1 /* Target-dependent code for GDB, the GNU debugger.
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
36 #include "solib-svr4.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
41 /* The following instructions are used in the signal trampoline code
42 on GNU/Linux PPC. The kernel used to use magic syscalls 0x6666 and
43 0x7777 but now uses the sigreturn syscalls. We check for both. */
44 #define INSTR_LI_R0_0x6666 0x38006666
45 #define INSTR_LI_R0_0x7777 0x38007777
46 #define INSTR_LI_R0_NR_sigreturn 0x38000077
47 #define INSTR_LI_R0_NR_rt_sigreturn 0x380000AC
49 #define INSTR_SC 0x44000002
51 /* Since the *-tdep.c files are platform independent (i.e, they may be
52 used to build cross platform debuggers), we can't include system
53 headers. Therefore, details concerning the sigcontext structure
54 must be painstakingly rerecorded. What's worse, if these details
55 ever change in the header files, they'll have to be changed here
58 /* __SIGNAL_FRAMESIZE from <asm/ptrace.h> */
59 #define PPC_LINUX_SIGNAL_FRAMESIZE 64
61 /* From <asm/sigcontext.h>, offsetof(struct sigcontext_struct, regs) == 0x1c */
62 #define PPC_LINUX_REGS_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x1c)
64 /* From <asm/sigcontext.h>,
65 offsetof(struct sigcontext_struct, handler) == 0x14 */
66 #define PPC_LINUX_HANDLER_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x14)
68 /* From <asm/ptrace.h>, values for PT_NIP, PT_R1, and PT_LNK */
69 #define PPC_LINUX_PT_R0 0
70 #define PPC_LINUX_PT_R1 1
71 #define PPC_LINUX_PT_R2 2
72 #define PPC_LINUX_PT_R3 3
73 #define PPC_LINUX_PT_R4 4
74 #define PPC_LINUX_PT_R5 5
75 #define PPC_LINUX_PT_R6 6
76 #define PPC_LINUX_PT_R7 7
77 #define PPC_LINUX_PT_R8 8
78 #define PPC_LINUX_PT_R9 9
79 #define PPC_LINUX_PT_R10 10
80 #define PPC_LINUX_PT_R11 11
81 #define PPC_LINUX_PT_R12 12
82 #define PPC_LINUX_PT_R13 13
83 #define PPC_LINUX_PT_R14 14
84 #define PPC_LINUX_PT_R15 15
85 #define PPC_LINUX_PT_R16 16
86 #define PPC_LINUX_PT_R17 17
87 #define PPC_LINUX_PT_R18 18
88 #define PPC_LINUX_PT_R19 19
89 #define PPC_LINUX_PT_R20 20
90 #define PPC_LINUX_PT_R21 21
91 #define PPC_LINUX_PT_R22 22
92 #define PPC_LINUX_PT_R23 23
93 #define PPC_LINUX_PT_R24 24
94 #define PPC_LINUX_PT_R25 25
95 #define PPC_LINUX_PT_R26 26
96 #define PPC_LINUX_PT_R27 27
97 #define PPC_LINUX_PT_R28 28
98 #define PPC_LINUX_PT_R29 29
99 #define PPC_LINUX_PT_R30 30
100 #define PPC_LINUX_PT_R31 31
101 #define PPC_LINUX_PT_NIP 32
102 #define PPC_LINUX_PT_MSR 33
103 #define PPC_LINUX_PT_CTR 35
104 #define PPC_LINUX_PT_LNK 36
105 #define PPC_LINUX_PT_XER 37
106 #define PPC_LINUX_PT_CCR 38
107 #define PPC_LINUX_PT_MQ 39
108 #define PPC_LINUX_PT_FPR0 48 /* each FP reg occupies 2 slots in this space */
109 #define PPC_LINUX_PT_FPR31 (PPC_LINUX_PT_FPR0 + 2*31)
110 #define PPC_LINUX_PT_FPSCR (PPC_LINUX_PT_FPR0 + 2*32 + 1)
112 static int ppc_linux_at_sigtramp_return_path (CORE_ADDR pc
);
114 /* Determine if pc is in a signal trampoline...
116 Ha! That's not what this does at all. wait_for_inferior in
117 infrun.c calls DEPRECATED_PC_IN_SIGTRAMP in order to detect entry
118 into a signal trampoline just after delivery of a signal. But on
119 GNU/Linux, signal trampolines are used for the return path only.
120 The kernel sets things up so that the signal handler is called
123 If we use in_sigtramp2() in place of in_sigtramp() (see below)
124 we'll (often) end up with stop_pc in the trampoline and prev_pc in
125 the (now exited) handler. The code there will cause a temporary
126 breakpoint to be set on prev_pc which is not very likely to get hit
129 If this is confusing, think of it this way... the code in
130 wait_for_inferior() needs to be able to detect entry into a signal
131 trampoline just after a signal is delivered, not after the handler
134 So, we define in_sigtramp() below to return 1 if the following is
137 1) The previous frame is a real signal trampoline.
141 2) pc is at the first or second instruction of the corresponding
144 Why the second instruction? It seems that wait_for_inferior()
145 never sees the first instruction when single stepping. When a
146 signal is delivered while stepping, the next instruction that
147 would've been stepped over isn't, instead a signal is delivered and
148 the first instruction of the handler is stepped over instead. That
149 puts us on the second instruction. (I added the test for the
150 first instruction long after the fact, just in case the observed
151 behavior is ever fixed.)
153 DEPRECATED_PC_IN_SIGTRAMP is called from blockframe.c as well in
154 order to set the frame's type (if a SIGTRAMP_FRAME). Because of
155 our strange definition of in_sigtramp below, we can't rely on the
156 frame's type getting set correctly from within blockframe.c. This
157 is why we take pains to set it in init_extra_frame_info().
159 NOTE: cagney/2002-11-10: I suspect the real problem here is that
160 the get_prev_frame() only initializes the frame's type after the
161 call to INIT_FRAME_INFO. get_prev_frame() should be fixed, this
162 code shouldn't be working its way around a bug :-(. */
165 ppc_linux_in_sigtramp (CORE_ADDR pc
, char *func_name
)
173 lr
= read_register (gdbarch_tdep (current_gdbarch
)->ppc_lr_regnum
);
174 if (!ppc_linux_at_sigtramp_return_path (lr
))
177 sp
= read_register (SP_REGNUM
);
179 if (target_read_memory (sp
, buf
, sizeof (buf
)) != 0)
182 tramp_sp
= extract_unsigned_integer (buf
, 4);
184 if (target_read_memory (tramp_sp
+ PPC_LINUX_HANDLER_PTR_OFFSET
, buf
,
188 handler
= extract_unsigned_integer (buf
, 4);
190 return (pc
== handler
|| pc
== handler
+ 4);
194 insn_is_sigreturn (unsigned long pcinsn
)
198 case INSTR_LI_R0_0x6666
:
199 case INSTR_LI_R0_0x7777
:
200 case INSTR_LI_R0_NR_sigreturn
:
201 case INSTR_LI_R0_NR_rt_sigreturn
:
209 * The signal handler trampoline is on the stack and consists of exactly
210 * two instructions. The easiest and most accurate way of determining
211 * whether the pc is in one of these trampolines is by inspecting the
212 * instructions. It'd be faster though if we could find a way to do this
213 * via some simple address comparisons.
216 ppc_linux_at_sigtramp_return_path (CORE_ADDR pc
)
219 unsigned long pcinsn
;
220 if (target_read_memory (pc
- 4, buf
, sizeof (buf
)) != 0)
223 /* extract the instruction at the pc */
224 pcinsn
= extract_unsigned_integer (buf
+ 4, 4);
227 (insn_is_sigreturn (pcinsn
)
228 && extract_unsigned_integer (buf
+ 8, 4) == INSTR_SC
)
231 && insn_is_sigreturn (extract_unsigned_integer (buf
, 4))));
235 ppc_linux_skip_trampoline_code (CORE_ADDR pc
)
238 struct obj_section
*sect
;
239 struct objfile
*objfile
;
241 CORE_ADDR plt_start
= 0;
242 CORE_ADDR symtab
= 0;
243 CORE_ADDR strtab
= 0;
245 int reloc_index
= -1;
251 struct minimal_symbol
*msymbol
;
253 /* Find the section pc is in; return if not in .plt */
254 sect
= find_pc_section (pc
);
255 if (!sect
|| strcmp (sect
->the_bfd_section
->name
, ".plt") != 0)
258 objfile
= sect
->objfile
;
260 /* Pick up the instruction at pc. It had better be of the
264 where IDX is an index into the plt_table. */
266 if (target_read_memory (pc
, buf
, 4) != 0)
268 insn
= extract_unsigned_integer (buf
, 4);
270 if ((insn
& 0xffff0000) != 0x39600000 /* li r11, VAL */ )
273 reloc_index
= (insn
<< 16) >> 16;
275 /* Find the objfile that pc is in and obtain the information
276 necessary for finding the symbol name. */
277 for (sect
= objfile
->sections
; sect
< objfile
->sections_end
; ++sect
)
279 const char *secname
= sect
->the_bfd_section
->name
;
280 if (strcmp (secname
, ".plt") == 0)
281 plt_start
= sect
->addr
;
282 else if (strcmp (secname
, ".rela.plt") == 0)
283 num_slots
= ((int) sect
->endaddr
- (int) sect
->addr
) / 12;
284 else if (strcmp (secname
, ".dynsym") == 0)
286 else if (strcmp (secname
, ".dynstr") == 0)
290 /* Make sure we have all the information we need. */
291 if (plt_start
== 0 || num_slots
== -1 || symtab
== 0 || strtab
== 0)
294 /* Compute the value of the plt table */
295 plt_table
= plt_start
+ 72 + 8 * num_slots
;
297 /* Get address of the relocation entry (Elf32_Rela) */
298 if (target_read_memory (plt_table
+ reloc_index
, buf
, 4) != 0)
300 reloc
= extract_unsigned_integer (buf
, 4);
302 sect
= find_pc_section (reloc
);
306 if (strcmp (sect
->the_bfd_section
->name
, ".text") == 0)
309 /* Now get the r_info field which is the relocation type and symbol
311 if (target_read_memory (reloc
+ 4, buf
, 4) != 0)
313 symidx
= extract_unsigned_integer (buf
, 4);
315 /* Shift out the relocation type leaving just the symbol index */
316 /* symidx = ELF32_R_SYM(symidx); */
317 symidx
= symidx
>> 8;
319 /* compute the address of the symbol */
320 sym
= symtab
+ symidx
* 4;
322 /* Fetch the string table index */
323 if (target_read_memory (sym
, buf
, 4) != 0)
325 symidx
= extract_unsigned_integer (buf
, 4);
327 /* Fetch the string; we don't know how long it is. Is it possible
328 that the following will fail because we're trying to fetch too
330 if (target_read_memory (strtab
+ symidx
, symname
, sizeof (symname
)) != 0)
333 /* This might not work right if we have multiple symbols with the
334 same name; the only way to really get it right is to perform
335 the same sort of lookup as the dynamic linker. */
336 msymbol
= lookup_minimal_symbol_text (symname
, NULL
);
340 return SYMBOL_VALUE_ADDRESS (msymbol
);
343 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
344 in much the same fashion as memory_remove_breakpoint in mem-break.c,
345 but is careful not to write back the previous contents if the code
346 in question has changed in between inserting the breakpoint and
349 Here is the problem that we're trying to solve...
351 Once upon a time, before introducing this function to remove
352 breakpoints from the inferior, setting a breakpoint on a shared
353 library function prior to running the program would not work
354 properly. In order to understand the problem, it is first
355 necessary to understand a little bit about dynamic linking on
358 A call to a shared library function is accomplished via a bl
359 (branch-and-link) instruction whose branch target is an entry
360 in the procedure linkage table (PLT). The PLT in the object
361 file is uninitialized. To gdb, prior to running the program, the
362 entries in the PLT are all zeros.
364 Once the program starts running, the shared libraries are loaded
365 and the procedure linkage table is initialized, but the entries in
366 the table are not (necessarily) resolved. Once a function is
367 actually called, the code in the PLT is hit and the function is
368 resolved. In order to better illustrate this, an example is in
369 order; the following example is from the gdb testsuite.
371 We start the program shmain.
373 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
376 We place two breakpoints, one on shr1 and the other on main.
379 Breakpoint 1 at 0x100409d4
381 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
383 Examine the instruction (and the immediatly following instruction)
384 upon which the breakpoint was placed. Note that the PLT entry
385 for shr1 contains zeros.
387 (gdb) x/2i 0x100409d4
388 0x100409d4 <shr1>: .long 0x0
389 0x100409d8 <shr1+4>: .long 0x0
394 Starting program: gdb.base/shmain
395 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
397 Breakpoint 2, main ()
398 at gdb.base/shmain.c:44
401 Examine the PLT again. Note that the loading of the shared
402 library has initialized the PLT to code which loads a constant
403 (which I think is an index into the GOT) into r11 and then
404 branchs a short distance to the code which actually does the
407 (gdb) x/2i 0x100409d4
408 0x100409d4 <shr1>: li r11,4
409 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
413 Breakpoint 1, shr1 (x=1)
414 at gdb.base/shr1.c:19
417 Now we've hit the breakpoint at shr1. (The breakpoint was
418 reset from the PLT entry to the actual shr1 function after the
419 shared library was loaded.) Note that the PLT entry has been
420 resolved to contain a branch that takes us directly to shr1.
421 (The real one, not the PLT entry.)
423 (gdb) x/2i 0x100409d4
424 0x100409d4 <shr1>: b 0xffaf76c <shr1>
425 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
427 The thing to note here is that the PLT entry for shr1 has been
430 Now the problem should be obvious. GDB places a breakpoint (a
431 trap instruction) on the zero value of the PLT entry for shr1.
432 Later on, after the shared library had been loaded and the PLT
433 initialized, GDB gets a signal indicating this fact and attempts
434 (as it always does when it stops) to remove all the breakpoints.
436 The breakpoint removal was causing the former contents (a zero
437 word) to be written back to the now initialized PLT entry thus
438 destroying a portion of the initialization that had occurred only a
439 short time ago. When execution continued, the zero word would be
440 executed as an instruction an an illegal instruction trap was
441 generated instead. (0 is not a legal instruction.)
443 The fix for this problem was fairly straightforward. The function
444 memory_remove_breakpoint from mem-break.c was copied to this file,
445 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
446 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
449 The differences between ppc_linux_memory_remove_breakpoint () and
450 memory_remove_breakpoint () are minor. All that the former does
451 that the latter does not is check to make sure that the breakpoint
452 location actually contains a breakpoint (trap instruction) prior
453 to attempting to write back the old contents. If it does contain
454 a trap instruction, we allow the old contents to be written back.
455 Otherwise, we silently do nothing.
457 The big question is whether memory_remove_breakpoint () should be
458 changed to have the same functionality. The downside is that more
459 traffic is generated for remote targets since we'll have an extra
460 fetch of a memory word each time a breakpoint is removed.
462 For the time being, we'll leave this self-modifying-code-friendly
463 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
464 else in the event that some other platform has similar needs with
465 regard to removing breakpoints in some potentially self modifying
468 ppc_linux_memory_remove_breakpoint (CORE_ADDR addr
, char *contents_cache
)
470 const unsigned char *bp
;
473 char old_contents
[BREAKPOINT_MAX
];
475 /* Determine appropriate breakpoint contents and size for this address. */
476 bp
= BREAKPOINT_FROM_PC (&addr
, &bplen
);
478 error ("Software breakpoints not implemented for this target.");
480 val
= target_read_memory (addr
, old_contents
, bplen
);
482 /* If our breakpoint is no longer at the address, this means that the
483 program modified the code on us, so it is wrong to put back the
485 if (val
== 0 && memcmp (bp
, old_contents
, bplen
) == 0)
486 val
= target_write_memory (addr
, contents_cache
, bplen
);
491 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
492 than the 32 bit SYSV R4 ABI structure return convention - all
493 structures, no matter their size, are put in memory. Vectors,
494 which were added later, do get returned in a register though. */
496 static enum return_value_convention
497 ppc_linux_return_value (struct gdbarch
*gdbarch
, struct type
*valtype
,
498 struct regcache
*regcache
, void *readbuf
,
499 const void *writebuf
)
501 if ((TYPE_CODE (valtype
) == TYPE_CODE_STRUCT
502 || TYPE_CODE (valtype
) == TYPE_CODE_UNION
)
503 && !((TYPE_LENGTH (valtype
) == 16 || TYPE_LENGTH (valtype
) == 8)
504 && TYPE_VECTOR (valtype
)))
505 return RETURN_VALUE_STRUCT_CONVENTION
;
507 return ppc_sysv_abi_return_value (gdbarch
, valtype
, regcache
, readbuf
,
511 /* Fetch (and possibly build) an appropriate link_map_offsets
512 structure for GNU/Linux PPC targets using the struct offsets
513 defined in link.h (but without actual reference to that file).
515 This makes it possible to access GNU/Linux PPC shared libraries
516 from a GDB that was not built on an GNU/Linux PPC host (for cross
519 struct link_map_offsets
*
520 ppc_linux_svr4_fetch_link_map_offsets (void)
522 static struct link_map_offsets lmo
;
523 static struct link_map_offsets
*lmp
= NULL
;
529 lmo
.r_debug_size
= 8; /* The actual size is 20 bytes, but
530 this is all we need. */
531 lmo
.r_map_offset
= 4;
534 lmo
.link_map_size
= 20; /* The actual size is 560 bytes, but
535 this is all we need. */
536 lmo
.l_addr_offset
= 0;
539 lmo
.l_name_offset
= 4;
542 lmo
.l_next_offset
= 12;
545 lmo
.l_prev_offset
= 16;
553 /* Macros for matching instructions. Note that, since all the
554 operands are masked off before they're or-ed into the instruction,
555 you can use -1 to make masks. */
557 #define insn_d(opcd, rts, ra, d) \
558 ((((opcd) & 0x3f) << 26) \
559 | (((rts) & 0x1f) << 21) \
560 | (((ra) & 0x1f) << 16) \
563 #define insn_ds(opcd, rts, ra, d, xo) \
564 ((((opcd) & 0x3f) << 26) \
565 | (((rts) & 0x1f) << 21) \
566 | (((ra) & 0x1f) << 16) \
570 #define insn_xfx(opcd, rts, spr, xo) \
571 ((((opcd) & 0x3f) << 26) \
572 | (((rts) & 0x1f) << 21) \
573 | (((spr) & 0x1f) << 16) \
574 | (((spr) & 0x3e0) << 6) \
575 | (((xo) & 0x3ff) << 1))
577 /* Read a PPC instruction from memory. PPC instructions are always
578 big-endian, no matter what endianness the program is running in, so
579 we can't use read_memory_integer or one of its friends here. */
581 read_insn (CORE_ADDR pc
)
583 unsigned char buf
[4];
585 read_memory (pc
, buf
, 4);
586 return (buf
[0] << 24) | (buf
[1] << 16) | (buf
[2] << 8) | buf
[3];
590 /* An instruction to match. */
593 unsigned int mask
; /* mask the insn with this... */
594 unsigned int data
; /* ...and see if it matches this. */
595 int optional
; /* If non-zero, this insn may be absent. */
598 /* Return non-zero if the instructions at PC match the series
599 described in PATTERN, or zero otherwise. PATTERN is an array of
600 'struct insn_pattern' objects, terminated by an entry whose mask is
603 When the match is successful, fill INSN[i] with what PATTERN[i]
604 matched. If PATTERN[i] is optional, and the instruction wasn't
605 present, set INSN[i] to 0 (which is not a valid PPC instruction).
606 INSN should have as many elements as PATTERN. Note that, if
607 PATTERN contains optional instructions which aren't present in
608 memory, then INSN will have holes, so INSN[i] isn't necessarily the
609 i'th instruction in memory. */
611 insns_match_pattern (CORE_ADDR pc
,
612 struct insn_pattern
*pattern
,
617 for (i
= 0; pattern
[i
].mask
; i
++)
619 insn
[i
] = read_insn (pc
);
620 if ((insn
[i
] & pattern
[i
].mask
) == pattern
[i
].data
)
622 else if (pattern
[i
].optional
)
632 /* Return the 'd' field of the d-form instruction INSN, properly
635 insn_d_field (unsigned int insn
)
637 return ((((CORE_ADDR
) insn
& 0xffff) ^ 0x8000) - 0x8000);
641 /* Return the 'ds' field of the ds-form instruction INSN, with the two
642 zero bits concatenated at the right, and properly
645 insn_ds_field (unsigned int insn
)
647 return ((((CORE_ADDR
) insn
& 0xfffc) ^ 0x8000) - 0x8000);
651 /* If DESC is the address of a 64-bit PowerPC GNU/Linux function
652 descriptor, return the descriptor's entry point. */
654 ppc64_desc_entry_point (CORE_ADDR desc
)
656 /* The first word of the descriptor is the entry point. */
657 return (CORE_ADDR
) read_memory_unsigned_integer (desc
, 8);
661 /* Pattern for the standard linkage function. These are built by
662 build_plt_stub in elf64-ppc.c, whose GLINK argument is always
664 static struct insn_pattern ppc64_standard_linkage
[] =
666 /* addis r12, r2, <any> */
667 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
670 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
672 /* ld r11, <any>(r12) */
673 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
675 /* addis r12, r12, 1 <optional> */
676 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
678 /* ld r2, <any>(r12) */
679 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
681 /* addis r12, r12, 1 <optional> */
682 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
685 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467),
688 /* ld r11, <any>(r12) */
689 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
692 { -1, 0x4e800420, 0 },
696 #define PPC64_STANDARD_LINKAGE_LEN \
697 (sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0]))
700 /* Recognize a 64-bit PowerPC GNU/Linux linkage function --- what GDB
701 calls a "solib trampoline". */
703 ppc64_in_solib_call_trampoline (CORE_ADDR pc
, char *name
)
705 /* Detecting solib call trampolines on PPC64 GNU/Linux is a pain.
707 It's not specifically solib call trampolines that are the issue.
708 Any call from one function to another function that uses a
709 different TOC requires a trampoline, to save the caller's TOC
710 pointer and then load the callee's TOC. An executable or shared
711 library may have more than one TOC, so even intra-object calls
712 may require a trampoline. Since executable and shared libraries
713 will all have their own distinct TOCs, every inter-object call is
714 also an inter-TOC call, and requires a trampoline --- so "solib
715 call trampolines" are just a special case.
717 The 64-bit PowerPC GNU/Linux ABI calls these call trampolines
718 "linkage functions". Since they need to be near the functions
719 that call them, they all appear in .text, not in any special
720 section. The .plt section just contains an array of function
721 descriptors, from which the linkage functions load the callee's
722 entry point, TOC value, and environment pointer. So
723 in_plt_section is useless. The linkage functions don't have any
724 special linker symbols to name them, either.
726 The only way I can see to recognize them is to actually look at
727 their code. They're generated by ppc_build_one_stub and some
728 other functions in bfd/elf64-ppc.c, so that should show us all
729 the instruction sequences we need to recognize. */
730 unsigned int insn
[PPC64_STANDARD_LINKAGE_LEN
];
732 return insns_match_pattern (pc
, ppc64_standard_linkage
, insn
);
736 /* When the dynamic linker is doing lazy symbol resolution, the first
737 call to a function in another object will go like this:
739 - The user's function calls the linkage function:
741 100007c4: 4b ff fc d5 bl 10000498
742 100007c8: e8 41 00 28 ld r2,40(r1)
744 - The linkage function loads the entry point (and other stuff) from
745 the function descriptor in the PLT, and jumps to it:
747 10000498: 3d 82 00 00 addis r12,r2,0
748 1000049c: f8 41 00 28 std r2,40(r1)
749 100004a0: e9 6c 80 98 ld r11,-32616(r12)
750 100004a4: e8 4c 80 a0 ld r2,-32608(r12)
751 100004a8: 7d 69 03 a6 mtctr r11
752 100004ac: e9 6c 80 a8 ld r11,-32600(r12)
753 100004b0: 4e 80 04 20 bctr
755 - But since this is the first time that PLT entry has been used, it
756 sends control to its glink entry. That loads the number of the
757 PLT entry and jumps to the common glink0 code:
759 10000c98: 38 00 00 00 li r0,0
760 10000c9c: 4b ff ff dc b 10000c78
762 - The common glink0 code then transfers control to the dynamic
765 10000c78: e8 41 00 28 ld r2,40(r1)
766 10000c7c: 3d 82 00 00 addis r12,r2,0
767 10000c80: e9 6c 80 80 ld r11,-32640(r12)
768 10000c84: e8 4c 80 88 ld r2,-32632(r12)
769 10000c88: 7d 69 03 a6 mtctr r11
770 10000c8c: e9 6c 80 90 ld r11,-32624(r12)
771 10000c90: 4e 80 04 20 bctr
773 Eventually, this code will figure out how to skip all of this,
774 including the dynamic linker. At the moment, we just get through
775 the linkage function. */
777 /* If the current thread is about to execute a series of instructions
778 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
779 from that pattern match, return the code address to which the
780 standard linkage function will send them. (This doesn't deal with
781 dynamic linker lazy symbol resolution stubs.) */
783 ppc64_standard_linkage_target (CORE_ADDR pc
, unsigned int *insn
)
785 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
787 /* The address of the function descriptor this linkage function
790 = ((CORE_ADDR
) read_register (tdep
->ppc_gp0_regnum
+ 2)
791 + (insn_d_field (insn
[0]) << 16)
792 + insn_ds_field (insn
[2]));
794 /* The first word of the descriptor is the entry point. Return that. */
795 return ppc64_desc_entry_point (desc
);
799 /* Given that we've begun executing a call trampoline at PC, return
800 the entry point of the function the trampoline will go to. */
802 ppc64_skip_trampoline_code (CORE_ADDR pc
)
804 unsigned int ppc64_standard_linkage_insn
[PPC64_STANDARD_LINKAGE_LEN
];
806 if (insns_match_pattern (pc
, ppc64_standard_linkage
,
807 ppc64_standard_linkage_insn
))
808 return ppc64_standard_linkage_target (pc
, ppc64_standard_linkage_insn
);
814 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG) on PPC64
817 Usually a function pointer's representation is simply the address
818 of the function. On GNU/Linux on the 64-bit PowerPC however, a
819 function pointer is represented by a pointer to a TOC entry. This
820 TOC entry contains three words, the first word is the address of
821 the function, the second word is the TOC pointer (r2), and the
822 third word is the static chain value. Throughout GDB it is
823 currently assumed that a function pointer contains the address of
824 the function, which is not easy to fix. In addition, the
825 conversion of a function address to a function pointer would
826 require allocation of a TOC entry in the inferior's memory space,
827 with all its drawbacks. To be able to call C++ virtual methods in
828 the inferior (which are called via function pointers),
829 find_function_addr uses this function to get the function address
830 from a function pointer. */
832 /* If ADDR points at what is clearly a function descriptor, transform
833 it into the address of the corresponding function. Be
834 conservative, otherwize GDB will do the transformation on any
835 random addresses such as occures when there is no symbol table. */
838 ppc64_linux_convert_from_func_ptr_addr (struct gdbarch
*gdbarch
,
840 struct target_ops
*targ
)
842 struct section_table
*s
= target_section_by_addr (targ
, addr
);
844 /* Check if ADDR points to a function descriptor. */
845 if (s
&& strcmp (s
->the_bfd_section
->name
, ".opd") == 0)
846 return get_target_memory_unsigned (targ
, addr
, 8);
852 right_supply_register (struct regcache
*regcache
, int wordsize
, int regnum
,
855 regcache_raw_supply (regcache
, regnum
,
857 - register_size (current_gdbarch
, regnum
)));
860 /* Extract the register values found in the WORDSIZED ABI GREGSET,
861 storing their values in REGCACHE. Note that some are left-aligned,
862 while others are right aligned. */
865 ppc_linux_supply_gregset (struct regcache
*regcache
,
866 int regnum
, const void *gregs
, size_t size
,
870 struct gdbarch
*regcache_arch
= get_regcache_arch (regcache
);
871 struct gdbarch_tdep
*regcache_tdep
= gdbarch_tdep (regcache_arch
);
872 const bfd_byte
*buf
= gregs
;
874 for (regi
= 0; regi
< 32; regi
++)
875 right_supply_register (regcache
, wordsize
, regi
, buf
+ wordsize
* regi
);
877 right_supply_register (regcache
, wordsize
, gdbarch_pc_regnum (regcache_arch
),
878 buf
+ wordsize
* PPC_LINUX_PT_NIP
);
879 right_supply_register (regcache
, wordsize
, regcache_tdep
->ppc_lr_regnum
,
880 buf
+ wordsize
* PPC_LINUX_PT_LNK
);
881 regcache_raw_supply (regcache
, regcache_tdep
->ppc_cr_regnum
,
882 buf
+ wordsize
* PPC_LINUX_PT_CCR
);
883 regcache_raw_supply (regcache
, regcache_tdep
->ppc_xer_regnum
,
884 buf
+ wordsize
* PPC_LINUX_PT_XER
);
885 regcache_raw_supply (regcache
, regcache_tdep
->ppc_ctr_regnum
,
886 buf
+ wordsize
* PPC_LINUX_PT_CTR
);
887 if (regcache_tdep
->ppc_mq_regnum
!= -1)
888 right_supply_register (regcache
, wordsize
, regcache_tdep
->ppc_mq_regnum
,
889 buf
+ wordsize
* PPC_LINUX_PT_MQ
);
890 right_supply_register (regcache
, wordsize
, regcache_tdep
->ppc_ps_regnum
,
891 buf
+ wordsize
* PPC_LINUX_PT_MSR
);
895 ppc32_linux_supply_gregset (const struct regset
*regset
,
896 struct regcache
*regcache
,
897 int regnum
, const void *gregs
, size_t size
)
899 ppc_linux_supply_gregset (regcache
, regnum
, gregs
, size
, 4);
902 static struct regset ppc32_linux_gregset
= {
903 NULL
, ppc32_linux_supply_gregset
906 struct ppc_linux_sigtramp_cache
909 struct trad_frame_saved_reg
*saved_regs
;
912 static struct ppc_linux_sigtramp_cache
*
913 ppc_linux_sigtramp_cache (struct frame_info
*next_frame
, void **this_cache
)
919 struct ppc_linux_sigtramp_cache
*cache
;
920 struct gdbarch
*gdbarch
= get_frame_arch (next_frame
);
921 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
923 if ((*this_cache
) != NULL
)
924 return (*this_cache
);
925 cache
= FRAME_OBSTACK_ZALLOC (struct ppc_linux_sigtramp_cache
);
926 (*this_cache
) = cache
;
927 cache
->saved_regs
= trad_frame_alloc_saved_regs (next_frame
);
929 cache
->base
= frame_unwind_register_unsigned (next_frame
, SP_REGNUM
);
931 /* Find the register pointer, which gives the address of the
933 if (tdep
->wordsize
== 4)
935 + 0xd0 /* Offset to ucontext_t. */
936 + 0x30 /* Offset to .reg. */);
939 + 0x80 /* Offset to ucontext_t. */
940 + 0xe0 /* Offset to .reg. */);
941 /* And the corresponding register buffers. */
942 gpregs
= read_memory_unsigned_integer (regs
, tdep
->wordsize
);
943 fpregs
= gpregs
+ 48 * tdep
->wordsize
;
945 /* General purpose. */
946 for (i
= 0; i
< 32; i
++)
948 int regnum
= i
+ tdep
->ppc_gp0_regnum
;
949 cache
->saved_regs
[regnum
].addr
= gpregs
+ i
* tdep
->wordsize
;
951 cache
->saved_regs
[PC_REGNUM
].addr
= gpregs
+ 32 * tdep
->wordsize
;
952 cache
->saved_regs
[tdep
->ppc_ctr_regnum
].addr
= gpregs
+ 35 * tdep
->wordsize
;
953 cache
->saved_regs
[tdep
->ppc_lr_regnum
].addr
= gpregs
+ 36 * tdep
->wordsize
;
954 cache
->saved_regs
[tdep
->ppc_xer_regnum
].addr
= gpregs
+ 37 * tdep
->wordsize
;
955 cache
->saved_regs
[tdep
->ppc_cr_regnum
].addr
= gpregs
+ 38 * tdep
->wordsize
;
957 /* Floating point registers. */
958 for (i
= 0; i
< 32; i
++)
960 int regnum
= i
+ FP0_REGNUM
;
961 cache
->saved_regs
[regnum
].addr
= fpregs
+ i
* tdep
->wordsize
;
963 cache
->saved_regs
[tdep
->ppc_fpscr_regnum
].addr
= fpregs
+ 32 * tdep
->wordsize
;
969 ppc_linux_sigtramp_this_id (struct frame_info
*next_frame
, void **this_cache
,
970 struct frame_id
*this_id
)
972 struct ppc_linux_sigtramp_cache
*info
973 = ppc_linux_sigtramp_cache (next_frame
, this_cache
);
974 (*this_id
) = frame_id_build (info
->base
, frame_pc_unwind (next_frame
));
978 ppc_linux_sigtramp_prev_register (struct frame_info
*next_frame
,
980 int regnum
, int *optimizedp
,
981 enum lval_type
*lvalp
, CORE_ADDR
*addrp
,
982 int *realnump
, void *valuep
)
984 struct ppc_linux_sigtramp_cache
*info
985 = ppc_linux_sigtramp_cache (next_frame
, this_cache
);
986 trad_frame_prev_register (next_frame
, info
->saved_regs
, regnum
,
987 optimizedp
, lvalp
, addrp
, realnump
, valuep
);
990 static const struct frame_unwind ppc_linux_sigtramp_unwind
=
993 ppc_linux_sigtramp_this_id
,
994 ppc_linux_sigtramp_prev_register
997 static const struct frame_unwind
*
998 ppc_linux_sigtramp_sniffer (struct frame_info
*next_frame
)
1000 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_frame_arch (next_frame
));
1001 if (frame_pc_unwind (next_frame
)
1002 > frame_unwind_register_unsigned (next_frame
, SP_REGNUM
))
1003 /* Assume anything that is vaguely on the stack is a signal
1005 return &ppc_linux_sigtramp_unwind
;
1011 ppc64_linux_supply_gregset (const struct regset
*regset
,
1012 struct regcache
* regcache
,
1013 int regnum
, const void *gregs
, size_t size
)
1015 ppc_linux_supply_gregset (regcache
, regnum
, gregs
, size
, 8);
1018 static struct regset ppc64_linux_gregset
= {
1019 NULL
, ppc64_linux_supply_gregset
1023 ppc_linux_supply_fpregset (const struct regset
*regset
,
1024 struct regcache
* regcache
,
1025 int regnum
, const void *fpset
, size_t size
)
1028 struct gdbarch
*regcache_arch
= get_regcache_arch (regcache
);
1029 struct gdbarch_tdep
*regcache_tdep
= gdbarch_tdep (regcache_arch
);
1030 const bfd_byte
*buf
= fpset
;
1032 for (regi
= 0; regi
< 32; regi
++)
1033 regcache_raw_supply (regcache
, FP0_REGNUM
+ regi
, buf
+ 8 * regi
);
1035 /* The FPSCR is stored in the low order word of the last doubleword in the
1037 regcache_raw_supply (regcache
, regcache_tdep
->ppc_fpscr_regnum
,
1041 static struct regset ppc_linux_fpregset
= { NULL
, ppc_linux_supply_fpregset
};
1043 static const struct regset
*
1044 ppc_linux_regset_from_core_section (struct gdbarch
*core_arch
,
1045 const char *sect_name
, size_t sect_size
)
1047 struct gdbarch_tdep
*tdep
= gdbarch_tdep (core_arch
);
1048 if (strcmp (sect_name
, ".reg") == 0)
1050 if (tdep
->wordsize
== 4)
1051 return &ppc32_linux_gregset
;
1053 return &ppc64_linux_gregset
;
1055 if (strcmp (sect_name
, ".reg2") == 0)
1056 return &ppc_linux_fpregset
;
1061 ppc_linux_init_abi (struct gdbarch_info info
,
1062 struct gdbarch
*gdbarch
)
1064 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1066 if (tdep
->wordsize
== 4)
1068 /* NOTE: jimb/2004-03-26: The System V ABI PowerPC Processor
1069 Supplement says that long doubles are sixteen bytes long.
1070 However, as one of the known warts of its ABI, PPC GNU/Linux
1071 uses eight-byte long doubles. GCC only recently got 128-bit
1072 long double support on PPC, so it may be changing soon. The
1073 Linux Standards Base says that programs that use 'long
1074 double' on PPC GNU/Linux are non-conformant. */
1075 set_gdbarch_long_double_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
1077 /* Until November 2001, gcc did not comply with the 32 bit SysV
1078 R4 ABI requirement that structures less than or equal to 8
1079 bytes should be returned in registers. Instead GCC was using
1080 the the AIX/PowerOpen ABI - everything returned in memory
1081 (well ignoring vectors that is). When this was corrected, it
1082 wasn't fixed for GNU/Linux native platform. Use the
1083 PowerOpen struct convention. */
1084 set_gdbarch_return_value (gdbarch
, ppc_linux_return_value
);
1086 set_gdbarch_memory_remove_breakpoint (gdbarch
,
1087 ppc_linux_memory_remove_breakpoint
);
1089 /* Shared library handling. */
1090 set_gdbarch_in_solib_call_trampoline (gdbarch
, in_plt_section
);
1091 set_gdbarch_skip_trampoline_code (gdbarch
,
1092 ppc_linux_skip_trampoline_code
);
1093 set_solib_svr4_fetch_link_map_offsets
1094 (gdbarch
, ppc_linux_svr4_fetch_link_map_offsets
);
1097 if (tdep
->wordsize
== 8)
1099 /* Handle PPC64 GNU/Linux function pointers (which are really
1100 function descriptors). */
1101 set_gdbarch_convert_from_func_ptr_addr
1102 (gdbarch
, ppc64_linux_convert_from_func_ptr_addr
);
1104 set_gdbarch_in_solib_call_trampoline
1105 (gdbarch
, ppc64_in_solib_call_trampoline
);
1106 set_gdbarch_skip_trampoline_code (gdbarch
, ppc64_skip_trampoline_code
);
1108 /* PPC64 malloc's entry-point is called ".malloc". */
1109 set_gdbarch_name_of_malloc (gdbarch
, ".malloc");
1111 set_gdbarch_regset_from_core_section (gdbarch
, ppc_linux_regset_from_core_section
);
1112 frame_unwind_append_sniffer (gdbarch
, ppc_linux_sigtramp_sniffer
);
1116 _initialize_ppc_linux_tdep (void)
1118 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1119 64-bit PowerPC, and the older rs6k. */
1120 gdbarch_register_osabi (bfd_arch_powerpc
, bfd_mach_ppc
, GDB_OSABI_LINUX
,
1121 ppc_linux_init_abi
);
1122 gdbarch_register_osabi (bfd_arch_powerpc
, bfd_mach_ppc64
, GDB_OSABI_LINUX
,
1123 ppc_linux_init_abi
);
1124 gdbarch_register_osabi (bfd_arch_rs6000
, bfd_mach_rs6k
, GDB_OSABI_LINUX
,
1125 ppc_linux_init_abi
);