Clear non-significant bits of address on memory access
[deliverable/binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "regcache.h"
30 #include "value.h"
31 #include "osabi.h"
32 #include "regset.h"
33 #include "solib-svr4.h"
34 #include "solib-spu.h"
35 #include "solib.h"
36 #include "solist.h"
37 #include "ppc-tdep.h"
38 #include "ppc64-tdep.h"
39 #include "ppc-linux-tdep.h"
40 #include "glibc-tdep.h"
41 #include "trad-frame.h"
42 #include "frame-unwind.h"
43 #include "tramp-frame.h"
44 #include "observer.h"
45 #include "auxv.h"
46 #include "elf/common.h"
47 #include "elf/ppc64.h"
48 #include "arch-utils.h"
49 #include "spu-tdep.h"
50 #include "xml-syscall.h"
51 #include "linux-tdep.h"
52 #include "linux-record.h"
53 #include "record-full.h"
54 #include "infrun.h"
55
56 #include "stap-probe.h"
57 #include "ax.h"
58 #include "ax-gdb.h"
59 #include "cli/cli-utils.h"
60 #include "parser-defs.h"
61 #include "user-regs.h"
62 #include <ctype.h>
63 #include "elf-bfd.h"
64
65 #include "features/rs6000/powerpc-32l.c"
66 #include "features/rs6000/powerpc-altivec32l.c"
67 #include "features/rs6000/powerpc-cell32l.c"
68 #include "features/rs6000/powerpc-vsx32l.c"
69 #include "features/rs6000/powerpc-isa205-32l.c"
70 #include "features/rs6000/powerpc-isa205-altivec32l.c"
71 #include "features/rs6000/powerpc-isa205-vsx32l.c"
72 #include "features/rs6000/powerpc-64l.c"
73 #include "features/rs6000/powerpc-altivec64l.c"
74 #include "features/rs6000/powerpc-cell64l.c"
75 #include "features/rs6000/powerpc-vsx64l.c"
76 #include "features/rs6000/powerpc-isa205-64l.c"
77 #include "features/rs6000/powerpc-isa205-altivec64l.c"
78 #include "features/rs6000/powerpc-isa205-vsx64l.c"
79 #include "features/rs6000/powerpc-e500l.c"
80
81 /* Shared library operations for PowerPC-Linux. */
82 static struct target_so_ops powerpc_so_ops;
83
84 /* The syscall's XML filename for PPC and PPC64. */
85 #define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
86 #define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
87
88 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
89 in much the same fashion as memory_remove_breakpoint in mem-break.c,
90 but is careful not to write back the previous contents if the code
91 in question has changed in between inserting the breakpoint and
92 removing it.
93
94 Here is the problem that we're trying to solve...
95
96 Once upon a time, before introducing this function to remove
97 breakpoints from the inferior, setting a breakpoint on a shared
98 library function prior to running the program would not work
99 properly. In order to understand the problem, it is first
100 necessary to understand a little bit about dynamic linking on
101 this platform.
102
103 A call to a shared library function is accomplished via a bl
104 (branch-and-link) instruction whose branch target is an entry
105 in the procedure linkage table (PLT). The PLT in the object
106 file is uninitialized. To gdb, prior to running the program, the
107 entries in the PLT are all zeros.
108
109 Once the program starts running, the shared libraries are loaded
110 and the procedure linkage table is initialized, but the entries in
111 the table are not (necessarily) resolved. Once a function is
112 actually called, the code in the PLT is hit and the function is
113 resolved. In order to better illustrate this, an example is in
114 order; the following example is from the gdb testsuite.
115
116 We start the program shmain.
117
118 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
119 [...]
120
121 We place two breakpoints, one on shr1 and the other on main.
122
123 (gdb) b shr1
124 Breakpoint 1 at 0x100409d4
125 (gdb) b main
126 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
127
128 Examine the instruction (and the immediatly following instruction)
129 upon which the breakpoint was placed. Note that the PLT entry
130 for shr1 contains zeros.
131
132 (gdb) x/2i 0x100409d4
133 0x100409d4 <shr1>: .long 0x0
134 0x100409d8 <shr1+4>: .long 0x0
135
136 Now run 'til main.
137
138 (gdb) r
139 Starting program: gdb.base/shmain
140 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
141
142 Breakpoint 2, main ()
143 at gdb.base/shmain.c:44
144 44 g = 1;
145
146 Examine the PLT again. Note that the loading of the shared
147 library has initialized the PLT to code which loads a constant
148 (which I think is an index into the GOT) into r11 and then
149 branchs a short distance to the code which actually does the
150 resolving.
151
152 (gdb) x/2i 0x100409d4
153 0x100409d4 <shr1>: li r11,4
154 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
155 (gdb) c
156 Continuing.
157
158 Breakpoint 1, shr1 (x=1)
159 at gdb.base/shr1.c:19
160 19 l = 1;
161
162 Now we've hit the breakpoint at shr1. (The breakpoint was
163 reset from the PLT entry to the actual shr1 function after the
164 shared library was loaded.) Note that the PLT entry has been
165 resolved to contain a branch that takes us directly to shr1.
166 (The real one, not the PLT entry.)
167
168 (gdb) x/2i 0x100409d4
169 0x100409d4 <shr1>: b 0xffaf76c <shr1>
170 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
171
172 The thing to note here is that the PLT entry for shr1 has been
173 changed twice.
174
175 Now the problem should be obvious. GDB places a breakpoint (a
176 trap instruction) on the zero value of the PLT entry for shr1.
177 Later on, after the shared library had been loaded and the PLT
178 initialized, GDB gets a signal indicating this fact and attempts
179 (as it always does when it stops) to remove all the breakpoints.
180
181 The breakpoint removal was causing the former contents (a zero
182 word) to be written back to the now initialized PLT entry thus
183 destroying a portion of the initialization that had occurred only a
184 short time ago. When execution continued, the zero word would be
185 executed as an instruction an illegal instruction trap was
186 generated instead. (0 is not a legal instruction.)
187
188 The fix for this problem was fairly straightforward. The function
189 memory_remove_breakpoint from mem-break.c was copied to this file,
190 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
191 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
192 function.
193
194 The differences between ppc_linux_memory_remove_breakpoint () and
195 memory_remove_breakpoint () are minor. All that the former does
196 that the latter does not is check to make sure that the breakpoint
197 location actually contains a breakpoint (trap instruction) prior
198 to attempting to write back the old contents. If it does contain
199 a trap instruction, we allow the old contents to be written back.
200 Otherwise, we silently do nothing.
201
202 The big question is whether memory_remove_breakpoint () should be
203 changed to have the same functionality. The downside is that more
204 traffic is generated for remote targets since we'll have an extra
205 fetch of a memory word each time a breakpoint is removed.
206
207 For the time being, we'll leave this self-modifying-code-friendly
208 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
209 else in the event that some other platform has similar needs with
210 regard to removing breakpoints in some potentially self modifying
211 code. */
212 static int
213 ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
214 struct bp_target_info *bp_tgt)
215 {
216 CORE_ADDR addr = bp_tgt->reqstd_address;
217 const unsigned char *bp;
218 int val;
219 int bplen;
220 gdb_byte old_contents[BREAKPOINT_MAX];
221
222 /* Determine appropriate breakpoint contents and size for this address. */
223 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
224
225 /* Make sure we see the memory breakpoints. */
226 scoped_restore restore_memory
227 = make_scoped_restore_show_memory_breakpoints (1);
228 val = target_read_memory (addr, old_contents, bplen);
229
230 /* If our breakpoint is no longer at the address, this means that the
231 program modified the code on us, so it is wrong to put back the
232 old value. */
233 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
234 val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen);
235
236 return val;
237 }
238
239 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
240 than the 32 bit SYSV R4 ABI structure return convention - all
241 structures, no matter their size, are put in memory. Vectors,
242 which were added later, do get returned in a register though. */
243
244 static enum return_value_convention
245 ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function,
246 struct type *valtype, struct regcache *regcache,
247 gdb_byte *readbuf, const gdb_byte *writebuf)
248 {
249 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
250 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
251 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
252 && TYPE_VECTOR (valtype)))
253 return RETURN_VALUE_STRUCT_CONVENTION;
254 else
255 return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache,
256 readbuf, writebuf);
257 }
258
259 /* PLT stub in executable. */
260 static struct ppc_insn_pattern powerpc32_plt_stub[] =
261 {
262 { 0xffff0000, 0x3d600000, 0 }, /* lis r11, xxxx */
263 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
264 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
265 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
266 { 0, 0, 0 }
267 };
268
269 /* PLT stub in shared library. */
270 static struct ppc_insn_pattern powerpc32_plt_stub_so[] =
271 {
272 { 0xffff0000, 0x817e0000, 0 }, /* lwz r11, xxxx(r30) */
273 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
274 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
275 { 0xffffffff, 0x60000000, 0 }, /* nop */
276 { 0, 0, 0 }
277 };
278 #define POWERPC32_PLT_STUB_LEN ARRAY_SIZE (powerpc32_plt_stub)
279
280 /* Check if PC is in PLT stub. For non-secure PLT, stub is in .plt
281 section. For secure PLT, stub is in .text and we need to check
282 instruction patterns. */
283
284 static int
285 powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc)
286 {
287 struct bound_minimal_symbol sym;
288
289 /* Check whether PC is in the dynamic linker. This also checks
290 whether it is in the .plt section, used by non-PIC executables. */
291 if (svr4_in_dynsym_resolve_code (pc))
292 return 1;
293
294 /* Check if we are in the resolver. */
295 sym = lookup_minimal_symbol_by_pc (pc);
296 if (sym.minsym != NULL
297 && (strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym), "__glink") == 0
298 || strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym),
299 "__glink_PLTresolve") == 0))
300 return 1;
301
302 return 0;
303 }
304
305 /* Follow PLT stub to actual routine.
306
307 When the execution direction is EXEC_REVERSE, scan backward to
308 check whether we are in the middle of a PLT stub. Currently,
309 we only look-behind at most 4 instructions (the max length of PLT
310 stub sequence. */
311
312 static CORE_ADDR
313 ppc_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
314 {
315 unsigned int insnbuf[POWERPC32_PLT_STUB_LEN];
316 struct gdbarch *gdbarch = get_frame_arch (frame);
317 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
318 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
319 CORE_ADDR target = 0;
320 int scan_limit, i;
321
322 scan_limit = 1;
323 /* When reverse-debugging, scan backward to check whether we are
324 in the middle of trampoline code. */
325 if (execution_direction == EXEC_REVERSE)
326 scan_limit = 4; /* At more 4 instructions. */
327
328 for (i = 0; i < scan_limit; i++)
329 {
330 if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf))
331 {
332 /* Insn pattern is
333 lis r11, xxxx
334 lwz r11, xxxx(r11)
335 Branch target is in r11. */
336
337 target = (ppc_insn_d_field (insnbuf[0]) << 16)
338 | ppc_insn_d_field (insnbuf[1]);
339 target = read_memory_unsigned_integer (target, 4, byte_order);
340 }
341 else if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so,
342 insnbuf))
343 {
344 /* Insn pattern is
345 lwz r11, xxxx(r30)
346 Branch target is in r11. */
347
348 target = get_frame_register_unsigned (frame,
349 tdep->ppc_gp0_regnum + 30)
350 + ppc_insn_d_field (insnbuf[0]);
351 target = read_memory_unsigned_integer (target, 4, byte_order);
352 }
353 else
354 {
355 /* Scan backward one more instructions if doesn't match. */
356 pc -= 4;
357 continue;
358 }
359
360 return target;
361 }
362
363 return 0;
364 }
365
366 /* Wrappers to handle Linux-only registers. */
367
368 static void
369 ppc_linux_supply_gregset (const struct regset *regset,
370 struct regcache *regcache,
371 int regnum, const void *gregs, size_t len)
372 {
373 const struct ppc_reg_offsets *offsets
374 = (const struct ppc_reg_offsets *) regset->regmap;
375
376 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
377
378 if (ppc_linux_trap_reg_p (regcache->arch ()))
379 {
380 /* "orig_r3" is stored 2 slots after "pc". */
381 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
382 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, (const gdb_byte *) gregs,
383 offsets->pc_offset + 2 * offsets->gpr_size,
384 offsets->gpr_size);
385
386 /* "trap" is stored 8 slots after "pc". */
387 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
388 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, (const gdb_byte *) gregs,
389 offsets->pc_offset + 8 * offsets->gpr_size,
390 offsets->gpr_size);
391 }
392 }
393
394 static void
395 ppc_linux_collect_gregset (const struct regset *regset,
396 const struct regcache *regcache,
397 int regnum, void *gregs, size_t len)
398 {
399 const struct ppc_reg_offsets *offsets
400 = (const struct ppc_reg_offsets *) regset->regmap;
401
402 /* Clear areas in the linux gregset not written elsewhere. */
403 if (regnum == -1)
404 memset (gregs, 0, len);
405
406 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
407
408 if (ppc_linux_trap_reg_p (regcache->arch ()))
409 {
410 /* "orig_r3" is stored 2 slots after "pc". */
411 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
412 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, (gdb_byte *) gregs,
413 offsets->pc_offset + 2 * offsets->gpr_size,
414 offsets->gpr_size);
415
416 /* "trap" is stored 8 slots after "pc". */
417 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
418 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, (gdb_byte *) gregs,
419 offsets->pc_offset + 8 * offsets->gpr_size,
420 offsets->gpr_size);
421 }
422 }
423
424 /* Regset descriptions. */
425 static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
426 {
427 /* General-purpose registers. */
428 /* .r0_offset = */ 0,
429 /* .gpr_size = */ 4,
430 /* .xr_size = */ 4,
431 /* .pc_offset = */ 128,
432 /* .ps_offset = */ 132,
433 /* .cr_offset = */ 152,
434 /* .lr_offset = */ 144,
435 /* .ctr_offset = */ 140,
436 /* .xer_offset = */ 148,
437 /* .mq_offset = */ 156,
438
439 /* Floating-point registers. */
440 /* .f0_offset = */ 0,
441 /* .fpscr_offset = */ 256,
442 /* .fpscr_size = */ 8,
443
444 /* AltiVec registers. */
445 /* .vr0_offset = */ 0,
446 /* .vscr_offset = */ 512 + 12,
447 /* .vrsave_offset = */ 528
448 };
449
450 static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
451 {
452 /* General-purpose registers. */
453 /* .r0_offset = */ 0,
454 /* .gpr_size = */ 8,
455 /* .xr_size = */ 8,
456 /* .pc_offset = */ 256,
457 /* .ps_offset = */ 264,
458 /* .cr_offset = */ 304,
459 /* .lr_offset = */ 288,
460 /* .ctr_offset = */ 280,
461 /* .xer_offset = */ 296,
462 /* .mq_offset = */ 312,
463
464 /* Floating-point registers. */
465 /* .f0_offset = */ 0,
466 /* .fpscr_offset = */ 256,
467 /* .fpscr_size = */ 8,
468
469 /* AltiVec registers. */
470 /* .vr0_offset = */ 0,
471 /* .vscr_offset = */ 512 + 12,
472 /* .vrsave_offset = */ 528
473 };
474
475 static const struct regset ppc32_linux_gregset = {
476 &ppc32_linux_reg_offsets,
477 ppc_linux_supply_gregset,
478 ppc_linux_collect_gregset
479 };
480
481 static const struct regset ppc64_linux_gregset = {
482 &ppc64_linux_reg_offsets,
483 ppc_linux_supply_gregset,
484 ppc_linux_collect_gregset
485 };
486
487 static const struct regset ppc32_linux_fpregset = {
488 &ppc32_linux_reg_offsets,
489 ppc_supply_fpregset,
490 ppc_collect_fpregset
491 };
492
493 static const struct regset ppc32_linux_vrregset = {
494 &ppc32_linux_reg_offsets,
495 ppc_supply_vrregset,
496 ppc_collect_vrregset
497 };
498
499 static const struct regset ppc32_linux_vsxregset = {
500 &ppc32_linux_reg_offsets,
501 ppc_supply_vsxregset,
502 ppc_collect_vsxregset
503 };
504
505 const struct regset *
506 ppc_linux_gregset (int wordsize)
507 {
508 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
509 }
510
511 const struct regset *
512 ppc_linux_fpregset (void)
513 {
514 return &ppc32_linux_fpregset;
515 }
516
517 /* Iterate over supported core file register note sections. */
518
519 static void
520 ppc_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
521 iterate_over_regset_sections_cb *cb,
522 void *cb_data,
523 const struct regcache *regcache)
524 {
525 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
526 int have_altivec = tdep->ppc_vr0_regnum != -1;
527 int have_vsx = tdep->ppc_vsr0_upper_regnum != -1;
528
529 if (tdep->wordsize == 4)
530 cb (".reg", 48 * 4, &ppc32_linux_gregset, NULL, cb_data);
531 else
532 cb (".reg", 48 * 8, &ppc64_linux_gregset, NULL, cb_data);
533
534 cb (".reg2", 264, &ppc32_linux_fpregset, NULL, cb_data);
535
536 if (have_altivec)
537 cb (".reg-ppc-vmx", 544, &ppc32_linux_vrregset, "ppc Altivec", cb_data);
538
539 if (have_vsx)
540 cb (".reg-ppc-vsx", 256, &ppc32_linux_vsxregset, "POWER7 VSX", cb_data);
541 }
542
543 static void
544 ppc_linux_sigtramp_cache (struct frame_info *this_frame,
545 struct trad_frame_cache *this_cache,
546 CORE_ADDR func, LONGEST offset,
547 int bias)
548 {
549 CORE_ADDR base;
550 CORE_ADDR regs;
551 CORE_ADDR gpregs;
552 CORE_ADDR fpregs;
553 int i;
554 struct gdbarch *gdbarch = get_frame_arch (this_frame);
555 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
556 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
557
558 base = get_frame_register_unsigned (this_frame,
559 gdbarch_sp_regnum (gdbarch));
560 if (bias > 0 && get_frame_pc (this_frame) != func)
561 /* See below, some signal trampolines increment the stack as their
562 first instruction, need to compensate for that. */
563 base -= bias;
564
565 /* Find the address of the register buffer pointer. */
566 regs = base + offset;
567 /* Use that to find the address of the corresponding register
568 buffers. */
569 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
570 fpregs = gpregs + 48 * tdep->wordsize;
571
572 /* General purpose. */
573 for (i = 0; i < 32; i++)
574 {
575 int regnum = i + tdep->ppc_gp0_regnum;
576 trad_frame_set_reg_addr (this_cache,
577 regnum, gpregs + i * tdep->wordsize);
578 }
579 trad_frame_set_reg_addr (this_cache,
580 gdbarch_pc_regnum (gdbarch),
581 gpregs + 32 * tdep->wordsize);
582 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
583 gpregs + 35 * tdep->wordsize);
584 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
585 gpregs + 36 * tdep->wordsize);
586 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
587 gpregs + 37 * tdep->wordsize);
588 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
589 gpregs + 38 * tdep->wordsize);
590
591 if (ppc_linux_trap_reg_p (gdbarch))
592 {
593 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
594 gpregs + 34 * tdep->wordsize);
595 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
596 gpregs + 40 * tdep->wordsize);
597 }
598
599 if (ppc_floating_point_unit_p (gdbarch))
600 {
601 /* Floating point registers. */
602 for (i = 0; i < 32; i++)
603 {
604 int regnum = i + gdbarch_fp0_regnum (gdbarch);
605 trad_frame_set_reg_addr (this_cache, regnum,
606 fpregs + i * tdep->wordsize);
607 }
608 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
609 fpregs + 32 * tdep->wordsize);
610 }
611 trad_frame_set_id (this_cache, frame_id_build (base, func));
612 }
613
614 static void
615 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
616 struct frame_info *this_frame,
617 struct trad_frame_cache *this_cache,
618 CORE_ADDR func)
619 {
620 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
621 0xd0 /* Offset to ucontext_t. */
622 + 0x30 /* Offset to .reg. */,
623 0);
624 }
625
626 static void
627 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
628 struct frame_info *this_frame,
629 struct trad_frame_cache *this_cache,
630 CORE_ADDR func)
631 {
632 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
633 0x80 /* Offset to ucontext_t. */
634 + 0xe0 /* Offset to .reg. */,
635 128);
636 }
637
638 static void
639 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
640 struct frame_info *this_frame,
641 struct trad_frame_cache *this_cache,
642 CORE_ADDR func)
643 {
644 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
645 0x40 /* Offset to ucontext_t. */
646 + 0x1c /* Offset to .reg. */,
647 0);
648 }
649
650 static void
651 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
652 struct frame_info *this_frame,
653 struct trad_frame_cache *this_cache,
654 CORE_ADDR func)
655 {
656 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
657 0x80 /* Offset to struct sigcontext. */
658 + 0x38 /* Offset to .reg. */,
659 128);
660 }
661
662 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
663 SIGTRAMP_FRAME,
664 4,
665 {
666 { 0x380000ac, -1 }, /* li r0, 172 */
667 { 0x44000002, -1 }, /* sc */
668 { TRAMP_SENTINEL_INSN },
669 },
670 ppc32_linux_sigaction_cache_init
671 };
672 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
673 SIGTRAMP_FRAME,
674 4,
675 {
676 { 0x38210080, -1 }, /* addi r1,r1,128 */
677 { 0x380000ac, -1 }, /* li r0, 172 */
678 { 0x44000002, -1 }, /* sc */
679 { TRAMP_SENTINEL_INSN },
680 },
681 ppc64_linux_sigaction_cache_init
682 };
683 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
684 SIGTRAMP_FRAME,
685 4,
686 {
687 { 0x38000077, -1 }, /* li r0,119 */
688 { 0x44000002, -1 }, /* sc */
689 { TRAMP_SENTINEL_INSN },
690 },
691 ppc32_linux_sighandler_cache_init
692 };
693 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
694 SIGTRAMP_FRAME,
695 4,
696 {
697 { 0x38210080, -1 }, /* addi r1,r1,128 */
698 { 0x38000077, -1 }, /* li r0,119 */
699 { 0x44000002, -1 }, /* sc */
700 { TRAMP_SENTINEL_INSN },
701 },
702 ppc64_linux_sighandler_cache_init
703 };
704
705 /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
706 int
707 ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
708 {
709 /* If we do not have a target description with registers, then
710 the special registers will not be included in the register set. */
711 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
712 return 0;
713
714 /* If we do, then it is safe to check the size. */
715 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
716 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
717 }
718
719 /* Return the current system call's number present in the
720 r0 register. When the function fails, it returns -1. */
721 static LONGEST
722 ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
723 ptid_t ptid)
724 {
725 struct regcache *regcache = get_thread_regcache (ptid);
726 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
727 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
728
729 /* Make sure we're in a 32- or 64-bit machine */
730 gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
731
732 /* The content of a register */
733 gdb::byte_vector buf (tdep->wordsize);
734
735 /* Getting the system call number from the register.
736 When dealing with PowerPC architecture, this information
737 is stored at 0th register. */
738 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum, buf.data ());
739
740 return extract_signed_integer (buf.data (), tdep->wordsize, byte_order);
741 }
742
743 /* PPC process record-replay */
744
745 static struct linux_record_tdep ppc_linux_record_tdep;
746 static struct linux_record_tdep ppc64_linux_record_tdep;
747
748 /* ppc_canonicalize_syscall maps from the native PowerPC Linux set of
749 syscall ids into a canonical set of syscall ids used by process
750 record. (See arch/powerpc/include/uapi/asm/unistd.h in kernel tree.)
751 Return -1 if this system call is not supported by process record.
752 Otherwise, return the syscall number for preocess reocrd of given
753 SYSCALL. */
754
755 static enum gdb_syscall
756 ppc_canonicalize_syscall (int syscall)
757 {
758 int result = -1;
759
760 if (syscall <= 165)
761 result = syscall;
762 else if (syscall >= 167 && syscall <= 190) /* Skip query_module 166 */
763 result = syscall + 1;
764 else if (syscall >= 192 && syscall <= 197) /* mmap2 */
765 result = syscall;
766 else if (syscall == 208) /* tkill */
767 result = gdb_sys_tkill;
768 else if (syscall >= 207 && syscall <= 220) /* gettid */
769 result = syscall + 224 - 207;
770 else if (syscall >= 234 && syscall <= 239) /* exit_group */
771 result = syscall + 252 - 234;
772 else if (syscall >= 240 && syscall <= 248) /* timer_create */
773 result = syscall += 259 - 240;
774 else if (syscall >= 250 && syscall <= 251) /* tgkill */
775 result = syscall + 270 - 250;
776 else if (syscall == 336)
777 result = gdb_sys_recv;
778 else if (syscall == 337)
779 result = gdb_sys_recvfrom;
780 else if (syscall == 342)
781 result = gdb_sys_recvmsg;
782
783 return (enum gdb_syscall) result;
784 }
785
786 /* Record registers which might be clobbered during system call.
787 Return 0 if successful. */
788
789 static int
790 ppc_linux_syscall_record (struct regcache *regcache)
791 {
792 struct gdbarch *gdbarch = regcache->arch ();
793 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
794 ULONGEST scnum;
795 enum gdb_syscall syscall_gdb;
796 int ret;
797 int i;
798
799 regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum, &scnum);
800 syscall_gdb = ppc_canonicalize_syscall (scnum);
801
802 if (syscall_gdb < 0)
803 {
804 printf_unfiltered (_("Process record and replay target doesn't "
805 "support syscall number %d\n"), (int) scnum);
806 return 0;
807 }
808
809 if (syscall_gdb == gdb_sys_sigreturn
810 || syscall_gdb == gdb_sys_rt_sigreturn)
811 {
812 int i, j;
813 int regsets[] = { tdep->ppc_gp0_regnum,
814 tdep->ppc_fp0_regnum,
815 tdep->ppc_vr0_regnum,
816 tdep->ppc_vsr0_upper_regnum };
817
818 for (j = 0; j < 4; j++)
819 {
820 if (regsets[j] == -1)
821 continue;
822 for (i = 0; i < 32; i++)
823 {
824 if (record_full_arch_list_add_reg (regcache, regsets[j] + i))
825 return -1;
826 }
827 }
828
829 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
830 return -1;
831 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
832 return -1;
833 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
834 return -1;
835 if (record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum))
836 return -1;
837
838 return 0;
839 }
840
841 if (tdep->wordsize == 8)
842 ret = record_linux_system_call (syscall_gdb, regcache,
843 &ppc64_linux_record_tdep);
844 else
845 ret = record_linux_system_call (syscall_gdb, regcache,
846 &ppc_linux_record_tdep);
847
848 if (ret != 0)
849 return ret;
850
851 /* Record registers clobbered during syscall. */
852 for (i = 3; i <= 12; i++)
853 {
854 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
855 return -1;
856 }
857 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + 0))
858 return -1;
859 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
860 return -1;
861 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
862 return -1;
863 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
864 return -1;
865
866 return 0;
867 }
868
869 /* Record registers which might be clobbered during signal handling.
870 Return 0 if successful. */
871
872 static int
873 ppc_linux_record_signal (struct gdbarch *gdbarch, struct regcache *regcache,
874 enum gdb_signal signal)
875 {
876 /* See handle_rt_signal64 in arch/powerpc/kernel/signal_64.c
877 handle_rt_signal32 in arch/powerpc/kernel/signal_32.c
878 arch/powerpc/include/asm/ptrace.h
879 for details. */
880 const int SIGNAL_FRAMESIZE = 128;
881 const int sizeof_rt_sigframe = 1440 * 2 + 8 * 2 + 4 * 6 + 8 + 8 + 128 + 512;
882 ULONGEST sp;
883 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
884 int i;
885
886 for (i = 3; i <= 12; i++)
887 {
888 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
889 return -1;
890 }
891
892 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
893 return -1;
894 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
895 return -1;
896 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
897 return -1;
898 if (record_full_arch_list_add_reg (regcache, gdbarch_pc_regnum (gdbarch)))
899 return -1;
900 if (record_full_arch_list_add_reg (regcache, gdbarch_sp_regnum (gdbarch)))
901 return -1;
902
903 /* Record the change in the stack.
904 frame-size = sizeof (struct rt_sigframe) + SIGNAL_FRAMESIZE */
905 regcache_raw_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch), &sp);
906 sp -= SIGNAL_FRAMESIZE;
907 sp -= sizeof_rt_sigframe;
908
909 if (record_full_arch_list_add_mem (sp, SIGNAL_FRAMESIZE + sizeof_rt_sigframe))
910 return -1;
911
912 if (record_full_arch_list_add_end ())
913 return -1;
914
915 return 0;
916 }
917
918 static void
919 ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
920 {
921 struct gdbarch *gdbarch = regcache->arch ();
922
923 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
924
925 /* Set special TRAP register to -1 to prevent the kernel from
926 messing with the PC we just installed, if we happen to be
927 within an interrupted system call that the kernel wants to
928 restart.
929
930 Note that after we return from the dummy call, the TRAP and
931 ORIG_R3 registers will be automatically restored, and the
932 kernel continues to restart the system call at this point. */
933 if (ppc_linux_trap_reg_p (gdbarch))
934 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
935 }
936
937 static int
938 ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data)
939 {
940 return startswith (bfd_section_name (abfd, asect), "SPU/");
941 }
942
943 static const struct target_desc *
944 ppc_linux_core_read_description (struct gdbarch *gdbarch,
945 struct target_ops *target,
946 bfd *abfd)
947 {
948 asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL);
949 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
950 asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
951 asection *section = bfd_get_section_by_name (abfd, ".reg");
952 if (! section)
953 return NULL;
954
955 switch (bfd_section_size (abfd, section))
956 {
957 case 48 * 4:
958 if (cell)
959 return tdesc_powerpc_cell32l;
960 else if (vsx)
961 return tdesc_powerpc_vsx32l;
962 else if (altivec)
963 return tdesc_powerpc_altivec32l;
964 else
965 return tdesc_powerpc_32l;
966
967 case 48 * 8:
968 if (cell)
969 return tdesc_powerpc_cell64l;
970 else if (vsx)
971 return tdesc_powerpc_vsx64l;
972 else if (altivec)
973 return tdesc_powerpc_altivec64l;
974 else
975 return tdesc_powerpc_64l;
976
977 default:
978 return NULL;
979 }
980 }
981
982
983 /* Implementation of `gdbarch_elf_make_msymbol_special', as defined in
984 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
985
986 static void
987 ppc_elfv2_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
988 {
989 elf_symbol_type *elf_sym = (elf_symbol_type *)sym;
990
991 /* If the symbol is marked as having a local entry point, set a target
992 flag in the msymbol. We currently only support local entry point
993 offsets of 8 bytes, which is the only entry point offset ever used
994 by current compilers. If/when other offsets are ever used, we will
995 have to use additional target flag bits to store them. */
996 switch (PPC64_LOCAL_ENTRY_OFFSET (elf_sym->internal_elf_sym.st_other))
997 {
998 default:
999 break;
1000 case 8:
1001 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
1002 break;
1003 }
1004 }
1005
1006 /* Implementation of `gdbarch_skip_entrypoint', as defined in
1007 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
1008
1009 static CORE_ADDR
1010 ppc_elfv2_skip_entrypoint (struct gdbarch *gdbarch, CORE_ADDR pc)
1011 {
1012 struct bound_minimal_symbol fun;
1013 int local_entry_offset = 0;
1014
1015 fun = lookup_minimal_symbol_by_pc (pc);
1016 if (fun.minsym == NULL)
1017 return pc;
1018
1019 /* See ppc_elfv2_elf_make_msymbol_special for how local entry point
1020 offset values are encoded. */
1021 if (MSYMBOL_TARGET_FLAG_1 (fun.minsym))
1022 local_entry_offset = 8;
1023
1024 if (BMSYMBOL_VALUE_ADDRESS (fun) <= pc
1025 && pc < BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset)
1026 return BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset;
1027
1028 return pc;
1029 }
1030
1031 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1032 gdbarch.h. */
1033
1034 static int
1035 ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1036 {
1037 return (*s == 'i' /* Literal number. */
1038 || (isdigit (*s) && s[1] == '('
1039 && isdigit (s[2])) /* Displacement. */
1040 || (*s == '(' && isdigit (s[1])) /* Register indirection. */
1041 || isdigit (*s)); /* Register value. */
1042 }
1043
1044 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
1045 gdbarch.h. */
1046
1047 static int
1048 ppc_stap_parse_special_token (struct gdbarch *gdbarch,
1049 struct stap_parse_info *p)
1050 {
1051 if (isdigit (*p->arg))
1052 {
1053 /* This temporary pointer is needed because we have to do a lookahead.
1054 We could be dealing with a register displacement, and in such case
1055 we would not need to do anything. */
1056 const char *s = p->arg;
1057 char *regname;
1058 int len;
1059 struct stoken str;
1060
1061 while (isdigit (*s))
1062 ++s;
1063
1064 if (*s == '(')
1065 {
1066 /* It is a register displacement indeed. Returning 0 means we are
1067 deferring the treatment of this case to the generic parser. */
1068 return 0;
1069 }
1070
1071 len = s - p->arg;
1072 regname = (char *) alloca (len + 2);
1073 regname[0] = 'r';
1074
1075 strncpy (regname + 1, p->arg, len);
1076 ++len;
1077 regname[len] = '\0';
1078
1079 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1080 error (_("Invalid register name `%s' on expression `%s'."),
1081 regname, p->saved_arg);
1082
1083 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1084 str.ptr = regname;
1085 str.length = len;
1086 write_exp_string (&p->pstate, str);
1087 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1088
1089 p->arg = s;
1090 }
1091 else
1092 {
1093 /* All the other tokens should be handled correctly by the generic
1094 parser. */
1095 return 0;
1096 }
1097
1098 return 1;
1099 }
1100
1101 /* Cell/B.E. active SPE context tracking support. */
1102
1103 static struct objfile *spe_context_objfile = NULL;
1104 static CORE_ADDR spe_context_lm_addr = 0;
1105 static CORE_ADDR spe_context_offset = 0;
1106
1107 static ptid_t spe_context_cache_ptid;
1108 static CORE_ADDR spe_context_cache_address;
1109
1110 /* Hook into inferior_created, solib_loaded, and solib_unloaded observers
1111 to track whether we've loaded a version of libspe2 (as static or dynamic
1112 library) that provides the __spe_current_active_context variable. */
1113 static void
1114 ppc_linux_spe_context_lookup (struct objfile *objfile)
1115 {
1116 struct bound_minimal_symbol sym;
1117
1118 if (!objfile)
1119 {
1120 spe_context_objfile = NULL;
1121 spe_context_lm_addr = 0;
1122 spe_context_offset = 0;
1123 spe_context_cache_ptid = minus_one_ptid;
1124 spe_context_cache_address = 0;
1125 return;
1126 }
1127
1128 sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile);
1129 if (sym.minsym)
1130 {
1131 spe_context_objfile = objfile;
1132 spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile);
1133 spe_context_offset = MSYMBOL_VALUE_RAW_ADDRESS (sym.minsym);
1134 spe_context_cache_ptid = minus_one_ptid;
1135 spe_context_cache_address = 0;
1136 return;
1137 }
1138 }
1139
1140 static void
1141 ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty)
1142 {
1143 struct objfile *objfile;
1144
1145 ppc_linux_spe_context_lookup (NULL);
1146 ALL_OBJFILES (objfile)
1147 ppc_linux_spe_context_lookup (objfile);
1148 }
1149
1150 static void
1151 ppc_linux_spe_context_solib_loaded (struct so_list *so)
1152 {
1153 if (strstr (so->so_original_name, "/libspe") != NULL)
1154 {
1155 solib_read_symbols (so, 0);
1156 ppc_linux_spe_context_lookup (so->objfile);
1157 }
1158 }
1159
1160 static void
1161 ppc_linux_spe_context_solib_unloaded (struct so_list *so)
1162 {
1163 if (so->objfile == spe_context_objfile)
1164 ppc_linux_spe_context_lookup (NULL);
1165 }
1166
1167 /* Retrieve contents of the N'th element in the current thread's
1168 linked SPE context list into ID and NPC. Return the address of
1169 said context element, or 0 if not found. */
1170 static CORE_ADDR
1171 ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order,
1172 int n, int *id, unsigned int *npc)
1173 {
1174 CORE_ADDR spe_context = 0;
1175 gdb_byte buf[16];
1176 int i;
1177
1178 /* Quick exit if we have not found __spe_current_active_context. */
1179 if (!spe_context_objfile)
1180 return 0;
1181
1182 /* Look up cached address of thread-local variable. */
1183 if (!ptid_equal (spe_context_cache_ptid, inferior_ptid))
1184 {
1185 struct target_ops *target = &current_target;
1186
1187 TRY
1188 {
1189 /* We do not call target_translate_tls_address here, because
1190 svr4_fetch_objfile_link_map may invalidate the frame chain,
1191 which must not do while inside a frame sniffer.
1192
1193 Instead, we have cached the lm_addr value, and use that to
1194 directly call the target's to_get_thread_local_address. */
1195 spe_context_cache_address
1196 = target->to_get_thread_local_address (target, inferior_ptid,
1197 spe_context_lm_addr,
1198 spe_context_offset);
1199 spe_context_cache_ptid = inferior_ptid;
1200 }
1201
1202 CATCH (ex, RETURN_MASK_ERROR)
1203 {
1204 return 0;
1205 }
1206 END_CATCH
1207 }
1208
1209 /* Read variable value. */
1210 if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0)
1211 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1212
1213 /* Cyle through to N'th linked list element. */
1214 for (i = 0; i < n && spe_context; i++)
1215 if (target_read_memory (spe_context + align_up (12, wordsize),
1216 buf, wordsize) == 0)
1217 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1218 else
1219 spe_context = 0;
1220
1221 /* Read current context. */
1222 if (spe_context
1223 && target_read_memory (spe_context, buf, 12) != 0)
1224 spe_context = 0;
1225
1226 /* Extract data elements. */
1227 if (spe_context)
1228 {
1229 if (id)
1230 *id = extract_signed_integer (buf, 4, byte_order);
1231 if (npc)
1232 *npc = extract_unsigned_integer (buf + 4, 4, byte_order);
1233 }
1234
1235 return spe_context;
1236 }
1237
1238
1239 /* Cell/B.E. cross-architecture unwinder support. */
1240
1241 struct ppu2spu_cache
1242 {
1243 struct frame_id frame_id;
1244 struct regcache *regcache;
1245 };
1246
1247 static struct gdbarch *
1248 ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache)
1249 {
1250 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1251 return cache->regcache->arch ();
1252 }
1253
1254 static void
1255 ppu2spu_this_id (struct frame_info *this_frame,
1256 void **this_cache, struct frame_id *this_id)
1257 {
1258 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1259 *this_id = cache->frame_id;
1260 }
1261
1262 static struct value *
1263 ppu2spu_prev_register (struct frame_info *this_frame,
1264 void **this_cache, int regnum)
1265 {
1266 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1267 struct gdbarch *gdbarch = cache->regcache->arch ();
1268 gdb_byte *buf;
1269
1270 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1271
1272 if (regnum < gdbarch_num_regs (gdbarch))
1273 regcache_raw_read (cache->regcache, regnum, buf);
1274 else
1275 gdbarch_pseudo_register_read (gdbarch, cache->regcache, regnum, buf);
1276
1277 return frame_unwind_got_bytes (this_frame, regnum, buf);
1278 }
1279
1280 struct ppu2spu_data
1281 {
1282 struct gdbarch *gdbarch;
1283 int id;
1284 unsigned int npc;
1285 gdb_byte gprs[128*16];
1286 };
1287
1288 static enum register_status
1289 ppu2spu_unwind_register (void *src, int regnum, gdb_byte *buf)
1290 {
1291 struct ppu2spu_data *data = (struct ppu2spu_data *) src;
1292 enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch);
1293
1294 if (regnum >= 0 && regnum < SPU_NUM_GPRS)
1295 memcpy (buf, data->gprs + 16*regnum, 16);
1296 else if (regnum == SPU_ID_REGNUM)
1297 store_unsigned_integer (buf, 4, byte_order, data->id);
1298 else if (regnum == SPU_PC_REGNUM)
1299 store_unsigned_integer (buf, 4, byte_order, data->npc);
1300 else
1301 return REG_UNAVAILABLE;
1302
1303 return REG_VALID;
1304 }
1305
1306 static int
1307 ppu2spu_sniffer (const struct frame_unwind *self,
1308 struct frame_info *this_frame, void **this_prologue_cache)
1309 {
1310 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1311 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1312 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1313 struct ppu2spu_data data;
1314 struct frame_info *fi;
1315 CORE_ADDR base, func, backchain, spe_context;
1316 gdb_byte buf[8];
1317 int n = 0;
1318
1319 /* Count the number of SPU contexts already in the frame chain. */
1320 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1321 if (get_frame_type (fi) == ARCH_FRAME
1322 && gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu)
1323 n++;
1324
1325 base = get_frame_sp (this_frame);
1326 func = get_frame_pc (this_frame);
1327 if (target_read_memory (base, buf, tdep->wordsize))
1328 return 0;
1329 backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order);
1330
1331 spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order,
1332 n, &data.id, &data.npc);
1333 if (spe_context && base <= spe_context && spe_context < backchain)
1334 {
1335 char annex[32];
1336
1337 /* Find gdbarch for SPU. */
1338 struct gdbarch_info info;
1339 gdbarch_info_init (&info);
1340 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
1341 info.byte_order = BFD_ENDIAN_BIG;
1342 info.osabi = GDB_OSABI_LINUX;
1343 info.id = &data.id;
1344 data.gdbarch = gdbarch_find_by_info (info);
1345 if (!data.gdbarch)
1346 return 0;
1347
1348 xsnprintf (annex, sizeof annex, "%d/regs", data.id);
1349 if (target_read (&current_target, TARGET_OBJECT_SPU, annex,
1350 data.gprs, 0, sizeof data.gprs)
1351 == sizeof data.gprs)
1352 {
1353 struct ppu2spu_cache *cache
1354 = FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache);
1355 std::unique_ptr<struct regcache> regcache
1356 (new struct regcache (data.gdbarch));
1357
1358 regcache_save (regcache.get (), ppu2spu_unwind_register, &data);
1359
1360 cache->frame_id = frame_id_build (base, func);
1361 cache->regcache = regcache.release ();
1362 *this_prologue_cache = cache;
1363 return 1;
1364 }
1365 }
1366
1367 return 0;
1368 }
1369
1370 static void
1371 ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache)
1372 {
1373 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) this_cache;
1374 delete cache->regcache;
1375 }
1376
1377 static const struct frame_unwind ppu2spu_unwind = {
1378 ARCH_FRAME,
1379 default_frame_unwind_stop_reason,
1380 ppu2spu_this_id,
1381 ppu2spu_prev_register,
1382 NULL,
1383 ppu2spu_sniffer,
1384 ppu2spu_dealloc_cache,
1385 ppu2spu_prev_arch,
1386 };
1387
1388 /* Initialize linux_record_tdep if not initialized yet.
1389 WORDSIZE is 4 or 8 for 32- or 64-bit PowerPC Linux respectively.
1390 Sizes of data structures are initialized accordingly. */
1391
1392 static void
1393 ppc_init_linux_record_tdep (struct linux_record_tdep *record_tdep,
1394 int wordsize)
1395 {
1396 /* Simply return if it had been initialized. */
1397 if (record_tdep->size_pointer != 0)
1398 return;
1399
1400 /* These values are the size of the type that will be used in a system
1401 call. They are obtained from Linux Kernel source. */
1402
1403 if (wordsize == 8)
1404 {
1405 record_tdep->size_pointer = 8;
1406 record_tdep->size__old_kernel_stat = 32;
1407 record_tdep->size_tms = 32;
1408 record_tdep->size_loff_t = 8;
1409 record_tdep->size_flock = 32;
1410 record_tdep->size_oldold_utsname = 45;
1411 record_tdep->size_ustat = 32;
1412 record_tdep->size_old_sigaction = 32;
1413 record_tdep->size_old_sigset_t = 8;
1414 record_tdep->size_rlimit = 16;
1415 record_tdep->size_rusage = 144;
1416 record_tdep->size_timeval = 16;
1417 record_tdep->size_timezone = 8;
1418 record_tdep->size_old_gid_t = 4;
1419 record_tdep->size_old_uid_t = 4;
1420 record_tdep->size_fd_set = 128;
1421 record_tdep->size_old_dirent = 280;
1422 record_tdep->size_statfs = 120;
1423 record_tdep->size_statfs64 = 120;
1424 record_tdep->size_sockaddr = 16;
1425 record_tdep->size_int = 4;
1426 record_tdep->size_long = 8;
1427 record_tdep->size_ulong = 8;
1428 record_tdep->size_msghdr = 56;
1429 record_tdep->size_itimerval = 32;
1430 record_tdep->size_stat = 144;
1431 record_tdep->size_old_utsname = 325;
1432 record_tdep->size_sysinfo = 112;
1433 record_tdep->size_msqid_ds = 120;
1434 record_tdep->size_shmid_ds = 112;
1435 record_tdep->size_new_utsname = 390;
1436 record_tdep->size_timex = 208;
1437 record_tdep->size_mem_dqinfo = 24;
1438 record_tdep->size_if_dqblk = 72;
1439 record_tdep->size_fs_quota_stat = 80;
1440 record_tdep->size_timespec = 16;
1441 record_tdep->size_pollfd = 8;
1442 record_tdep->size_NFS_FHSIZE = 32;
1443 record_tdep->size_knfsd_fh = 132;
1444 record_tdep->size_TASK_COMM_LEN = 16;
1445 record_tdep->size_sigaction = 32;
1446 record_tdep->size_sigset_t = 8;
1447 record_tdep->size_siginfo_t = 128;
1448 record_tdep->size_cap_user_data_t = 8;
1449 record_tdep->size_stack_t = 24;
1450 record_tdep->size_off_t = 8;
1451 record_tdep->size_stat64 = 104;
1452 record_tdep->size_gid_t = 4;
1453 record_tdep->size_uid_t = 4;
1454 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1455 record_tdep->size_flock64 = 32;
1456 record_tdep->size_io_event = 32;
1457 record_tdep->size_iocb = 64;
1458 record_tdep->size_epoll_event = 16;
1459 record_tdep->size_itimerspec = 32;
1460 record_tdep->size_mq_attr = 64;
1461 record_tdep->size_termios = 44;
1462 record_tdep->size_pid_t = 4;
1463 record_tdep->size_winsize = 8;
1464 record_tdep->size_serial_struct = 72;
1465 record_tdep->size_serial_icounter_struct = 80;
1466 record_tdep->size_size_t = 8;
1467 record_tdep->size_iovec = 16;
1468 record_tdep->size_time_t = 8;
1469 }
1470 else if (wordsize == 4)
1471 {
1472 record_tdep->size_pointer = 4;
1473 record_tdep->size__old_kernel_stat = 32;
1474 record_tdep->size_tms = 16;
1475 record_tdep->size_loff_t = 8;
1476 record_tdep->size_flock = 16;
1477 record_tdep->size_oldold_utsname = 45;
1478 record_tdep->size_ustat = 20;
1479 record_tdep->size_old_sigaction = 16;
1480 record_tdep->size_old_sigset_t = 4;
1481 record_tdep->size_rlimit = 8;
1482 record_tdep->size_rusage = 72;
1483 record_tdep->size_timeval = 8;
1484 record_tdep->size_timezone = 8;
1485 record_tdep->size_old_gid_t = 4;
1486 record_tdep->size_old_uid_t = 4;
1487 record_tdep->size_fd_set = 128;
1488 record_tdep->size_old_dirent = 268;
1489 record_tdep->size_statfs = 64;
1490 record_tdep->size_statfs64 = 88;
1491 record_tdep->size_sockaddr = 16;
1492 record_tdep->size_int = 4;
1493 record_tdep->size_long = 4;
1494 record_tdep->size_ulong = 4;
1495 record_tdep->size_msghdr = 28;
1496 record_tdep->size_itimerval = 16;
1497 record_tdep->size_stat = 88;
1498 record_tdep->size_old_utsname = 325;
1499 record_tdep->size_sysinfo = 64;
1500 record_tdep->size_msqid_ds = 68;
1501 record_tdep->size_shmid_ds = 60;
1502 record_tdep->size_new_utsname = 390;
1503 record_tdep->size_timex = 128;
1504 record_tdep->size_mem_dqinfo = 24;
1505 record_tdep->size_if_dqblk = 72;
1506 record_tdep->size_fs_quota_stat = 80;
1507 record_tdep->size_timespec = 8;
1508 record_tdep->size_pollfd = 8;
1509 record_tdep->size_NFS_FHSIZE = 32;
1510 record_tdep->size_knfsd_fh = 132;
1511 record_tdep->size_TASK_COMM_LEN = 16;
1512 record_tdep->size_sigaction = 20;
1513 record_tdep->size_sigset_t = 8;
1514 record_tdep->size_siginfo_t = 128;
1515 record_tdep->size_cap_user_data_t = 4;
1516 record_tdep->size_stack_t = 12;
1517 record_tdep->size_off_t = 4;
1518 record_tdep->size_stat64 = 104;
1519 record_tdep->size_gid_t = 4;
1520 record_tdep->size_uid_t = 4;
1521 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1522 record_tdep->size_flock64 = 32;
1523 record_tdep->size_io_event = 32;
1524 record_tdep->size_iocb = 64;
1525 record_tdep->size_epoll_event = 16;
1526 record_tdep->size_itimerspec = 16;
1527 record_tdep->size_mq_attr = 32;
1528 record_tdep->size_termios = 44;
1529 record_tdep->size_pid_t = 4;
1530 record_tdep->size_winsize = 8;
1531 record_tdep->size_serial_struct = 60;
1532 record_tdep->size_serial_icounter_struct = 80;
1533 record_tdep->size_size_t = 4;
1534 record_tdep->size_iovec = 8;
1535 record_tdep->size_time_t = 4;
1536 }
1537 else
1538 internal_error (__FILE__, __LINE__, _("unexpected wordsize"));
1539
1540 /* These values are the second argument of system call "sys_fcntl"
1541 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1542 record_tdep->fcntl_F_GETLK = 5;
1543 record_tdep->fcntl_F_GETLK64 = 12;
1544 record_tdep->fcntl_F_SETLK64 = 13;
1545 record_tdep->fcntl_F_SETLKW64 = 14;
1546
1547 record_tdep->arg1 = PPC_R0_REGNUM + 3;
1548 record_tdep->arg2 = PPC_R0_REGNUM + 4;
1549 record_tdep->arg3 = PPC_R0_REGNUM + 5;
1550 record_tdep->arg4 = PPC_R0_REGNUM + 6;
1551 record_tdep->arg5 = PPC_R0_REGNUM + 7;
1552 record_tdep->arg6 = PPC_R0_REGNUM + 8;
1553
1554 /* These values are the second argument of system call "sys_ioctl".
1555 They are obtained from Linux Kernel source.
1556 See arch/powerpc/include/uapi/asm/ioctls.h. */
1557 record_tdep->ioctl_TCGETS = 0x403c7413;
1558 record_tdep->ioctl_TCSETS = 0x803c7414;
1559 record_tdep->ioctl_TCSETSW = 0x803c7415;
1560 record_tdep->ioctl_TCSETSF = 0x803c7416;
1561 record_tdep->ioctl_TCGETA = 0x40147417;
1562 record_tdep->ioctl_TCSETA = 0x80147418;
1563 record_tdep->ioctl_TCSETAW = 0x80147419;
1564 record_tdep->ioctl_TCSETAF = 0x8014741c;
1565 record_tdep->ioctl_TCSBRK = 0x2000741d;
1566 record_tdep->ioctl_TCXONC = 0x2000741e;
1567 record_tdep->ioctl_TCFLSH = 0x2000741f;
1568 record_tdep->ioctl_TIOCEXCL = 0x540c;
1569 record_tdep->ioctl_TIOCNXCL = 0x540d;
1570 record_tdep->ioctl_TIOCSCTTY = 0x540e;
1571 record_tdep->ioctl_TIOCGPGRP = 0x40047477;
1572 record_tdep->ioctl_TIOCSPGRP = 0x80047476;
1573 record_tdep->ioctl_TIOCOUTQ = 0x40047473;
1574 record_tdep->ioctl_TIOCSTI = 0x5412;
1575 record_tdep->ioctl_TIOCGWINSZ = 0x40087468;
1576 record_tdep->ioctl_TIOCSWINSZ = 0x80087467;
1577 record_tdep->ioctl_TIOCMGET = 0x5415;
1578 record_tdep->ioctl_TIOCMBIS = 0x5416;
1579 record_tdep->ioctl_TIOCMBIC = 0x5417;
1580 record_tdep->ioctl_TIOCMSET = 0x5418;
1581 record_tdep->ioctl_TIOCGSOFTCAR = 0x5419;
1582 record_tdep->ioctl_TIOCSSOFTCAR = 0x541a;
1583 record_tdep->ioctl_FIONREAD = 0x4004667f;
1584 record_tdep->ioctl_TIOCINQ = 0x4004667f;
1585 record_tdep->ioctl_TIOCLINUX = 0x541c;
1586 record_tdep->ioctl_TIOCCONS = 0x541d;
1587 record_tdep->ioctl_TIOCGSERIAL = 0x541e;
1588 record_tdep->ioctl_TIOCSSERIAL = 0x541f;
1589 record_tdep->ioctl_TIOCPKT = 0x5420;
1590 record_tdep->ioctl_FIONBIO = 0x8004667e;
1591 record_tdep->ioctl_TIOCNOTTY = 0x5422;
1592 record_tdep->ioctl_TIOCSETD = 0x5423;
1593 record_tdep->ioctl_TIOCGETD = 0x5424;
1594 record_tdep->ioctl_TCSBRKP = 0x5425;
1595 record_tdep->ioctl_TIOCSBRK = 0x5427;
1596 record_tdep->ioctl_TIOCCBRK = 0x5428;
1597 record_tdep->ioctl_TIOCGSID = 0x5429;
1598 record_tdep->ioctl_TIOCGPTN = 0x40045430;
1599 record_tdep->ioctl_TIOCSPTLCK = 0x80045431;
1600 record_tdep->ioctl_FIONCLEX = 0x20006602;
1601 record_tdep->ioctl_FIOCLEX = 0x20006601;
1602 record_tdep->ioctl_FIOASYNC = 0x8004667d;
1603 record_tdep->ioctl_TIOCSERCONFIG = 0x5453;
1604 record_tdep->ioctl_TIOCSERGWILD = 0x5454;
1605 record_tdep->ioctl_TIOCSERSWILD = 0x5455;
1606 record_tdep->ioctl_TIOCGLCKTRMIOS = 0x5456;
1607 record_tdep->ioctl_TIOCSLCKTRMIOS = 0x5457;
1608 record_tdep->ioctl_TIOCSERGSTRUCT = 0x5458;
1609 record_tdep->ioctl_TIOCSERGETLSR = 0x5459;
1610 record_tdep->ioctl_TIOCSERGETMULTI = 0x545a;
1611 record_tdep->ioctl_TIOCSERSETMULTI = 0x545b;
1612 record_tdep->ioctl_TIOCMIWAIT = 0x545c;
1613 record_tdep->ioctl_TIOCGICOUNT = 0x545d;
1614 record_tdep->ioctl_FIOQSIZE = 0x40086680;
1615 }
1616
1617 /* Return a floating-point format for a floating-point variable of
1618 length LEN in bits. If non-NULL, NAME is the name of its type.
1619 If no suitable type is found, return NULL. */
1620
1621 const struct floatformat **
1622 ppc_floatformat_for_type (struct gdbarch *gdbarch,
1623 const char *name, int len)
1624 {
1625 if (len == 128 && name)
1626 {
1627 if (strcmp (name, "__float128") == 0
1628 || strcmp (name, "_Float128") == 0
1629 || strcmp (name, "_Float64x") == 0
1630 || strcmp (name, "complex _Float128") == 0
1631 || strcmp (name, "complex _Float64x") == 0)
1632 return floatformats_ia64_quad;
1633
1634 if (strcmp (name, "__ibm128") == 0)
1635 return floatformats_ibm_long_double;
1636 }
1637
1638 return default_floatformat_for_type (gdbarch, name, len);
1639 }
1640
1641 static void
1642 ppc_linux_init_abi (struct gdbarch_info info,
1643 struct gdbarch *gdbarch)
1644 {
1645 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1646 struct tdesc_arch_data *tdesc_data = info.tdesc_data;
1647 static const char *const stap_integer_prefixes[] = { "i", NULL };
1648 static const char *const stap_register_indirection_prefixes[] = { "(",
1649 NULL };
1650 static const char *const stap_register_indirection_suffixes[] = { ")",
1651 NULL };
1652
1653 linux_init_abi (info, gdbarch);
1654
1655 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
1656 128-bit, they can be either IBM long double or IEEE quad long double.
1657 The 64-bit long double case will be detected automatically using
1658 the size specified in debug info. We use a .gnu.attribute flag
1659 to distinguish between the IBM long double and IEEE quad cases. */
1660 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
1661 if (tdep->long_double_abi == POWERPC_LONG_DOUBLE_IEEE128)
1662 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1663 else
1664 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
1665
1666 /* Support for floating-point data type variants. */
1667 set_gdbarch_floatformat_for_type (gdbarch, ppc_floatformat_for_type);
1668
1669 /* Handle inferior calls during interrupted system calls. */
1670 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
1671
1672 /* Get the syscall number from the arch's register. */
1673 set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
1674
1675 /* SystemTap functions. */
1676 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1677 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1678 stap_register_indirection_prefixes);
1679 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1680 stap_register_indirection_suffixes);
1681 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1682 set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand);
1683 set_gdbarch_stap_parse_special_token (gdbarch,
1684 ppc_stap_parse_special_token);
1685
1686 if (tdep->wordsize == 4)
1687 {
1688 /* Until November 2001, gcc did not comply with the 32 bit SysV
1689 R4 ABI requirement that structures less than or equal to 8
1690 bytes should be returned in registers. Instead GCC was using
1691 the AIX/PowerOpen ABI - everything returned in memory
1692 (well ignoring vectors that is). When this was corrected, it
1693 wasn't fixed for GNU/Linux native platform. Use the
1694 PowerOpen struct convention. */
1695 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1696
1697 set_gdbarch_memory_remove_breakpoint (gdbarch,
1698 ppc_linux_memory_remove_breakpoint);
1699
1700 /* Shared library handling. */
1701 set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code);
1702 set_solib_svr4_fetch_link_map_offsets
1703 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1704
1705 /* Setting the correct XML syscall filename. */
1706 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC);
1707
1708 /* Trampolines. */
1709 tramp_frame_prepend_unwinder (gdbarch,
1710 &ppc32_linux_sigaction_tramp_frame);
1711 tramp_frame_prepend_unwinder (gdbarch,
1712 &ppc32_linux_sighandler_tramp_frame);
1713
1714 /* BFD target for core files. */
1715 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1716 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
1717 else
1718 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
1719
1720 if (powerpc_so_ops.in_dynsym_resolve_code == NULL)
1721 {
1722 powerpc_so_ops = svr4_so_ops;
1723 /* Override dynamic resolve function. */
1724 powerpc_so_ops.in_dynsym_resolve_code =
1725 powerpc_linux_in_dynsym_resolve_code;
1726 }
1727 set_solib_ops (gdbarch, &powerpc_so_ops);
1728
1729 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1730 }
1731
1732 if (tdep->wordsize == 8)
1733 {
1734 if (tdep->elf_abi == POWERPC_ELF_V1)
1735 {
1736 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
1737 function descriptors). */
1738 set_gdbarch_convert_from_func_ptr_addr
1739 (gdbarch, ppc64_convert_from_func_ptr_addr);
1740
1741 set_gdbarch_elf_make_msymbol_special
1742 (gdbarch, ppc64_elf_make_msymbol_special);
1743 }
1744 else
1745 {
1746 set_gdbarch_elf_make_msymbol_special
1747 (gdbarch, ppc_elfv2_elf_make_msymbol_special);
1748
1749 set_gdbarch_skip_entrypoint (gdbarch, ppc_elfv2_skip_entrypoint);
1750 }
1751
1752 /* Shared library handling. */
1753 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1754 set_solib_svr4_fetch_link_map_offsets
1755 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1756
1757 /* Setting the correct XML syscall filename. */
1758 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC64);
1759
1760 /* Trampolines. */
1761 tramp_frame_prepend_unwinder (gdbarch,
1762 &ppc64_linux_sigaction_tramp_frame);
1763 tramp_frame_prepend_unwinder (gdbarch,
1764 &ppc64_linux_sighandler_tramp_frame);
1765
1766 /* BFD target for core files. */
1767 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1768 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
1769 else
1770 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
1771 }
1772
1773 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
1774 set_gdbarch_iterate_over_regset_sections (gdbarch,
1775 ppc_linux_iterate_over_regset_sections);
1776
1777 /* Enable TLS support. */
1778 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1779 svr4_fetch_objfile_link_map);
1780
1781 if (tdesc_data)
1782 {
1783 const struct tdesc_feature *feature;
1784
1785 /* If we have target-described registers, then we can safely
1786 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
1787 (whether they are described or not). */
1788 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
1789 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
1790
1791 /* If they are present, then assign them to the reserved number. */
1792 feature = tdesc_find_feature (info.target_desc,
1793 "org.gnu.gdb.power.linux");
1794 if (feature != NULL)
1795 {
1796 tdesc_numbered_register (feature, tdesc_data,
1797 PPC_ORIG_R3_REGNUM, "orig_r3");
1798 tdesc_numbered_register (feature, tdesc_data,
1799 PPC_TRAP_REGNUM, "trap");
1800 }
1801 }
1802
1803 /* Enable Cell/B.E. if supported by the target. */
1804 if (tdesc_compatible_p (info.target_desc,
1805 bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu)))
1806 {
1807 /* Cell/B.E. multi-architecture support. */
1808 set_spu_solib_ops (gdbarch);
1809
1810 /* Cell/B.E. cross-architecture unwinder support. */
1811 frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind);
1812 }
1813
1814 set_gdbarch_displaced_step_location (gdbarch,
1815 linux_displaced_step_location);
1816
1817 /* Support reverse debugging. */
1818 set_gdbarch_process_record (gdbarch, ppc_process_record);
1819 set_gdbarch_process_record_signal (gdbarch, ppc_linux_record_signal);
1820 tdep->ppc_syscall_record = ppc_linux_syscall_record;
1821
1822 ppc_init_linux_record_tdep (&ppc_linux_record_tdep, 4);
1823 ppc_init_linux_record_tdep (&ppc64_linux_record_tdep, 8);
1824 }
1825
1826 void
1827 _initialize_ppc_linux_tdep (void)
1828 {
1829 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1830 64-bit PowerPC, and the older rs6k. */
1831 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1832 ppc_linux_init_abi);
1833 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1834 ppc_linux_init_abi);
1835 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1836 ppc_linux_init_abi);
1837
1838 /* Attach to observers to track __spe_current_active_context. */
1839 observer_attach_inferior_created (ppc_linux_spe_context_inferior_created);
1840 observer_attach_solib_loaded (ppc_linux_spe_context_solib_loaded);
1841 observer_attach_solib_unloaded (ppc_linux_spe_context_solib_unloaded);
1842
1843 /* Initialize the Linux target descriptions. */
1844 initialize_tdesc_powerpc_32l ();
1845 initialize_tdesc_powerpc_altivec32l ();
1846 initialize_tdesc_powerpc_cell32l ();
1847 initialize_tdesc_powerpc_vsx32l ();
1848 initialize_tdesc_powerpc_isa205_32l ();
1849 initialize_tdesc_powerpc_isa205_altivec32l ();
1850 initialize_tdesc_powerpc_isa205_vsx32l ();
1851 initialize_tdesc_powerpc_64l ();
1852 initialize_tdesc_powerpc_altivec64l ();
1853 initialize_tdesc_powerpc_cell64l ();
1854 initialize_tdesc_powerpc_vsx64l ();
1855 initialize_tdesc_powerpc_isa205_64l ();
1856 initialize_tdesc_powerpc_isa205_altivec64l ();
1857 initialize_tdesc_powerpc_isa205_vsx64l ();
1858 initialize_tdesc_powerpc_e500l ();
1859 }
This page took 0.101217 seconds and 4 git commands to generate.