* elf64-sparc.c (sparc64_elf_relocate_section): Ignore overflows
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002,
4 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "regcache.h"
29 #include "gdb_assert.h"
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <signal.h>
34 #include <sys/user.h>
35 #include <sys/ioctl.h>
36 #include "gdb_wait.h"
37 #include <fcntl.h>
38 #include <sys/procfs.h>
39 #include <sys/ptrace.h>
40
41 /* Prototypes for supply_gregset etc. */
42 #include "gregset.h"
43 #include "ppc-tdep.h"
44
45 #ifndef PT_READ_U
46 #define PT_READ_U PTRACE_PEEKUSR
47 #endif
48 #ifndef PT_WRITE_U
49 #define PT_WRITE_U PTRACE_POKEUSR
50 #endif
51
52 /* Default the type of the ptrace transfer to int. */
53 #ifndef PTRACE_XFER_TYPE
54 #define PTRACE_XFER_TYPE int
55 #endif
56
57 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
58 configure time check. Some older glibc's (for instance 2.2.1)
59 don't have a specific powerpc version of ptrace.h, and fall back on
60 a generic one. In such cases, sys/ptrace.h defines
61 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
62 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
63 PTRACE_SETVRREGS to be. This also makes a configury check pretty
64 much useless. */
65
66 /* These definitions should really come from the glibc header files,
67 but Glibc doesn't know about the vrregs yet. */
68 #ifndef PTRACE_GETVRREGS
69 #define PTRACE_GETVRREGS 18
70 #define PTRACE_SETVRREGS 19
71 #endif
72
73
74 /* Similarly for the ptrace requests for getting / setting the SPE
75 registers (ev0 -- ev31, acc, and spefscr). See the description of
76 gdb_evrregset_t for details. */
77 #ifndef PTRACE_GETEVRREGS
78 #define PTRACE_GETEVRREGS 20
79 #define PTRACE_SETEVRREGS 21
80 #endif
81
82
83 /* This oddity is because the Linux kernel defines elf_vrregset_t as
84 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
85 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
86 the vrsave as an extra 4 bytes at the end. I opted for creating a
87 flat array of chars, so that it is easier to manipulate for gdb.
88
89 There are 32 vector registers 16 bytes longs, plus a VSCR register
90 which is only 4 bytes long, but is fetched as a 16 bytes
91 quantity. Up to here we have the elf_vrregset_t structure.
92 Appended to this there is space for the VRSAVE register: 4 bytes.
93 Even though this vrsave register is not included in the regset
94 typedef, it is handled by the ptrace requests.
95
96 Note that GNU/Linux doesn't support little endian PPC hardware,
97 therefore the offset at which the real value of the VSCR register
98 is located will be always 12 bytes.
99
100 The layout is like this (where x is the actual value of the vscr reg): */
101
102 /* *INDENT-OFF* */
103 /*
104 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
105 <-------> <-------><-------><->
106 VR0 VR31 VSCR VRSAVE
107 */
108 /* *INDENT-ON* */
109
110 #define SIZEOF_VRREGS 33*16+4
111
112 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
113
114
115 /* On PPC processors that support the the Signal Processing Extension
116 (SPE) APU, the general-purpose registers are 64 bits long.
117 However, the ordinary Linux kernel PTRACE_PEEKUSR / PTRACE_POKEUSR
118 / PT_READ_U / PT_WRITE_U ptrace calls only access the lower half of
119 each register, to allow them to behave the same way they do on
120 non-SPE systems. There's a separate pair of calls,
121 PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that read and write the top
122 halves of all the general-purpose registers at once, along with
123 some SPE-specific registers.
124
125 GDB itself continues to claim the general-purpose registers are 32
126 bits long. It has unnamed raw registers that hold the upper halves
127 of the gprs, and the the full 64-bit SIMD views of the registers,
128 'ev0' -- 'ev31', are pseudo-registers that splice the top and
129 bottom halves together.
130
131 This is the structure filled in by PTRACE_GETEVRREGS and written to
132 the inferior's registers by PTRACE_SETEVRREGS. */
133 struct gdb_evrregset_t
134 {
135 unsigned long evr[32];
136 unsigned long long acc;
137 unsigned long spefscr;
138 };
139
140
141 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
142 PTRACE_SETVRREGS requests, for reading and writing the Altivec
143 registers. Zero if we've tried one of them and gotten an
144 error. */
145 int have_ptrace_getvrregs = 1;
146
147
148 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
149 PTRACE_SETEVRREGS requests, for reading and writing the SPE
150 registers. Zero if we've tried one of them and gotten an
151 error. */
152 int have_ptrace_getsetevrregs = 1;
153
154
155 int
156 kernel_u_size (void)
157 {
158 return (sizeof (struct user));
159 }
160
161 /* *INDENT-OFF* */
162 /* registers layout, as presented by the ptrace interface:
163 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
164 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
165 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
166 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
167 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
168 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
169 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
170 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
171 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
172 /* *INDENT_ON * */
173
174 static int
175 ppc_register_u_addr (int regno)
176 {
177 int u_addr = -1;
178 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
179 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
180 interface, and not the wordsize of the program's ABI. */
181 int wordsize = sizeof (PTRACE_XFER_TYPE);
182
183 /* General purpose registers occupy 1 slot each in the buffer */
184 if (regno >= tdep->ppc_gp0_regnum
185 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
186 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
187
188 /* Floating point regs: eight bytes each in both 32- and 64-bit
189 ptrace interfaces. Thus, two slots each in 32-bit interface, one
190 slot each in 64-bit interface. */
191 if (tdep->ppc_fp0_regnum >= 0
192 && regno >= tdep->ppc_fp0_regnum
193 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
194 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
195
196 /* UISA special purpose registers: 1 slot each */
197 if (regno == PC_REGNUM)
198 u_addr = PT_NIP * wordsize;
199 if (regno == tdep->ppc_lr_regnum)
200 u_addr = PT_LNK * wordsize;
201 if (regno == tdep->ppc_cr_regnum)
202 u_addr = PT_CCR * wordsize;
203 if (regno == tdep->ppc_xer_regnum)
204 u_addr = PT_XER * wordsize;
205 if (regno == tdep->ppc_ctr_regnum)
206 u_addr = PT_CTR * wordsize;
207 #ifdef PT_MQ
208 if (regno == tdep->ppc_mq_regnum)
209 u_addr = PT_MQ * wordsize;
210 #endif
211 if (regno == tdep->ppc_ps_regnum)
212 u_addr = PT_MSR * wordsize;
213 if (tdep->ppc_fpscr_regnum >= 0
214 && regno == tdep->ppc_fpscr_regnum)
215 u_addr = PT_FPSCR * wordsize;
216
217 return u_addr;
218 }
219
220 /* The Linux kernel ptrace interface for AltiVec registers uses the
221 registers set mechanism, as opposed to the interface for all the
222 other registers, that stores/fetches each register individually. */
223 static void
224 fetch_altivec_register (int tid, int regno)
225 {
226 int ret;
227 int offset = 0;
228 gdb_vrregset_t regs;
229 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
230 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
231
232 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
233 if (ret < 0)
234 {
235 if (errno == EIO)
236 {
237 have_ptrace_getvrregs = 0;
238 return;
239 }
240 perror_with_name ("Unable to fetch AltiVec register");
241 }
242
243 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
244 long on the hardware. We deal only with the lower 4 bytes of the
245 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
246 there is no need to define an offset for it. */
247 if (regno == (tdep->ppc_vrsave_regnum - 1))
248 offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
249
250 regcache_raw_supply (current_regcache, regno,
251 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
252 }
253
254 /* Fetch the top 32 bits of TID's general-purpose registers and the
255 SPE-specific registers, and place the results in EVRREGSET. If we
256 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
257 zeros.
258
259 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
260 PTRACE_SETEVRREGS requests are supported is isolated here, and in
261 set_spe_registers. */
262 static void
263 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
264 {
265 if (have_ptrace_getsetevrregs)
266 {
267 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
268 return;
269 else
270 {
271 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
272 we just return zeros. */
273 if (errno == EIO)
274 have_ptrace_getsetevrregs = 0;
275 else
276 /* Anything else needs to be reported. */
277 perror_with_name ("Unable to fetch SPE registers");
278 }
279 }
280
281 memset (evrregset, 0, sizeof (*evrregset));
282 }
283
284 /* Supply values from TID for SPE-specific raw registers: the upper
285 halves of the GPRs, the accumulator, and the spefscr. REGNO must
286 be the number of an upper half register, acc, spefscr, or -1 to
287 supply the values of all registers. */
288 static void
289 fetch_spe_register (int tid, int regno)
290 {
291 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
292 struct gdb_evrregset_t evrregs;
293
294 gdb_assert (sizeof (evrregs.evr[0])
295 == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
296 gdb_assert (sizeof (evrregs.acc)
297 == register_size (current_gdbarch, tdep->ppc_acc_regnum));
298 gdb_assert (sizeof (evrregs.spefscr)
299 == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
300
301 get_spe_registers (tid, &evrregs);
302
303 if (regno == -1)
304 {
305 int i;
306
307 for (i = 0; i < ppc_num_gprs; i++)
308 regcache_raw_supply (current_regcache, tdep->ppc_ev0_upper_regnum + i,
309 &evrregs.evr[i]);
310 }
311 else if (tdep->ppc_ev0_upper_regnum <= regno
312 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
313 regcache_raw_supply (current_regcache, regno,
314 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
315
316 if (regno == -1
317 || regno == tdep->ppc_acc_regnum)
318 regcache_raw_supply (current_regcache, tdep->ppc_acc_regnum, &evrregs.acc);
319
320 if (regno == -1
321 || regno == tdep->ppc_spefscr_regnum)
322 regcache_raw_supply (current_regcache, tdep->ppc_spefscr_regnum,
323 &evrregs.spefscr);
324 }
325
326 static void
327 fetch_register (int tid, int regno)
328 {
329 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
330 /* This isn't really an address. But ptrace thinks of it as one. */
331 CORE_ADDR regaddr = ppc_register_u_addr (regno);
332 int bytes_transferred;
333 unsigned int offset; /* Offset of registers within the u area. */
334 char buf[MAX_REGISTER_SIZE];
335
336 if (altivec_register_p (regno))
337 {
338 /* If this is the first time through, or if it is not the first
339 time through, and we have comfirmed that there is kernel
340 support for such a ptrace request, then go and fetch the
341 register. */
342 if (have_ptrace_getvrregs)
343 {
344 fetch_altivec_register (tid, regno);
345 return;
346 }
347 /* If we have discovered that there is no ptrace support for
348 AltiVec registers, fall through and return zeroes, because
349 regaddr will be -1 in this case. */
350 }
351 else if (spe_register_p (regno))
352 {
353 fetch_spe_register (tid, regno);
354 return;
355 }
356
357 if (regaddr == -1)
358 {
359 memset (buf, '\0', register_size (current_gdbarch, regno)); /* Supply zeroes */
360 regcache_raw_supply (current_regcache, regno, buf);
361 return;
362 }
363
364 /* Read the raw register using PTRACE_XFER_TYPE sized chunks. On a
365 32-bit platform, 64-bit floating-point registers will require two
366 transfers. */
367 for (bytes_transferred = 0;
368 bytes_transferred < register_size (current_gdbarch, regno);
369 bytes_transferred += sizeof (PTRACE_XFER_TYPE))
370 {
371 errno = 0;
372 *(PTRACE_XFER_TYPE *) & buf[bytes_transferred]
373 = ptrace (PT_READ_U, tid, (PTRACE_ARG3_TYPE) regaddr, 0);
374 regaddr += sizeof (PTRACE_XFER_TYPE);
375 if (errno != 0)
376 {
377 char message[128];
378 sprintf (message, "reading register %s (#%d)",
379 REGISTER_NAME (regno), regno);
380 perror_with_name (message);
381 }
382 }
383
384 /* Now supply the register. Keep in mind that the regcache's idea
385 of the register's size may not be a multiple of sizeof
386 (PTRACE_XFER_TYPE). */
387 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
388 {
389 /* Little-endian values are always found at the left end of the
390 bytes transferred. */
391 regcache_raw_supply (current_regcache, regno, buf);
392 }
393 else if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
394 {
395 /* Big-endian values are found at the right end of the bytes
396 transferred. */
397 size_t padding = (bytes_transferred
398 - register_size (current_gdbarch, regno));
399 regcache_raw_supply (current_regcache, regno, buf + padding);
400 }
401 else
402 internal_error (__FILE__, __LINE__,
403 "fetch_register: unexpected byte order: %d",
404 gdbarch_byte_order (current_gdbarch));
405 }
406
407 static void
408 supply_vrregset (gdb_vrregset_t *vrregsetp)
409 {
410 int i;
411 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
412 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
413 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
414 int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
415
416 for (i = 0; i < num_of_vrregs; i++)
417 {
418 /* The last 2 registers of this set are only 32 bit long, not
419 128. However an offset is necessary only for VSCR because it
420 occupies a whole vector, while VRSAVE occupies a full 4 bytes
421 slot. */
422 if (i == (num_of_vrregs - 2))
423 regcache_raw_supply (current_regcache, tdep->ppc_vr0_regnum + i,
424 *vrregsetp + i * vrregsize + offset);
425 else
426 regcache_raw_supply (current_regcache, tdep->ppc_vr0_regnum + i,
427 *vrregsetp + i * vrregsize);
428 }
429 }
430
431 static void
432 fetch_altivec_registers (int tid)
433 {
434 int ret;
435 gdb_vrregset_t regs;
436
437 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
438 if (ret < 0)
439 {
440 if (errno == EIO)
441 {
442 have_ptrace_getvrregs = 0;
443 return;
444 }
445 perror_with_name ("Unable to fetch AltiVec registers");
446 }
447 supply_vrregset (&regs);
448 }
449
450 static void
451 fetch_ppc_registers (int tid)
452 {
453 int i;
454 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
455
456 for (i = 0; i < ppc_num_gprs; i++)
457 fetch_register (tid, tdep->ppc_gp0_regnum + i);
458 if (tdep->ppc_fp0_regnum >= 0)
459 for (i = 0; i < ppc_num_fprs; i++)
460 fetch_register (tid, tdep->ppc_fp0_regnum + i);
461 fetch_register (tid, PC_REGNUM);
462 if (tdep->ppc_ps_regnum != -1)
463 fetch_register (tid, tdep->ppc_ps_regnum);
464 if (tdep->ppc_cr_regnum != -1)
465 fetch_register (tid, tdep->ppc_cr_regnum);
466 if (tdep->ppc_lr_regnum != -1)
467 fetch_register (tid, tdep->ppc_lr_regnum);
468 if (tdep->ppc_ctr_regnum != -1)
469 fetch_register (tid, tdep->ppc_ctr_regnum);
470 if (tdep->ppc_xer_regnum != -1)
471 fetch_register (tid, tdep->ppc_xer_regnum);
472 if (tdep->ppc_mq_regnum != -1)
473 fetch_register (tid, tdep->ppc_mq_regnum);
474 if (tdep->ppc_fpscr_regnum != -1)
475 fetch_register (tid, tdep->ppc_fpscr_regnum);
476 if (have_ptrace_getvrregs)
477 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
478 fetch_altivec_registers (tid);
479 if (tdep->ppc_ev0_upper_regnum >= 0)
480 fetch_spe_register (tid, -1);
481 }
482
483 /* Fetch registers from the child process. Fetch all registers if
484 regno == -1, otherwise fetch all general registers or all floating
485 point registers depending upon the value of regno. */
486 void
487 fetch_inferior_registers (int regno)
488 {
489 /* Overload thread id onto process id */
490 int tid = TIDGET (inferior_ptid);
491
492 /* No thread id, just use process id */
493 if (tid == 0)
494 tid = PIDGET (inferior_ptid);
495
496 if (regno == -1)
497 fetch_ppc_registers (tid);
498 else
499 fetch_register (tid, regno);
500 }
501
502 /* Store one register. */
503 static void
504 store_altivec_register (int tid, int regno)
505 {
506 int ret;
507 int offset = 0;
508 gdb_vrregset_t regs;
509 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
510 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
511
512 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
513 if (ret < 0)
514 {
515 if (errno == EIO)
516 {
517 have_ptrace_getvrregs = 0;
518 return;
519 }
520 perror_with_name ("Unable to fetch AltiVec register");
521 }
522
523 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
524 long on the hardware. */
525 if (regno == (tdep->ppc_vrsave_regnum - 1))
526 offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
527
528 regcache_raw_collect (current_regcache, regno,
529 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
530
531 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
532 if (ret < 0)
533 perror_with_name ("Unable to store AltiVec register");
534 }
535
536 /* Assuming TID referrs to an SPE process, set the top halves of TID's
537 general-purpose registers and its SPE-specific registers to the
538 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
539 nothing.
540
541 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
542 PTRACE_SETEVRREGS requests are supported is isolated here, and in
543 get_spe_registers. */
544 static void
545 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
546 {
547 if (have_ptrace_getsetevrregs)
548 {
549 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
550 return;
551 else
552 {
553 /* EIO means that the PTRACE_SETEVRREGS request isn't
554 supported; we fail silently, and don't try the call
555 again. */
556 if (errno == EIO)
557 have_ptrace_getsetevrregs = 0;
558 else
559 /* Anything else needs to be reported. */
560 perror_with_name ("Unable to set SPE registers");
561 }
562 }
563 }
564
565 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
566 If REGNO is -1, write the values of all the SPE-specific
567 registers. */
568 static void
569 store_spe_register (int tid, int regno)
570 {
571 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
572 struct gdb_evrregset_t evrregs;
573
574 gdb_assert (sizeof (evrregs.evr[0])
575 == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
576 gdb_assert (sizeof (evrregs.acc)
577 == register_size (current_gdbarch, tdep->ppc_acc_regnum));
578 gdb_assert (sizeof (evrregs.spefscr)
579 == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
580
581 if (regno == -1)
582 /* Since we're going to write out every register, the code below
583 should store to every field of evrregs; if that doesn't happen,
584 make it obvious by initializing it with suspicious values. */
585 memset (&evrregs, 42, sizeof (evrregs));
586 else
587 /* We can only read and write the entire EVR register set at a
588 time, so to write just a single register, we do a
589 read-modify-write maneuver. */
590 get_spe_registers (tid, &evrregs);
591
592 if (regno == -1)
593 {
594 int i;
595
596 for (i = 0; i < ppc_num_gprs; i++)
597 regcache_raw_collect (current_regcache,
598 tdep->ppc_ev0_upper_regnum + i,
599 &evrregs.evr[i]);
600 }
601 else if (tdep->ppc_ev0_upper_regnum <= regno
602 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
603 regcache_raw_collect (current_regcache, regno,
604 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
605
606 if (regno == -1
607 || regno == tdep->ppc_acc_regnum)
608 regcache_raw_collect (current_regcache,
609 tdep->ppc_acc_regnum,
610 &evrregs.acc);
611
612 if (regno == -1
613 || regno == tdep->ppc_spefscr_regnum)
614 regcache_raw_collect (current_regcache,
615 tdep->ppc_spefscr_regnum,
616 &evrregs.spefscr);
617
618 /* Write back the modified register set. */
619 set_spe_registers (tid, &evrregs);
620 }
621
622 static void
623 store_register (int tid, int regno)
624 {
625 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
626 /* This isn't really an address. But ptrace thinks of it as one. */
627 CORE_ADDR regaddr = ppc_register_u_addr (regno);
628 int i;
629 size_t bytes_to_transfer;
630 char buf[MAX_REGISTER_SIZE];
631
632 if (altivec_register_p (regno))
633 {
634 store_altivec_register (tid, regno);
635 return;
636 }
637 else if (spe_register_p (regno))
638 {
639 store_spe_register (tid, regno);
640 return;
641 }
642
643 if (regaddr == -1)
644 return;
645
646 /* First collect the register. Keep in mind that the regcache's
647 idea of the register's size may not be a multiple of sizeof
648 (PTRACE_XFER_TYPE). */
649 memset (buf, 0, sizeof buf);
650 bytes_to_transfer = align_up (register_size (current_gdbarch, regno),
651 sizeof (PTRACE_XFER_TYPE));
652 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
653 {
654 /* Little-endian values always sit at the left end of the buffer. */
655 regcache_raw_collect (current_regcache, regno, buf);
656 }
657 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
658 {
659 /* Big-endian values sit at the right end of the buffer. */
660 size_t padding = (bytes_to_transfer
661 - register_size (current_gdbarch, regno));
662 regcache_raw_collect (current_regcache, regno, buf + padding);
663 }
664
665 for (i = 0; i < bytes_to_transfer; i += sizeof (PTRACE_XFER_TYPE))
666 {
667 errno = 0;
668 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
669 *(PTRACE_XFER_TYPE *) & buf[i]);
670 regaddr += sizeof (PTRACE_XFER_TYPE);
671
672 if (errno == EIO
673 && regno == tdep->ppc_fpscr_regnum)
674 {
675 /* Some older kernel versions don't allow fpscr to be written. */
676 continue;
677 }
678
679 if (errno != 0)
680 {
681 char message[128];
682 sprintf (message, "writing register %s (#%d)",
683 REGISTER_NAME (regno), regno);
684 perror_with_name (message);
685 }
686 }
687 }
688
689 static void
690 fill_vrregset (gdb_vrregset_t *vrregsetp)
691 {
692 int i;
693 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
694 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
695 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
696 int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
697
698 for (i = 0; i < num_of_vrregs; i++)
699 {
700 /* The last 2 registers of this set are only 32 bit long, not
701 128, but only VSCR is fetched as a 16 bytes quantity. */
702 if (i == (num_of_vrregs - 2))
703 regcache_raw_collect (current_regcache, tdep->ppc_vr0_regnum + i,
704 *vrregsetp + i * vrregsize + offset);
705 else
706 regcache_raw_collect (current_regcache, tdep->ppc_vr0_regnum + i,
707 *vrregsetp + i * vrregsize);
708 }
709 }
710
711 static void
712 store_altivec_registers (int tid)
713 {
714 int ret;
715 gdb_vrregset_t regs;
716
717 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
718 if (ret < 0)
719 {
720 if (errno == EIO)
721 {
722 have_ptrace_getvrregs = 0;
723 return;
724 }
725 perror_with_name ("Couldn't get AltiVec registers");
726 }
727
728 fill_vrregset (&regs);
729
730 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
731 perror_with_name ("Couldn't write AltiVec registers");
732 }
733
734 static void
735 store_ppc_registers (int tid)
736 {
737 int i;
738 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
739
740 for (i = 0; i < ppc_num_gprs; i++)
741 store_register (tid, tdep->ppc_gp0_regnum + i);
742 if (tdep->ppc_fp0_regnum >= 0)
743 for (i = 0; i < ppc_num_fprs; i++)
744 store_register (tid, tdep->ppc_fp0_regnum + i);
745 store_register (tid, PC_REGNUM);
746 if (tdep->ppc_ps_regnum != -1)
747 store_register (tid, tdep->ppc_ps_regnum);
748 if (tdep->ppc_cr_regnum != -1)
749 store_register (tid, tdep->ppc_cr_regnum);
750 if (tdep->ppc_lr_regnum != -1)
751 store_register (tid, tdep->ppc_lr_regnum);
752 if (tdep->ppc_ctr_regnum != -1)
753 store_register (tid, tdep->ppc_ctr_regnum);
754 if (tdep->ppc_xer_regnum != -1)
755 store_register (tid, tdep->ppc_xer_regnum);
756 if (tdep->ppc_mq_regnum != -1)
757 store_register (tid, tdep->ppc_mq_regnum);
758 if (tdep->ppc_fpscr_regnum != -1)
759 store_register (tid, tdep->ppc_fpscr_regnum);
760 if (have_ptrace_getvrregs)
761 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
762 store_altivec_registers (tid);
763 if (tdep->ppc_ev0_upper_regnum >= 0)
764 store_spe_register (tid, -1);
765 }
766
767 void
768 store_inferior_registers (int regno)
769 {
770 /* Overload thread id onto process id */
771 int tid = TIDGET (inferior_ptid);
772
773 /* No thread id, just use process id */
774 if (tid == 0)
775 tid = PIDGET (inferior_ptid);
776
777 if (regno >= 0)
778 store_register (tid, regno);
779 else
780 store_ppc_registers (tid);
781 }
782
783 void
784 supply_gregset (gdb_gregset_t *gregsetp)
785 {
786 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
787 interface, and not the wordsize of the program's ABI. */
788 int wordsize = sizeof (PTRACE_XFER_TYPE);
789 ppc_linux_supply_gregset (current_regcache, -1, gregsetp,
790 sizeof (gdb_gregset_t), wordsize);
791 }
792
793 static void
794 right_fill_reg (int regnum, void *reg)
795 {
796 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
797 interface, and not the wordsize of the program's ABI. */
798 int wordsize = sizeof (PTRACE_XFER_TYPE);
799 /* Right fill the register. */
800 regcache_raw_collect (current_regcache, regnum,
801 ((bfd_byte *) reg
802 + wordsize
803 - register_size (current_gdbarch, regnum)));
804 }
805
806 void
807 fill_gregset (gdb_gregset_t *gregsetp, int regno)
808 {
809 int regi;
810 elf_greg_t *regp = (elf_greg_t *) gregsetp;
811 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
812 const int elf_ngreg = 48;
813
814
815 /* Start with zeros. */
816 memset (regp, 0, elf_ngreg * sizeof (*regp));
817
818 for (regi = 0; regi < ppc_num_gprs; regi++)
819 {
820 if ((regno == -1) || regno == tdep->ppc_gp0_regnum + regi)
821 right_fill_reg (tdep->ppc_gp0_regnum + regi, (regp + PT_R0 + regi));
822 }
823
824 if ((regno == -1) || regno == PC_REGNUM)
825 right_fill_reg (PC_REGNUM, regp + PT_NIP);
826 if ((regno == -1) || regno == tdep->ppc_lr_regnum)
827 right_fill_reg (tdep->ppc_lr_regnum, regp + PT_LNK);
828 if ((regno == -1) || regno == tdep->ppc_cr_regnum)
829 regcache_raw_collect (current_regcache, tdep->ppc_cr_regnum,
830 regp + PT_CCR);
831 if ((regno == -1) || regno == tdep->ppc_xer_regnum)
832 regcache_raw_collect (current_regcache, tdep->ppc_xer_regnum,
833 regp + PT_XER);
834 if ((regno == -1) || regno == tdep->ppc_ctr_regnum)
835 right_fill_reg (tdep->ppc_ctr_regnum, regp + PT_CTR);
836 #ifdef PT_MQ
837 if (((regno == -1) || regno == tdep->ppc_mq_regnum)
838 && (tdep->ppc_mq_regnum != -1))
839 right_fill_reg (tdep->ppc_mq_regnum, regp + PT_MQ);
840 #endif
841 if ((regno == -1) || regno == tdep->ppc_ps_regnum)
842 right_fill_reg (tdep->ppc_ps_regnum, regp + PT_MSR);
843 }
844
845 void
846 supply_fpregset (gdb_fpregset_t * fpregsetp)
847 {
848 ppc_linux_supply_fpregset (NULL, current_regcache, -1, fpregsetp,
849 sizeof (gdb_fpregset_t));
850 }
851
852 /* Given a pointer to a floating point register set in /proc format
853 (fpregset_t *), update the register specified by REGNO from gdb's
854 idea of the current floating point register set. If REGNO is -1,
855 update them all. */
856 void
857 fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
858 {
859 int regi;
860 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
861 bfd_byte *fpp = (void *) fpregsetp;
862
863 if (ppc_floating_point_unit_p (current_gdbarch))
864 {
865 for (regi = 0; regi < ppc_num_fprs; regi++)
866 {
867 if ((regno == -1) || (regno == tdep->ppc_fp0_regnum + regi))
868 regcache_raw_collect (current_regcache, tdep->ppc_fp0_regnum + regi,
869 fpp + 8 * regi);
870 }
871 if (regno == -1 || regno == tdep->ppc_fpscr_regnum)
872 right_fill_reg (tdep->ppc_fpscr_regnum, (fpp + 8 * 32));
873 }
874 }
This page took 0.065985 seconds and 4 git commands to generate.