdep->ppc_fp0_regnum + i);
472 fetch_register (tid, PC_REGNUM);
473 if (tdep->ppc_ps_regnum != -1)
474 fetch_register (tid, tdep->ppc_ps_regnum);
475 if (tdep->ppc_cr_regnum != -1)
476 fetch_register (tid, tdep->ppc_cr_regnum);
477 if (tdep->ppc_lr_regnum != -1)
478 fetch_register (tid, tdep->ppc_lr_regnum);
479 if (tdep->ppc_ctr_regnum != -1)
480 fetch_register (tid, tdep->ppc_ctr_regnum);
481 if (tdep->ppc_xer_regnum != -1)
482 fetch_register (tid, tdep->ppc_xer_regnum);
483 if (tdep->ppc_mq_regnum != -1)
484 fetch_register (tid, tdep->ppc_mq_regnum);
485 if (tdep->ppc_fpscr_regnum != -1)
486 fetch_register (tid, tdep->ppc_fpscr_regnum);
487 if (have_ptrace_getvrregs)
488 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
489 fetch_altivec_registers (tid);
490 if (tdep->ppc_ev0_upper_regnum >= 0)
491 fetch_spe_register (tid, -1);
492 }
493
494 /* Fetch registers from the child process. Fetch all registers if
495 regno == -1, otherwise fetch all general registers or all floating
496 point registers depending upon the value of regno. */
497 void
498 fetch_inferior_registers (int regno)
499 {
500 /* Overload thread id onto process id */
501 int tid = TIDGET (inferior_ptid);
502
503 /* No thread id, just use process id */
504 if (tid == 0)
505 tid = PIDGET (inferior_ptid);
506
507 if (regno == -1)
508 fetch_ppc_registers (tid);
509 else
510 fetch_register (tid, regno);
511 }
512
513 /* Store one register. */
514 static void
515 store_altivec_register (int tid, int regno)
516 {
517 int ret;
518 int offset = 0;
519 gdb_vrregset_t regs;
520 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
521 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
522
523 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
524 if (ret < 0)
525 {
526 if (errno == EIO)
527 {
528 have_ptrace_getvrregs = 0;
529 return;
530 }
531 perror_with_name (_("Unable to fetch AltiVec register"));
532 }
533
534 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
535 long on the hardware. */
536 if (regno == (tdep->ppc_vrsave_regnum - 1))
537 offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
538
539 regcache_raw_collect (current_regcache, regno,
540 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
541
542 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
543 if (ret < 0)
544 perror_with_name (_("Unable to store AltiVec register"));
545 }
546
547 /* Assuming TID referrs to an SPE process, set the top halves of TID's
548 general-purpose registers and its SPE-specific registers to the
549 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
550 nothing.
551
552 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
553 PTRACE_SETEVRREGS requests are supported is isolated here, and in
554 get_spe_registers. */
555 static void
556 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
557 {
558 if (have_ptrace_getsetevrregs)
559 {
560 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
561 return;
562 else
563 {
564 /* EIO means that the PTRACE_SETEVRREGS request isn't
565 supported; we fail silently, and don't try the call
566 again. */
567 if (errno == EIO)
568 have_ptrace_getsetevrregs = 0;
569 else
570 /* Anything else needs to be reported. */
571 perror_with_name (_("Unable to set SPE registers"));
572 }
573 }
574 }
575
576 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
577 If REGNO is -1, write the values of all the SPE-specific
578 registers. */
579 static void
580 store_spe_register (int tid, int regno)
581 {
582 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
583 struct gdb_evrregset_t evrregs;
584
585 gdb_assert (sizeof (evrregs.evr[0])
586 == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
587 gdb_assert (sizeof (evrregs.acc)
588 == register_size (current_gdbarch, tdep->ppc_acc_regnum));
589 gdb_assert (sizeof (evrregs.spefscr)
590 == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
591
592 if (regno == -1)
593 /* Since we're going to write out every register, the code below
594 should store to every field of evrregs; if that doesn't happen,
595 make it obvious by initializing it with suspicious values. */
596 memset (&evrregs, 42, sizeof (evrregs));
597 else
598 /* We can only read and write the entire EVR register set at a
599 time, so to write just a single register, we do a
600 read-modify-write maneuver. */
601 get_spe_registers (tid, &evrregs);
602
603 if (regno == -1)
604 {
605 int i;
606
607 for (i = 0; i < ppc_num_gprs; i++)
608 regcache_raw_collect (current_regcache,
609 tdep->ppc_ev0_upper_regnum + i,
610 &evrregs.evr[i]);
611 }
612 else if (tdep->ppc_ev0_upper_regnum <= regno
613 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
614 regcache_raw_collect (current_regcache, regno,
615 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
616
617 if (regno == -1
618 || regno == tdep->ppc_acc_regnum)
619 regcache_raw_collect (current_regcache,
620 tdep->ppc_acc_regnum,
621 &evrregs.acc);
622
623 if (regno == -1
624 || regno == tdep->ppc_spefscr_regnum)
625 regcache_raw_collect (current_regcache,
626 tdep->ppc_spefscr_regnum,
627 &evrregs.spefscr);
628
629 /* Write back the modified register set. */
630 set_spe_registers (tid, &evrregs);
631 }
632
633 static void
634 store_register (int tid, int regno)
635 {
636 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
637 /* This isn't really an address. But ptrace thinks of it as one. */
638 CORE_ADDR regaddr = ppc_register_u_addr (regno);
639 int i;
640 size_t bytes_to_transfer;
641 char buf[MAX_REGISTER_SIZE];
642
643 if (altivec_register_p (regno))
644 {
645 store_altivec_register (tid, regno);
646 return;
647 }
648 else if (spe_register_p (regno))
649 {
650 store_spe_register (tid, regno);
651 return;
652 }
653
654 if (regaddr == -1)
655 return;
656
657 /* First collect the register. Keep in mind that the regcache's
658 idea of the register's size may not be a multiple of sizeof
659 (PTRACE_XFER_TYPE). */
660 memset (buf, 0, sizeof buf);
661 bytes_to_transfer = align_up (register_size (current_gdbarch, regno),
662 sizeof (PTRACE_XFER_TYPE));
663 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
664 {
665 /* Little-endian values always sit at the left end of the buffer. */
666 regcache_raw_collect (current_regcache, regno, buf);
667 }
668 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
669 {
670 /* Big-endian values sit at the right end of the buffer. */
671 size_t padding = (bytes_to_transfer
672 - register_size (current_gdbarch, regno));
673 regcache_raw_collect (current_regcache, regno, buf + padding);
674 }
675
676 for (i = 0; i < bytes_to_transfer; i += sizeof (PTRACE_XFER_TYPE))
677 {
678 errno = 0;
679 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
680 *(PTRACE_XFER_TYPE *) & buf[i]);
681 regaddr += sizeof (PTRACE_XFER_TYPE);
682
683 if (errno == EIO
684 && regno == tdep->ppc_fpscr_regnum)
685 {
686 /* Some older kernel versions don't allow fpscr to be written. */
687 continue;
688 }
689
690 if (errno != 0)
691 {
692 char message[128];
693 sprintf (message, "writing register %s (#%d)",
694 REGISTER_NAME (regno), regno);
695 perror_with_name (message);
696 }
697 }
698 }
699
700 static void
701 fill_vrregset (gdb_vrregset_t *vrregsetp)
702 {
703 int i;
704 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
705 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
706 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
707 int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
708
709 for (i = 0; i < num_of_vrregs; i++)
710 {
711 /* The last 2 registers of this set are only 32 bit long, not
712 128, but only VSCR is fetched as a 16 bytes quantity. */
713 if (i == (num_of_vrregs - 2))
714 regcache_raw_collect (current_regcache, tdep->ppc_vr0_regnum + i,
715 *vrregsetp + i * vrregsize + offset);
716 else
717 regcache_raw_collect (current_regcache, tdep->ppc_vr0_regnum + i,
718 *vrregsetp + i * vrregsize);
719 }
720 }
721
722 static void
723 store_altivec_registers (int tid)
724 {
725 int ret;
726 gdb_vrregset_t regs;
727
728 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
729 if (ret < 0)
730 {
731 if (errno == EIO)
732 {
733 have_ptrace_getvrregs = 0;
734 return;
735 }
736 perror_with_name (_("Couldn't get AltiVec registers"));
737 }
738
739 fill_vrregset (&regs);
740
741 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
742 perror_with_name (_("Couldn't write AltiVec registers"));
743 }
744
745 static void
746 store_ppc_registers (int tid)
747 {
748 int i;
749 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
750
751 for (i = 0; i < ppc_num_gprs; i++)
752 store_register (tid, tdep->ppc_gp0_regnum + i);
753 if (tdep->ppc_fp0_regnum >= 0)
754 for (i = 0; i < ppc_num_fprs; i++)
755 store_register (tid, tdep->ppc_fp0_regnum + i);
756 store_register (tid, PC_REGNUM);
757 if (tdep->ppc_ps_regnum != -1)
758 store_register (tid, tdep->ppc_ps_regnum);
759 if (tdep->ppc_cr_regnum != -1)
760 store_register (tid, tdep->ppc_cr_regnum);
761 if (tdep->ppc_lr_regnum != -1)
762 store_register (tid, tdep->ppc_lr_regnum);
763 if (tdep->ppc_ctr_regnum != -1)
764 store_register (tid, tdep->ppc_ctr_regnum);
765 if (tdep->ppc_xer_regnum != -1)
766 store_register (tid, tdep->ppc_xer_regnum);
767 if (tdep->ppc_mq_regnum != -1)
768 store_register (tid, tdep->ppc_mq_regnum);
769 if (tdep->ppc_fpscr_regnum != -1)
770 store_register (tid, tdep->ppc_fpscr_regnum);
771 if (have_ptrace_getvrregs)
772 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
773 store_altivec_registers (tid);
774 if (tdep->ppc_ev0_upper_regnum >= 0)
775 store_spe_register (tid, -1);
776 }
777
778 void
779 store_inferior_registers (int regno)
780 {
781 /* Overload thread id onto process id */
782 int tid = TIDGET (inferior_ptid);
783
784 /* No thread id, just use process id */
785 if (tid == 0)
786 tid = PIDGET (inferior_ptid);
787
788 if (regno >= 0)
789 store_register (tid, regno);
790 else
791 store_ppc_registers (tid);
792 }
793
794 void
795 supply_gregset (gdb_gregset_t *gregsetp)
796 {
797 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
798 interface, and not the wordsize of the program's ABI. */
799 int wordsize = sizeof (PTRACE_XFER_TYPE);
800 ppc_linux_supply_gregset (current_regcache, -1, gregsetp,
801 sizeof (gdb_gregset_t), wordsize);
802 }
803
804 static void
805 right_fill_reg (int regnum, void *reg)
806 {
807 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
808 interface, and not the wordsize of the program's ABI. */
809 int wordsize = sizeof (PTRACE_XFER_TYPE);
810 /* Right fill the register. */
811 regcache_raw_collect (current_regcache, regnum,
812 ((bfd_byte *) reg
813 + wordsize
814 - register_size (current_gdbarch, regnum)));
815 }
816
817 void
818 fill_gregset (gdb_gregset_t *gregsetp, int regno)
819 {
820 int regi;
821 elf_greg_t *regp = (elf_greg_t *) gregsetp;
822 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
823 const int elf_ngreg = 48;
824
825
826 /* Start with zeros. */
827 memset (regp, 0, elf_ngreg * sizeof (*regp));
828
829 for (regi = 0; regi < ppc_num_gprs; regi++)
830 {
831 if ((regno == -1) || regno == tdep->ppc_gp0_regnum + regi)
832 right_fill_reg (tdep->ppc_gp0_regnum + regi, (regp + PT_R0 + regi));
833 }
834
835 if ((regno == -1) || regno == PC_REGNUM)
836 right_fill_reg (PC_REGNUM, regp + PT_NIP);
837 if ((regno == -1) || regno == tdep->ppc_lr_regnum)
838 right_fill_reg (tdep->ppc_lr_regnum, regp + PT_LNK);
839 if ((regno == -1) || regno == tdep->ppc_cr_regnum)
840 regcache_raw_collect (current_regcache, tdep->ppc_cr_regnum,
841 regp + PT_CCR);
842 if ((regno == -1) || regno == tdep->ppc_xer_regnum)
843 regcache_raw_collect (current_regcache, tdep->ppc_xer_regnum,
844 regp + PT_XER);
845 if ((regno == -1) || regno == tdep->ppc_ctr_regnum)
846 right_fill_reg (tdep->ppc_ctr_regnum, regp + PT_CTR);
847 #ifdef PT_MQ
848 if (((regno == -1) || regno == tdep->ppc_mq_regnum)
849 && (tdep->ppc_mq_regnum != -1))
850 right_fill_reg (tdep->ppc_mq_regnum, regp + PT_MQ);
851 #endif
852 if ((regno == -1) || regno == tdep->ppc_ps_regnum)
853 right_fill_reg (tdep->ppc_ps_regnum, regp + PT_MSR);
854 }
855
856 void
857 supply_fpregset (gdb_fpregset_t * fpregsetp)
858 {
859 ppc_linux_supply_fpregset (NULL, current_regcache, -1, fpregsetp,
860 sizeof (gdb_fpregset_t));
861 }
862
863 /* Given a pointer to a floating point register set in /proc format
864 (fpregset_t *), update the register specified by REGNO from gdb's
865 idea of the current floating point register set. If REGNO is -1,
866 update them all. */
867 void
868 fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
869 {
870 int regi;
871 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
872 bfd_byte *fpp = (void *) fpregsetp;
873
874 if (ppc_floating_point_unit_p (current_gdbarch))
875 {
876 for (regi = 0; regi < ppc_num_fprs; regi++)
877 {
878 if ((regno == -1) || (regno == tdep->ppc_fp0_regnum + regi))
879 regcache_raw_collect (current_regcache, tdep->ppc_fp0_regnum + regi,
880 fpp + 8 * regi);
881 }
882 if (regno == -1 || regno == tdep->ppc_fpscr_regnum)
883 right_fill_reg (tdep->ppc_fpscr_regnum, (fpp + 8 * 32));
884 }
885 }
This page took 0.048102 seconds and 4 git commands to generate.