*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "regcache.h"
32 #include "value.h"
33 #include "osabi.h"
34 #include "regset.h"
35 #include "solib-svr4.h"
36 #include "solib-spu.h"
37 #include "solib.h"
38 #include "solist.h"
39 #include "ppc-tdep.h"
40 #include "ppc-linux-tdep.h"
41 #include "trad-frame.h"
42 #include "frame-unwind.h"
43 #include "tramp-frame.h"
44 #include "observer.h"
45 #include "auxv.h"
46 #include "elf/common.h"
47 #include "exceptions.h"
48 #include "arch-utils.h"
49 #include "spu-tdep.h"
50 #include "xml-syscall.h"
51 #include "linux-tdep.h"
52
53 #include "features/rs6000/powerpc-32l.c"
54 #include "features/rs6000/powerpc-altivec32l.c"
55 #include "features/rs6000/powerpc-cell32l.c"
56 #include "features/rs6000/powerpc-vsx32l.c"
57 #include "features/rs6000/powerpc-isa205-32l.c"
58 #include "features/rs6000/powerpc-isa205-altivec32l.c"
59 #include "features/rs6000/powerpc-isa205-vsx32l.c"
60 #include "features/rs6000/powerpc-64l.c"
61 #include "features/rs6000/powerpc-altivec64l.c"
62 #include "features/rs6000/powerpc-cell64l.c"
63 #include "features/rs6000/powerpc-vsx64l.c"
64 #include "features/rs6000/powerpc-isa205-64l.c"
65 #include "features/rs6000/powerpc-isa205-altivec64l.c"
66 #include "features/rs6000/powerpc-isa205-vsx64l.c"
67 #include "features/rs6000/powerpc-e500l.c"
68
69 /* The syscall's XML filename for PPC and PPC64. */
70 #define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
71 #define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
72
73 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
74 in much the same fashion as memory_remove_breakpoint in mem-break.c,
75 but is careful not to write back the previous contents if the code
76 in question has changed in between inserting the breakpoint and
77 removing it.
78
79 Here is the problem that we're trying to solve...
80
81 Once upon a time, before introducing this function to remove
82 breakpoints from the inferior, setting a breakpoint on a shared
83 library function prior to running the program would not work
84 properly. In order to understand the problem, it is first
85 necessary to understand a little bit about dynamic linking on
86 this platform.
87
88 A call to a shared library function is accomplished via a bl
89 (branch-and-link) instruction whose branch target is an entry
90 in the procedure linkage table (PLT). The PLT in the object
91 file is uninitialized. To gdb, prior to running the program, the
92 entries in the PLT are all zeros.
93
94 Once the program starts running, the shared libraries are loaded
95 and the procedure linkage table is initialized, but the entries in
96 the table are not (necessarily) resolved. Once a function is
97 actually called, the code in the PLT is hit and the function is
98 resolved. In order to better illustrate this, an example is in
99 order; the following example is from the gdb testsuite.
100
101 We start the program shmain.
102
103 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
104 [...]
105
106 We place two breakpoints, one on shr1 and the other on main.
107
108 (gdb) b shr1
109 Breakpoint 1 at 0x100409d4
110 (gdb) b main
111 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
112
113 Examine the instruction (and the immediatly following instruction)
114 upon which the breakpoint was placed. Note that the PLT entry
115 for shr1 contains zeros.
116
117 (gdb) x/2i 0x100409d4
118 0x100409d4 <shr1>: .long 0x0
119 0x100409d8 <shr1+4>: .long 0x0
120
121 Now run 'til main.
122
123 (gdb) r
124 Starting program: gdb.base/shmain
125 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
126
127 Breakpoint 2, main ()
128 at gdb.base/shmain.c:44
129 44 g = 1;
130
131 Examine the PLT again. Note that the loading of the shared
132 library has initialized the PLT to code which loads a constant
133 (which I think is an index into the GOT) into r11 and then
134 branchs a short distance to the code which actually does the
135 resolving.
136
137 (gdb) x/2i 0x100409d4
138 0x100409d4 <shr1>: li r11,4
139 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
140 (gdb) c
141 Continuing.
142
143 Breakpoint 1, shr1 (x=1)
144 at gdb.base/shr1.c:19
145 19 l = 1;
146
147 Now we've hit the breakpoint at shr1. (The breakpoint was
148 reset from the PLT entry to the actual shr1 function after the
149 shared library was loaded.) Note that the PLT entry has been
150 resolved to contain a branch that takes us directly to shr1.
151 (The real one, not the PLT entry.)
152
153 (gdb) x/2i 0x100409d4
154 0x100409d4 <shr1>: b 0xffaf76c <shr1>
155 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
156
157 The thing to note here is that the PLT entry for shr1 has been
158 changed twice.
159
160 Now the problem should be obvious. GDB places a breakpoint (a
161 trap instruction) on the zero value of the PLT entry for shr1.
162 Later on, after the shared library had been loaded and the PLT
163 initialized, GDB gets a signal indicating this fact and attempts
164 (as it always does when it stops) to remove all the breakpoints.
165
166 The breakpoint removal was causing the former contents (a zero
167 word) to be written back to the now initialized PLT entry thus
168 destroying a portion of the initialization that had occurred only a
169 short time ago. When execution continued, the zero word would be
170 executed as an instruction an an illegal instruction trap was
171 generated instead. (0 is not a legal instruction.)
172
173 The fix for this problem was fairly straightforward. The function
174 memory_remove_breakpoint from mem-break.c was copied to this file,
175 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
176 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
177 function.
178
179 The differences between ppc_linux_memory_remove_breakpoint () and
180 memory_remove_breakpoint () are minor. All that the former does
181 that the latter does not is check to make sure that the breakpoint
182 location actually contains a breakpoint (trap instruction) prior
183 to attempting to write back the old contents. If it does contain
184 a trap instruction, we allow the old contents to be written back.
185 Otherwise, we silently do nothing.
186
187 The big question is whether memory_remove_breakpoint () should be
188 changed to have the same functionality. The downside is that more
189 traffic is generated for remote targets since we'll have an extra
190 fetch of a memory word each time a breakpoint is removed.
191
192 For the time being, we'll leave this self-modifying-code-friendly
193 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
194 else in the event that some other platform has similar needs with
195 regard to removing breakpoints in some potentially self modifying
196 code. */
197 static int
198 ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
199 struct bp_target_info *bp_tgt)
200 {
201 CORE_ADDR addr = bp_tgt->placed_address;
202 const unsigned char *bp;
203 int val;
204 int bplen;
205 gdb_byte old_contents[BREAKPOINT_MAX];
206 struct cleanup *cleanup;
207
208 /* Determine appropriate breakpoint contents and size for this address. */
209 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
210 if (bp == NULL)
211 error (_("Software breakpoints not implemented for this target."));
212
213 /* Make sure we see the memory breakpoints. */
214 cleanup = make_show_memory_breakpoints_cleanup (1);
215 val = target_read_memory (addr, old_contents, bplen);
216
217 /* If our breakpoint is no longer at the address, this means that the
218 program modified the code on us, so it is wrong to put back the
219 old value */
220 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
221 val = target_write_memory (addr, bp_tgt->shadow_contents, bplen);
222
223 do_cleanups (cleanup);
224 return val;
225 }
226
227 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
228 than the 32 bit SYSV R4 ABI structure return convention - all
229 structures, no matter their size, are put in memory. Vectors,
230 which were added later, do get returned in a register though. */
231
232 static enum return_value_convention
233 ppc_linux_return_value (struct gdbarch *gdbarch, struct type *func_type,
234 struct type *valtype, struct regcache *regcache,
235 gdb_byte *readbuf, const gdb_byte *writebuf)
236 {
237 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
238 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
239 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
240 && TYPE_VECTOR (valtype)))
241 return RETURN_VALUE_STRUCT_CONVENTION;
242 else
243 return ppc_sysv_abi_return_value (gdbarch, func_type, valtype, regcache,
244 readbuf, writebuf);
245 }
246
247 /* Macros for matching instructions. Note that, since all the
248 operands are masked off before they're or-ed into the instruction,
249 you can use -1 to make masks. */
250
251 #define insn_d(opcd, rts, ra, d) \
252 ((((opcd) & 0x3f) << 26) \
253 | (((rts) & 0x1f) << 21) \
254 | (((ra) & 0x1f) << 16) \
255 | ((d) & 0xffff))
256
257 #define insn_ds(opcd, rts, ra, d, xo) \
258 ((((opcd) & 0x3f) << 26) \
259 | (((rts) & 0x1f) << 21) \
260 | (((ra) & 0x1f) << 16) \
261 | ((d) & 0xfffc) \
262 | ((xo) & 0x3))
263
264 #define insn_xfx(opcd, rts, spr, xo) \
265 ((((opcd) & 0x3f) << 26) \
266 | (((rts) & 0x1f) << 21) \
267 | (((spr) & 0x1f) << 16) \
268 | (((spr) & 0x3e0) << 6) \
269 | (((xo) & 0x3ff) << 1))
270
271 /* Read a PPC instruction from memory. PPC instructions are always
272 big-endian, no matter what endianness the program is running in, so
273 we can't use read_memory_integer or one of its friends here. */
274 static unsigned int
275 read_insn (CORE_ADDR pc)
276 {
277 unsigned char buf[4];
278
279 read_memory (pc, buf, 4);
280 return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
281 }
282
283
284 /* An instruction to match. */
285 struct insn_pattern
286 {
287 unsigned int mask; /* mask the insn with this... */
288 unsigned int data; /* ...and see if it matches this. */
289 int optional; /* If non-zero, this insn may be absent. */
290 };
291
292 /* Return non-zero if the instructions at PC match the series
293 described in PATTERN, or zero otherwise. PATTERN is an array of
294 'struct insn_pattern' objects, terminated by an entry whose mask is
295 zero.
296
297 When the match is successful, fill INSN[i] with what PATTERN[i]
298 matched. If PATTERN[i] is optional, and the instruction wasn't
299 present, set INSN[i] to 0 (which is not a valid PPC instruction).
300 INSN should have as many elements as PATTERN. Note that, if
301 PATTERN contains optional instructions which aren't present in
302 memory, then INSN will have holes, so INSN[i] isn't necessarily the
303 i'th instruction in memory. */
304 static int
305 insns_match_pattern (CORE_ADDR pc,
306 struct insn_pattern *pattern,
307 unsigned int *insn)
308 {
309 int i;
310
311 for (i = 0; pattern[i].mask; i++)
312 {
313 insn[i] = read_insn (pc);
314 if ((insn[i] & pattern[i].mask) == pattern[i].data)
315 pc += 4;
316 else if (pattern[i].optional)
317 insn[i] = 0;
318 else
319 return 0;
320 }
321
322 return 1;
323 }
324
325
326 /* Return the 'd' field of the d-form instruction INSN, properly
327 sign-extended. */
328 static CORE_ADDR
329 insn_d_field (unsigned int insn)
330 {
331 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
332 }
333
334
335 /* Return the 'ds' field of the ds-form instruction INSN, with the two
336 zero bits concatenated at the right, and properly
337 sign-extended. */
338 static CORE_ADDR
339 insn_ds_field (unsigned int insn)
340 {
341 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
342 }
343
344
345 /* If DESC is the address of a 64-bit PowerPC GNU/Linux function
346 descriptor, return the descriptor's entry point. */
347 static CORE_ADDR
348 ppc64_desc_entry_point (struct gdbarch *gdbarch, CORE_ADDR desc)
349 {
350 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
351 /* The first word of the descriptor is the entry point. */
352 return (CORE_ADDR) read_memory_unsigned_integer (desc, 8, byte_order);
353 }
354
355
356 /* Pattern for the standard linkage function. These are built by
357 build_plt_stub in elf64-ppc.c, whose GLINK argument is always
358 zero. */
359 static struct insn_pattern ppc64_standard_linkage1[] =
360 {
361 /* addis r12, r2, <any> */
362 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
363
364 /* std r2, 40(r1) */
365 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
366
367 /* ld r11, <any>(r12) */
368 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
369
370 /* addis r12, r12, 1 <optional> */
371 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
372
373 /* ld r2, <any>(r12) */
374 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
375
376 /* addis r12, r12, 1 <optional> */
377 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
378
379 /* mtctr r11 */
380 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
381
382 /* ld r11, <any>(r12) */
383 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
384
385 /* bctr */
386 { -1, 0x4e800420, 0 },
387
388 { 0, 0, 0 }
389 };
390 #define PPC64_STANDARD_LINKAGE1_LEN \
391 (sizeof (ppc64_standard_linkage1) / sizeof (ppc64_standard_linkage1[0]))
392
393 static struct insn_pattern ppc64_standard_linkage2[] =
394 {
395 /* addis r12, r2, <any> */
396 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
397
398 /* std r2, 40(r1) */
399 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
400
401 /* ld r11, <any>(r12) */
402 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
403
404 /* addi r12, r12, <any> <optional> */
405 { insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 },
406
407 /* mtctr r11 */
408 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
409
410 /* ld r2, <any>(r12) */
411 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
412
413 /* ld r11, <any>(r12) */
414 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
415
416 /* bctr */
417 { -1, 0x4e800420, 0 },
418
419 { 0, 0, 0 }
420 };
421 #define PPC64_STANDARD_LINKAGE2_LEN \
422 (sizeof (ppc64_standard_linkage2) / sizeof (ppc64_standard_linkage2[0]))
423
424 static struct insn_pattern ppc64_standard_linkage3[] =
425 {
426 /* std r2, 40(r1) */
427 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
428
429 /* ld r11, <any>(r2) */
430 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
431
432 /* addi r2, r2, <any> <optional> */
433 { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
434
435 /* mtctr r11 */
436 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
437
438 /* ld r11, <any>(r2) */
439 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
440
441 /* ld r2, <any>(r2) */
442 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
443
444 /* bctr */
445 { -1, 0x4e800420, 0 },
446
447 { 0, 0, 0 }
448 };
449 #define PPC64_STANDARD_LINKAGE3_LEN \
450 (sizeof (ppc64_standard_linkage3) / sizeof (ppc64_standard_linkage3[0]))
451
452
453 /* When the dynamic linker is doing lazy symbol resolution, the first
454 call to a function in another object will go like this:
455
456 - The user's function calls the linkage function:
457
458 100007c4: 4b ff fc d5 bl 10000498
459 100007c8: e8 41 00 28 ld r2,40(r1)
460
461 - The linkage function loads the entry point (and other stuff) from
462 the function descriptor in the PLT, and jumps to it:
463
464 10000498: 3d 82 00 00 addis r12,r2,0
465 1000049c: f8 41 00 28 std r2,40(r1)
466 100004a0: e9 6c 80 98 ld r11,-32616(r12)
467 100004a4: e8 4c 80 a0 ld r2,-32608(r12)
468 100004a8: 7d 69 03 a6 mtctr r11
469 100004ac: e9 6c 80 a8 ld r11,-32600(r12)
470 100004b0: 4e 80 04 20 bctr
471
472 - But since this is the first time that PLT entry has been used, it
473 sends control to its glink entry. That loads the number of the
474 PLT entry and jumps to the common glink0 code:
475
476 10000c98: 38 00 00 00 li r0,0
477 10000c9c: 4b ff ff dc b 10000c78
478
479 - The common glink0 code then transfers control to the dynamic
480 linker's fixup code:
481
482 10000c78: e8 41 00 28 ld r2,40(r1)
483 10000c7c: 3d 82 00 00 addis r12,r2,0
484 10000c80: e9 6c 80 80 ld r11,-32640(r12)
485 10000c84: e8 4c 80 88 ld r2,-32632(r12)
486 10000c88: 7d 69 03 a6 mtctr r11
487 10000c8c: e9 6c 80 90 ld r11,-32624(r12)
488 10000c90: 4e 80 04 20 bctr
489
490 Eventually, this code will figure out how to skip all of this,
491 including the dynamic linker. At the moment, we just get through
492 the linkage function. */
493
494 /* If the current thread is about to execute a series of instructions
495 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
496 from that pattern match, return the code address to which the
497 standard linkage function will send them. (This doesn't deal with
498 dynamic linker lazy symbol resolution stubs.) */
499 static CORE_ADDR
500 ppc64_standard_linkage1_target (struct frame_info *frame,
501 CORE_ADDR pc, unsigned int *insn)
502 {
503 struct gdbarch *gdbarch = get_frame_arch (frame);
504 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
505
506 /* The address of the function descriptor this linkage function
507 references. */
508 CORE_ADDR desc
509 = ((CORE_ADDR) get_frame_register_unsigned (frame,
510 tdep->ppc_gp0_regnum + 2)
511 + (insn_d_field (insn[0]) << 16)
512 + insn_ds_field (insn[2]));
513
514 /* The first word of the descriptor is the entry point. Return that. */
515 return ppc64_desc_entry_point (gdbarch, desc);
516 }
517
518 static struct core_regset_section ppc_linux_vsx_regset_sections[] =
519 {
520 { ".reg", 48 * 4, "general-purpose" },
521 { ".reg2", 264, "floating-point" },
522 { ".reg-ppc-vmx", 544, "ppc Altivec" },
523 { ".reg-ppc-vsx", 256, "POWER7 VSX" },
524 { NULL, 0}
525 };
526
527 static struct core_regset_section ppc_linux_vmx_regset_sections[] =
528 {
529 { ".reg", 48 * 4, "general-purpose" },
530 { ".reg2", 264, "floating-point" },
531 { ".reg-ppc-vmx", 544, "ppc Altivec" },
532 { NULL, 0}
533 };
534
535 static struct core_regset_section ppc_linux_fp_regset_sections[] =
536 {
537 { ".reg", 48 * 4, "general-purpose" },
538 { ".reg2", 264, "floating-point" },
539 { NULL, 0}
540 };
541
542 static struct core_regset_section ppc64_linux_vsx_regset_sections[] =
543 {
544 { ".reg", 48 * 8, "general-purpose" },
545 { ".reg2", 264, "floating-point" },
546 { ".reg-ppc-vmx", 544, "ppc Altivec" },
547 { ".reg-ppc-vsx", 256, "POWER7 VSX" },
548 { NULL, 0}
549 };
550
551 static struct core_regset_section ppc64_linux_vmx_regset_sections[] =
552 {
553 { ".reg", 48 * 8, "general-purpose" },
554 { ".reg2", 264, "floating-point" },
555 { ".reg-ppc-vmx", 544, "ppc Altivec" },
556 { NULL, 0}
557 };
558
559 static struct core_regset_section ppc64_linux_fp_regset_sections[] =
560 {
561 { ".reg", 48 * 8, "general-purpose" },
562 { ".reg2", 264, "floating-point" },
563 { NULL, 0}
564 };
565
566 static CORE_ADDR
567 ppc64_standard_linkage2_target (struct frame_info *frame,
568 CORE_ADDR pc, unsigned int *insn)
569 {
570 struct gdbarch *gdbarch = get_frame_arch (frame);
571 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
572
573 /* The address of the function descriptor this linkage function
574 references. */
575 CORE_ADDR desc
576 = ((CORE_ADDR) get_frame_register_unsigned (frame,
577 tdep->ppc_gp0_regnum + 2)
578 + (insn_d_field (insn[0]) << 16)
579 + insn_ds_field (insn[2]));
580
581 /* The first word of the descriptor is the entry point. Return that. */
582 return ppc64_desc_entry_point (gdbarch, desc);
583 }
584
585 static CORE_ADDR
586 ppc64_standard_linkage3_target (struct frame_info *frame,
587 CORE_ADDR pc, unsigned int *insn)
588 {
589 struct gdbarch *gdbarch = get_frame_arch (frame);
590 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
591
592 /* The address of the function descriptor this linkage function
593 references. */
594 CORE_ADDR desc
595 = ((CORE_ADDR) get_frame_register_unsigned (frame,
596 tdep->ppc_gp0_regnum + 2)
597 + insn_ds_field (insn[1]));
598
599 /* The first word of the descriptor is the entry point. Return that. */
600 return ppc64_desc_entry_point (gdbarch, desc);
601 }
602
603
604 /* Given that we've begun executing a call trampoline at PC, return
605 the entry point of the function the trampoline will go to. */
606 static CORE_ADDR
607 ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
608 {
609 unsigned int ppc64_standard_linkage1_insn[PPC64_STANDARD_LINKAGE1_LEN];
610 unsigned int ppc64_standard_linkage2_insn[PPC64_STANDARD_LINKAGE2_LEN];
611 unsigned int ppc64_standard_linkage3_insn[PPC64_STANDARD_LINKAGE3_LEN];
612 CORE_ADDR target;
613
614 if (insns_match_pattern (pc, ppc64_standard_linkage1,
615 ppc64_standard_linkage1_insn))
616 pc = ppc64_standard_linkage1_target (frame, pc,
617 ppc64_standard_linkage1_insn);
618 else if (insns_match_pattern (pc, ppc64_standard_linkage2,
619 ppc64_standard_linkage2_insn))
620 pc = ppc64_standard_linkage2_target (frame, pc,
621 ppc64_standard_linkage2_insn);
622 else if (insns_match_pattern (pc, ppc64_standard_linkage3,
623 ppc64_standard_linkage3_insn))
624 pc = ppc64_standard_linkage3_target (frame, pc,
625 ppc64_standard_linkage3_insn);
626 else
627 return 0;
628
629 /* The PLT descriptor will either point to the already resolved target
630 address, or else to a glink stub. As the latter carry synthetic @plt
631 symbols, find_solib_trampoline_target should be able to resolve them. */
632 target = find_solib_trampoline_target (frame, pc);
633 return target? target : pc;
634 }
635
636
637 /* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
638 GNU/Linux.
639
640 Usually a function pointer's representation is simply the address
641 of the function. On GNU/Linux on the PowerPC however, a function
642 pointer may be a pointer to a function descriptor.
643
644 For PPC64, a function descriptor is a TOC entry, in a data section,
645 which contains three words: the first word is the address of the
646 function, the second word is the TOC pointer (r2), and the third word
647 is the static chain value.
648
649 Throughout GDB it is currently assumed that a function pointer contains
650 the address of the function, which is not easy to fix. In addition, the
651 conversion of a function address to a function pointer would
652 require allocation of a TOC entry in the inferior's memory space,
653 with all its drawbacks. To be able to call C++ virtual methods in
654 the inferior (which are called via function pointers),
655 find_function_addr uses this function to get the function address
656 from a function pointer.
657
658 If ADDR points at what is clearly a function descriptor, transform
659 it into the address of the corresponding function, if needed. Be
660 conservative, otherwise GDB will do the transformation on any
661 random addresses such as occur when there is no symbol table. */
662
663 static CORE_ADDR
664 ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
665 CORE_ADDR addr,
666 struct target_ops *targ)
667 {
668 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
669 struct target_section *s = target_section_by_addr (targ, addr);
670
671 /* Check if ADDR points to a function descriptor. */
672 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
673 {
674 /* There may be relocations that need to be applied to the .opd
675 section. Unfortunately, this function may be called at a time
676 where these relocations have not yet been performed -- this can
677 happen for example shortly after a library has been loaded with
678 dlopen, but ld.so has not yet applied the relocations.
679
680 To cope with both the case where the relocation has been applied,
681 and the case where it has not yet been applied, we do *not* read
682 the (maybe) relocated value from target memory, but we instead
683 read the non-relocated value from the BFD, and apply the relocation
684 offset manually.
685
686 This makes the assumption that all .opd entries are always relocated
687 by the same offset the section itself was relocated. This should
688 always be the case for GNU/Linux executables and shared libraries.
689 Note that other kind of object files (e.g. those added via
690 add-symbol-files) will currently never end up here anyway, as this
691 function accesses *target* sections only; only the main exec and
692 shared libraries are ever added to the target. */
693
694 gdb_byte buf[8];
695 int res;
696
697 res = bfd_get_section_contents (s->bfd, s->the_bfd_section,
698 &buf, addr - s->addr, 8);
699 if (res != 0)
700 return extract_unsigned_integer (buf, 8, byte_order)
701 - bfd_section_vma (s->bfd, s->the_bfd_section) + s->addr;
702 }
703
704 return addr;
705 }
706
707 /* Wrappers to handle Linux-only registers. */
708
709 static void
710 ppc_linux_supply_gregset (const struct regset *regset,
711 struct regcache *regcache,
712 int regnum, const void *gregs, size_t len)
713 {
714 const struct ppc_reg_offsets *offsets = regset->descr;
715
716 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
717
718 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
719 {
720 /* "orig_r3" is stored 2 slots after "pc". */
721 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
722 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
723 offsets->pc_offset + 2 * offsets->gpr_size,
724 offsets->gpr_size);
725
726 /* "trap" is stored 8 slots after "pc". */
727 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
728 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, gregs,
729 offsets->pc_offset + 8 * offsets->gpr_size,
730 offsets->gpr_size);
731 }
732 }
733
734 static void
735 ppc_linux_collect_gregset (const struct regset *regset,
736 const struct regcache *regcache,
737 int regnum, void *gregs, size_t len)
738 {
739 const struct ppc_reg_offsets *offsets = regset->descr;
740
741 /* Clear areas in the linux gregset not written elsewhere. */
742 if (regnum == -1)
743 memset (gregs, 0, len);
744
745 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
746
747 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
748 {
749 /* "orig_r3" is stored 2 slots after "pc". */
750 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
751 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
752 offsets->pc_offset + 2 * offsets->gpr_size,
753 offsets->gpr_size);
754
755 /* "trap" is stored 8 slots after "pc". */
756 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
757 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, gregs,
758 offsets->pc_offset + 8 * offsets->gpr_size,
759 offsets->gpr_size);
760 }
761 }
762
763 /* Regset descriptions. */
764 static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
765 {
766 /* General-purpose registers. */
767 /* .r0_offset = */ 0,
768 /* .gpr_size = */ 4,
769 /* .xr_size = */ 4,
770 /* .pc_offset = */ 128,
771 /* .ps_offset = */ 132,
772 /* .cr_offset = */ 152,
773 /* .lr_offset = */ 144,
774 /* .ctr_offset = */ 140,
775 /* .xer_offset = */ 148,
776 /* .mq_offset = */ 156,
777
778 /* Floating-point registers. */
779 /* .f0_offset = */ 0,
780 /* .fpscr_offset = */ 256,
781 /* .fpscr_size = */ 8,
782
783 /* AltiVec registers. */
784 /* .vr0_offset = */ 0,
785 /* .vscr_offset = */ 512 + 12,
786 /* .vrsave_offset = */ 528
787 };
788
789 static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
790 {
791 /* General-purpose registers. */
792 /* .r0_offset = */ 0,
793 /* .gpr_size = */ 8,
794 /* .xr_size = */ 8,
795 /* .pc_offset = */ 256,
796 /* .ps_offset = */ 264,
797 /* .cr_offset = */ 304,
798 /* .lr_offset = */ 288,
799 /* .ctr_offset = */ 280,
800 /* .xer_offset = */ 296,
801 /* .mq_offset = */ 312,
802
803 /* Floating-point registers. */
804 /* .f0_offset = */ 0,
805 /* .fpscr_offset = */ 256,
806 /* .fpscr_size = */ 8,
807
808 /* AltiVec registers. */
809 /* .vr0_offset = */ 0,
810 /* .vscr_offset = */ 512 + 12,
811 /* .vrsave_offset = */ 528
812 };
813
814 static const struct regset ppc32_linux_gregset = {
815 &ppc32_linux_reg_offsets,
816 ppc_linux_supply_gregset,
817 ppc_linux_collect_gregset,
818 NULL
819 };
820
821 static const struct regset ppc64_linux_gregset = {
822 &ppc64_linux_reg_offsets,
823 ppc_linux_supply_gregset,
824 ppc_linux_collect_gregset,
825 NULL
826 };
827
828 static const struct regset ppc32_linux_fpregset = {
829 &ppc32_linux_reg_offsets,
830 ppc_supply_fpregset,
831 ppc_collect_fpregset,
832 NULL
833 };
834
835 static const struct regset ppc32_linux_vrregset = {
836 &ppc32_linux_reg_offsets,
837 ppc_supply_vrregset,
838 ppc_collect_vrregset,
839 NULL
840 };
841
842 static const struct regset ppc32_linux_vsxregset = {
843 &ppc32_linux_reg_offsets,
844 ppc_supply_vsxregset,
845 ppc_collect_vsxregset,
846 NULL
847 };
848
849 const struct regset *
850 ppc_linux_gregset (int wordsize)
851 {
852 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
853 }
854
855 const struct regset *
856 ppc_linux_fpregset (void)
857 {
858 return &ppc32_linux_fpregset;
859 }
860
861 static const struct regset *
862 ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
863 const char *sect_name, size_t sect_size)
864 {
865 struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
866 if (strcmp (sect_name, ".reg") == 0)
867 {
868 if (tdep->wordsize == 4)
869 return &ppc32_linux_gregset;
870 else
871 return &ppc64_linux_gregset;
872 }
873 if (strcmp (sect_name, ".reg2") == 0)
874 return &ppc32_linux_fpregset;
875 if (strcmp (sect_name, ".reg-ppc-vmx") == 0)
876 return &ppc32_linux_vrregset;
877 if (strcmp (sect_name, ".reg-ppc-vsx") == 0)
878 return &ppc32_linux_vsxregset;
879 return NULL;
880 }
881
882 static void
883 ppc_linux_sigtramp_cache (struct frame_info *this_frame,
884 struct trad_frame_cache *this_cache,
885 CORE_ADDR func, LONGEST offset,
886 int bias)
887 {
888 CORE_ADDR base;
889 CORE_ADDR regs;
890 CORE_ADDR gpregs;
891 CORE_ADDR fpregs;
892 int i;
893 struct gdbarch *gdbarch = get_frame_arch (this_frame);
894 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
895 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
896
897 base = get_frame_register_unsigned (this_frame,
898 gdbarch_sp_regnum (gdbarch));
899 if (bias > 0 && get_frame_pc (this_frame) != func)
900 /* See below, some signal trampolines increment the stack as their
901 first instruction, need to compensate for that. */
902 base -= bias;
903
904 /* Find the address of the register buffer pointer. */
905 regs = base + offset;
906 /* Use that to find the address of the corresponding register
907 buffers. */
908 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
909 fpregs = gpregs + 48 * tdep->wordsize;
910
911 /* General purpose. */
912 for (i = 0; i < 32; i++)
913 {
914 int regnum = i + tdep->ppc_gp0_regnum;
915 trad_frame_set_reg_addr (this_cache, regnum, gpregs + i * tdep->wordsize);
916 }
917 trad_frame_set_reg_addr (this_cache,
918 gdbarch_pc_regnum (gdbarch),
919 gpregs + 32 * tdep->wordsize);
920 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
921 gpregs + 35 * tdep->wordsize);
922 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
923 gpregs + 36 * tdep->wordsize);
924 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
925 gpregs + 37 * tdep->wordsize);
926 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
927 gpregs + 38 * tdep->wordsize);
928
929 if (ppc_linux_trap_reg_p (gdbarch))
930 {
931 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
932 gpregs + 34 * tdep->wordsize);
933 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
934 gpregs + 40 * tdep->wordsize);
935 }
936
937 if (ppc_floating_point_unit_p (gdbarch))
938 {
939 /* Floating point registers. */
940 for (i = 0; i < 32; i++)
941 {
942 int regnum = i + gdbarch_fp0_regnum (gdbarch);
943 trad_frame_set_reg_addr (this_cache, regnum,
944 fpregs + i * tdep->wordsize);
945 }
946 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
947 fpregs + 32 * tdep->wordsize);
948 }
949 trad_frame_set_id (this_cache, frame_id_build (base, func));
950 }
951
952 static void
953 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
954 struct frame_info *this_frame,
955 struct trad_frame_cache *this_cache,
956 CORE_ADDR func)
957 {
958 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
959 0xd0 /* Offset to ucontext_t. */
960 + 0x30 /* Offset to .reg. */,
961 0);
962 }
963
964 static void
965 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
966 struct frame_info *this_frame,
967 struct trad_frame_cache *this_cache,
968 CORE_ADDR func)
969 {
970 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
971 0x80 /* Offset to ucontext_t. */
972 + 0xe0 /* Offset to .reg. */,
973 128);
974 }
975
976 static void
977 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
978 struct frame_info *this_frame,
979 struct trad_frame_cache *this_cache,
980 CORE_ADDR func)
981 {
982 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
983 0x40 /* Offset to ucontext_t. */
984 + 0x1c /* Offset to .reg. */,
985 0);
986 }
987
988 static void
989 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
990 struct frame_info *this_frame,
991 struct trad_frame_cache *this_cache,
992 CORE_ADDR func)
993 {
994 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
995 0x80 /* Offset to struct sigcontext. */
996 + 0x38 /* Offset to .reg. */,
997 128);
998 }
999
1000 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
1001 SIGTRAMP_FRAME,
1002 4,
1003 {
1004 { 0x380000ac, -1 }, /* li r0, 172 */
1005 { 0x44000002, -1 }, /* sc */
1006 { TRAMP_SENTINEL_INSN },
1007 },
1008 ppc32_linux_sigaction_cache_init
1009 };
1010 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
1011 SIGTRAMP_FRAME,
1012 4,
1013 {
1014 { 0x38210080, -1 }, /* addi r1,r1,128 */
1015 { 0x380000ac, -1 }, /* li r0, 172 */
1016 { 0x44000002, -1 }, /* sc */
1017 { TRAMP_SENTINEL_INSN },
1018 },
1019 ppc64_linux_sigaction_cache_init
1020 };
1021 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
1022 SIGTRAMP_FRAME,
1023 4,
1024 {
1025 { 0x38000077, -1 }, /* li r0,119 */
1026 { 0x44000002, -1 }, /* sc */
1027 { TRAMP_SENTINEL_INSN },
1028 },
1029 ppc32_linux_sighandler_cache_init
1030 };
1031 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
1032 SIGTRAMP_FRAME,
1033 4,
1034 {
1035 { 0x38210080, -1 }, /* addi r1,r1,128 */
1036 { 0x38000077, -1 }, /* li r0,119 */
1037 { 0x44000002, -1 }, /* sc */
1038 { TRAMP_SENTINEL_INSN },
1039 },
1040 ppc64_linux_sighandler_cache_init
1041 };
1042
1043
1044 /* Address to use for displaced stepping. When debugging a stand-alone
1045 SPU executable, entry_point_address () will point to an SPU local-store
1046 address and is thus not usable as displaced stepping location. We use
1047 the auxiliary vector to determine the PowerPC-side entry point address
1048 instead. */
1049
1050 static CORE_ADDR ppc_linux_entry_point_addr = 0;
1051
1052 static void
1053 ppc_linux_inferior_created (struct target_ops *target, int from_tty)
1054 {
1055 ppc_linux_entry_point_addr = 0;
1056 }
1057
1058 static CORE_ADDR
1059 ppc_linux_displaced_step_location (struct gdbarch *gdbarch)
1060 {
1061 if (ppc_linux_entry_point_addr == 0)
1062 {
1063 CORE_ADDR addr;
1064
1065 /* Determine entry point from target auxiliary vector. */
1066 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
1067 error (_("Cannot find AT_ENTRY auxiliary vector entry."));
1068
1069 /* Make certain that the address points at real code, and not a
1070 function descriptor. */
1071 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
1072 &current_target);
1073
1074 /* Inferior calls also use the entry point as a breakpoint location.
1075 We don't want displaced stepping to interfere with those
1076 breakpoints, so leave space. */
1077 ppc_linux_entry_point_addr = addr + 2 * PPC_INSN_SIZE;
1078 }
1079
1080 return ppc_linux_entry_point_addr;
1081 }
1082
1083
1084 /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
1085 int
1086 ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
1087 {
1088 /* If we do not have a target description with registers, then
1089 the special registers will not be included in the register set. */
1090 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1091 return 0;
1092
1093 /* If we do, then it is safe to check the size. */
1094 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
1095 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
1096 }
1097
1098 /* Return the current system call's number present in the
1099 r0 register. When the function fails, it returns -1. */
1100 static LONGEST
1101 ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
1102 ptid_t ptid)
1103 {
1104 struct regcache *regcache = get_thread_regcache (ptid);
1105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1106 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1107 struct cleanup *cleanbuf;
1108 /* The content of a register */
1109 gdb_byte *buf;
1110 /* The result */
1111 LONGEST ret;
1112
1113 /* Make sure we're in a 32- or 64-bit machine */
1114 gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
1115
1116 buf = (gdb_byte *) xmalloc (tdep->wordsize * sizeof (gdb_byte));
1117
1118 cleanbuf = make_cleanup (xfree, buf);
1119
1120 /* Getting the system call number from the register.
1121 When dealing with PowerPC architecture, this information
1122 is stored at 0th register. */
1123 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum, buf);
1124
1125 ret = extract_signed_integer (buf, tdep->wordsize, byte_order);
1126 do_cleanups (cleanbuf);
1127
1128 return ret;
1129 }
1130
1131 static void
1132 ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1133 {
1134 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1135
1136 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
1137
1138 /* Set special TRAP register to -1 to prevent the kernel from
1139 messing with the PC we just installed, if we happen to be
1140 within an interrupted system call that the kernel wants to
1141 restart.
1142
1143 Note that after we return from the dummy call, the TRAP and
1144 ORIG_R3 registers will be automatically restored, and the
1145 kernel continues to restart the system call at this point. */
1146 if (ppc_linux_trap_reg_p (gdbarch))
1147 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
1148 }
1149
1150 static int
1151 ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data)
1152 {
1153 return strncmp (bfd_section_name (abfd, asect), "SPU/", 4) == 0;
1154 }
1155
1156 static const struct target_desc *
1157 ppc_linux_core_read_description (struct gdbarch *gdbarch,
1158 struct target_ops *target,
1159 bfd *abfd)
1160 {
1161 asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL);
1162 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
1163 asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
1164 asection *section = bfd_get_section_by_name (abfd, ".reg");
1165 if (! section)
1166 return NULL;
1167
1168 switch (bfd_section_size (abfd, section))
1169 {
1170 case 48 * 4:
1171 if (cell)
1172 return tdesc_powerpc_cell32l;
1173 else if (vsx)
1174 return tdesc_powerpc_vsx32l;
1175 else if (altivec)
1176 return tdesc_powerpc_altivec32l;
1177 else
1178 return tdesc_powerpc_32l;
1179
1180 case 48 * 8:
1181 if (cell)
1182 return tdesc_powerpc_cell64l;
1183 else if (vsx)
1184 return tdesc_powerpc_vsx64l;
1185 else if (altivec)
1186 return tdesc_powerpc_altivec64l;
1187 else
1188 return tdesc_powerpc_64l;
1189
1190 default:
1191 return NULL;
1192 }
1193 }
1194
1195
1196 /* Cell/B.E. active SPE context tracking support. */
1197
1198 static struct objfile *spe_context_objfile = NULL;
1199 static CORE_ADDR spe_context_lm_addr = 0;
1200 static CORE_ADDR spe_context_offset = 0;
1201
1202 static ptid_t spe_context_cache_ptid;
1203 static CORE_ADDR spe_context_cache_address;
1204
1205 /* Hook into inferior_created, solib_loaded, and solib_unloaded observers
1206 to track whether we've loaded a version of libspe2 (as static or dynamic
1207 library) that provides the __spe_current_active_context variable. */
1208 static void
1209 ppc_linux_spe_context_lookup (struct objfile *objfile)
1210 {
1211 struct minimal_symbol *sym;
1212
1213 if (!objfile)
1214 {
1215 spe_context_objfile = NULL;
1216 spe_context_lm_addr = 0;
1217 spe_context_offset = 0;
1218 spe_context_cache_ptid = minus_one_ptid;
1219 spe_context_cache_address = 0;
1220 return;
1221 }
1222
1223 sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile);
1224 if (sym)
1225 {
1226 spe_context_objfile = objfile;
1227 spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile);
1228 spe_context_offset = SYMBOL_VALUE_ADDRESS (sym);
1229 spe_context_cache_ptid = minus_one_ptid;
1230 spe_context_cache_address = 0;
1231 return;
1232 }
1233 }
1234
1235 static void
1236 ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty)
1237 {
1238 struct objfile *objfile;
1239
1240 ppc_linux_spe_context_lookup (NULL);
1241 ALL_OBJFILES (objfile)
1242 ppc_linux_spe_context_lookup (objfile);
1243 }
1244
1245 static void
1246 ppc_linux_spe_context_solib_loaded (struct so_list *so)
1247 {
1248 if (strstr (so->so_original_name, "/libspe") != NULL)
1249 {
1250 solib_read_symbols (so, 0);
1251 ppc_linux_spe_context_lookup (so->objfile);
1252 }
1253 }
1254
1255 static void
1256 ppc_linux_spe_context_solib_unloaded (struct so_list *so)
1257 {
1258 if (so->objfile == spe_context_objfile)
1259 ppc_linux_spe_context_lookup (NULL);
1260 }
1261
1262 /* Retrieve contents of the N'th element in the current thread's
1263 linked SPE context list into ID and NPC. Return the address of
1264 said context element, or 0 if not found. */
1265 static CORE_ADDR
1266 ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order,
1267 int n, int *id, unsigned int *npc)
1268 {
1269 CORE_ADDR spe_context = 0;
1270 gdb_byte buf[16];
1271 int i;
1272
1273 /* Quick exit if we have not found __spe_current_active_context. */
1274 if (!spe_context_objfile)
1275 return 0;
1276
1277 /* Look up cached address of thread-local variable. */
1278 if (!ptid_equal (spe_context_cache_ptid, inferior_ptid))
1279 {
1280 struct target_ops *target = &current_target;
1281 volatile struct gdb_exception ex;
1282
1283 while (target && !target->to_get_thread_local_address)
1284 target = find_target_beneath (target);
1285 if (!target)
1286 return 0;
1287
1288 TRY_CATCH (ex, RETURN_MASK_ERROR)
1289 {
1290 /* We do not call target_translate_tls_address here, because
1291 svr4_fetch_objfile_link_map may invalidate the frame chain,
1292 which must not do while inside a frame sniffer.
1293
1294 Instead, we have cached the lm_addr value, and use that to
1295 directly call the target's to_get_thread_local_address. */
1296 spe_context_cache_address
1297 = target->to_get_thread_local_address (target, inferior_ptid,
1298 spe_context_lm_addr,
1299 spe_context_offset);
1300 spe_context_cache_ptid = inferior_ptid;
1301 }
1302
1303 if (ex.reason < 0)
1304 return 0;
1305 }
1306
1307 /* Read variable value. */
1308 if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0)
1309 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1310
1311 /* Cyle through to N'th linked list element. */
1312 for (i = 0; i < n && spe_context; i++)
1313 if (target_read_memory (spe_context + align_up (12, wordsize),
1314 buf, wordsize) == 0)
1315 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1316 else
1317 spe_context = 0;
1318
1319 /* Read current context. */
1320 if (spe_context
1321 && target_read_memory (spe_context, buf, 12) != 0)
1322 spe_context = 0;
1323
1324 /* Extract data elements. */
1325 if (spe_context)
1326 {
1327 if (id)
1328 *id = extract_signed_integer (buf, 4, byte_order);
1329 if (npc)
1330 *npc = extract_unsigned_integer (buf + 4, 4, byte_order);
1331 }
1332
1333 return spe_context;
1334 }
1335
1336
1337 /* Cell/B.E. cross-architecture unwinder support. */
1338
1339 struct ppu2spu_cache
1340 {
1341 struct frame_id frame_id;
1342 struct regcache *regcache;
1343 };
1344
1345 static struct gdbarch *
1346 ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache)
1347 {
1348 struct ppu2spu_cache *cache = *this_cache;
1349 return get_regcache_arch (cache->regcache);
1350 }
1351
1352 static void
1353 ppu2spu_this_id (struct frame_info *this_frame,
1354 void **this_cache, struct frame_id *this_id)
1355 {
1356 struct ppu2spu_cache *cache = *this_cache;
1357 *this_id = cache->frame_id;
1358 }
1359
1360 static struct value *
1361 ppu2spu_prev_register (struct frame_info *this_frame,
1362 void **this_cache, int regnum)
1363 {
1364 struct ppu2spu_cache *cache = *this_cache;
1365 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1366 gdb_byte *buf;
1367
1368 buf = alloca (register_size (gdbarch, regnum));
1369 regcache_cooked_read (cache->regcache, regnum, buf);
1370 return frame_unwind_got_bytes (this_frame, regnum, buf);
1371 }
1372
1373 struct ppu2spu_data
1374 {
1375 struct gdbarch *gdbarch;
1376 int id;
1377 unsigned int npc;
1378 gdb_byte gprs[128*16];
1379 };
1380
1381 static int
1382 ppu2spu_unwind_register (void *src, int regnum, gdb_byte *buf)
1383 {
1384 struct ppu2spu_data *data = src;
1385 enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch);
1386
1387 if (regnum >= 0 && regnum < SPU_NUM_GPRS)
1388 memcpy (buf, data->gprs + 16*regnum, 16);
1389 else if (regnum == SPU_ID_REGNUM)
1390 store_unsigned_integer (buf, 4, byte_order, data->id);
1391 else if (regnum == SPU_PC_REGNUM)
1392 store_unsigned_integer (buf, 4, byte_order, data->npc);
1393 else
1394 return 0;
1395
1396 return 1;
1397 }
1398
1399 static int
1400 ppu2spu_sniffer (const struct frame_unwind *self,
1401 struct frame_info *this_frame, void **this_prologue_cache)
1402 {
1403 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1404 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1405 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1406 struct ppu2spu_data data;
1407 struct frame_info *fi;
1408 CORE_ADDR base, func, backchain, spe_context;
1409 gdb_byte buf[8];
1410 int n = 0;
1411
1412 /* Count the number of SPU contexts already in the frame chain. */
1413 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1414 if (get_frame_type (fi) == ARCH_FRAME
1415 && gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu)
1416 n++;
1417
1418 base = get_frame_sp (this_frame);
1419 func = get_frame_pc (this_frame);
1420 if (target_read_memory (base, buf, tdep->wordsize))
1421 return 0;
1422 backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order);
1423
1424 spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order,
1425 n, &data.id, &data.npc);
1426 if (spe_context && base <= spe_context && spe_context < backchain)
1427 {
1428 char annex[32];
1429
1430 /* Find gdbarch for SPU. */
1431 struct gdbarch_info info;
1432 gdbarch_info_init (&info);
1433 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
1434 info.byte_order = BFD_ENDIAN_BIG;
1435 info.osabi = GDB_OSABI_LINUX;
1436 info.tdep_info = (void *) &data.id;
1437 data.gdbarch = gdbarch_find_by_info (info);
1438 if (!data.gdbarch)
1439 return 0;
1440
1441 xsnprintf (annex, sizeof annex, "%d/regs", data.id);
1442 if (target_read (&current_target, TARGET_OBJECT_SPU, annex,
1443 data.gprs, 0, sizeof data.gprs)
1444 == sizeof data.gprs)
1445 {
1446 struct ppu2spu_cache *cache
1447 = FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache);
1448
1449 struct address_space *aspace = get_frame_address_space (this_frame);
1450 struct regcache *regcache = regcache_xmalloc (data.gdbarch, aspace);
1451 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
1452 regcache_save (regcache, ppu2spu_unwind_register, &data);
1453 discard_cleanups (cleanups);
1454
1455 cache->frame_id = frame_id_build (base, func);
1456 cache->regcache = regcache;
1457 *this_prologue_cache = cache;
1458 return 1;
1459 }
1460 }
1461
1462 return 0;
1463 }
1464
1465 static void
1466 ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache)
1467 {
1468 struct ppu2spu_cache *cache = this_cache;
1469 regcache_xfree (cache->regcache);
1470 }
1471
1472 static const struct frame_unwind ppu2spu_unwind = {
1473 ARCH_FRAME,
1474 ppu2spu_this_id,
1475 ppu2spu_prev_register,
1476 NULL,
1477 ppu2spu_sniffer,
1478 ppu2spu_dealloc_cache,
1479 ppu2spu_prev_arch,
1480 };
1481
1482
1483 static void
1484 ppc_linux_init_abi (struct gdbarch_info info,
1485 struct gdbarch *gdbarch)
1486 {
1487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1488 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
1489
1490 linux_init_abi (info, gdbarch);
1491
1492 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
1493 128-bit, they are IBM long double, not IEEE quad long double as
1494 in the System V ABI PowerPC Processor Supplement. We can safely
1495 let them default to 128-bit, since the debug info will give the
1496 size of type actually used in each case. */
1497 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
1498 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
1499
1500 /* Handle inferior calls during interrupted system calls. */
1501 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
1502
1503 /* Get the syscall number from the arch's register. */
1504 set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
1505
1506 if (tdep->wordsize == 4)
1507 {
1508 /* Until November 2001, gcc did not comply with the 32 bit SysV
1509 R4 ABI requirement that structures less than or equal to 8
1510 bytes should be returned in registers. Instead GCC was using
1511 the the AIX/PowerOpen ABI - everything returned in memory
1512 (well ignoring vectors that is). When this was corrected, it
1513 wasn't fixed for GNU/Linux native platform. Use the
1514 PowerOpen struct convention. */
1515 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1516
1517 set_gdbarch_memory_remove_breakpoint (gdbarch,
1518 ppc_linux_memory_remove_breakpoint);
1519
1520 /* Shared library handling. */
1521 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1522 set_solib_svr4_fetch_link_map_offsets
1523 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1524
1525 /* Setting the correct XML syscall filename. */
1526 set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC);
1527
1528 /* Trampolines. */
1529 tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sigaction_tramp_frame);
1530 tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sighandler_tramp_frame);
1531
1532 /* BFD target for core files. */
1533 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1534 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
1535 else
1536 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
1537
1538 /* Supported register sections. */
1539 if (tdesc_find_feature (info.target_desc,
1540 "org.gnu.gdb.power.vsx"))
1541 set_gdbarch_core_regset_sections (gdbarch,
1542 ppc_linux_vsx_regset_sections);
1543 else if (tdesc_find_feature (info.target_desc,
1544 "org.gnu.gdb.power.altivec"))
1545 set_gdbarch_core_regset_sections (gdbarch,
1546 ppc_linux_vmx_regset_sections);
1547 else
1548 set_gdbarch_core_regset_sections (gdbarch,
1549 ppc_linux_fp_regset_sections);
1550 }
1551
1552 if (tdep->wordsize == 8)
1553 {
1554 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
1555 function descriptors). */
1556 set_gdbarch_convert_from_func_ptr_addr
1557 (gdbarch, ppc64_linux_convert_from_func_ptr_addr);
1558
1559 /* Shared library handling. */
1560 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1561 set_solib_svr4_fetch_link_map_offsets
1562 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1563
1564 /* Setting the correct XML syscall filename. */
1565 set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC64);
1566
1567 /* Trampolines. */
1568 tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sigaction_tramp_frame);
1569 tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sighandler_tramp_frame);
1570
1571 /* BFD target for core files. */
1572 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1573 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
1574 else
1575 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
1576
1577 /* Supported register sections. */
1578 if (tdesc_find_feature (info.target_desc,
1579 "org.gnu.gdb.power.vsx"))
1580 set_gdbarch_core_regset_sections (gdbarch,
1581 ppc64_linux_vsx_regset_sections);
1582 else if (tdesc_find_feature (info.target_desc,
1583 "org.gnu.gdb.power.altivec"))
1584 set_gdbarch_core_regset_sections (gdbarch,
1585 ppc64_linux_vmx_regset_sections);
1586 else
1587 set_gdbarch_core_regset_sections (gdbarch,
1588 ppc64_linux_fp_regset_sections);
1589 }
1590 set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section);
1591 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
1592
1593 /* Enable TLS support. */
1594 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1595 svr4_fetch_objfile_link_map);
1596
1597 if (tdesc_data)
1598 {
1599 const struct tdesc_feature *feature;
1600
1601 /* If we have target-described registers, then we can safely
1602 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
1603 (whether they are described or not). */
1604 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
1605 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
1606
1607 /* If they are present, then assign them to the reserved number. */
1608 feature = tdesc_find_feature (info.target_desc,
1609 "org.gnu.gdb.power.linux");
1610 if (feature != NULL)
1611 {
1612 tdesc_numbered_register (feature, tdesc_data,
1613 PPC_ORIG_R3_REGNUM, "orig_r3");
1614 tdesc_numbered_register (feature, tdesc_data,
1615 PPC_TRAP_REGNUM, "trap");
1616 }
1617 }
1618
1619 /* Enable Cell/B.E. if supported by the target. */
1620 if (tdesc_compatible_p (info.target_desc,
1621 bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu)))
1622 {
1623 /* Cell/B.E. multi-architecture support. */
1624 set_spu_solib_ops (gdbarch);
1625
1626 /* Cell/B.E. cross-architecture unwinder support. */
1627 frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind);
1628
1629 /* The default displaced_step_at_entry_point doesn't work for
1630 SPU stand-alone executables. */
1631 set_gdbarch_displaced_step_location (gdbarch,
1632 ppc_linux_displaced_step_location);
1633 }
1634 }
1635
1636 /* Provide a prototype to silence -Wmissing-prototypes. */
1637 extern initialize_file_ftype _initialize_ppc_linux_tdep;
1638
1639 void
1640 _initialize_ppc_linux_tdep (void)
1641 {
1642 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1643 64-bit PowerPC, and the older rs6k. */
1644 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1645 ppc_linux_init_abi);
1646 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1647 ppc_linux_init_abi);
1648 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1649 ppc_linux_init_abi);
1650
1651 /* Attach to inferior_created observer. */
1652 observer_attach_inferior_created (ppc_linux_inferior_created);
1653
1654 /* Attach to observers to track __spe_current_active_context. */
1655 observer_attach_inferior_created (ppc_linux_spe_context_inferior_created);
1656 observer_attach_solib_loaded (ppc_linux_spe_context_solib_loaded);
1657 observer_attach_solib_unloaded (ppc_linux_spe_context_solib_unloaded);
1658
1659 /* Initialize the Linux target descriptions. */
1660 initialize_tdesc_powerpc_32l ();
1661 initialize_tdesc_powerpc_altivec32l ();
1662 initialize_tdesc_powerpc_cell32l ();
1663 initialize_tdesc_powerpc_vsx32l ();
1664 initialize_tdesc_powerpc_isa205_32l ();
1665 initialize_tdesc_powerpc_isa205_altivec32l ();
1666 initialize_tdesc_powerpc_isa205_vsx32l ();
1667 initialize_tdesc_powerpc_64l ();
1668 initialize_tdesc_powerpc_altivec64l ();
1669 initialize_tdesc_powerpc_cell64l ();
1670 initialize_tdesc_powerpc_vsx64l ();
1671 initialize_tdesc_powerpc_isa205_64l ();
1672 initialize_tdesc_powerpc_isa205_altivec64l ();
1673 initialize_tdesc_powerpc_isa205_vsx64l ();
1674 initialize_tdesc_powerpc_e500l ();
1675 }
This page took 0.065979 seconds and 4 git commands to generate.