1 /* Common target-dependent code for ppc64 GDB, the GNU debugger.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "ppc64-tdep.h"
27 /* Macros for matching instructions. Note that, since all the
28 operands are masked off before they're or-ed into the instruction,
29 you can use -1 to make masks. */
31 #define insn_d(opcd, rts, ra, d) \
32 ((((opcd) & 0x3f) << 26) \
33 | (((rts) & 0x1f) << 21) \
34 | (((ra) & 0x1f) << 16) \
37 #define insn_ds(opcd, rts, ra, d, xo) \
38 ((((opcd) & 0x3f) << 26) \
39 | (((rts) & 0x1f) << 21) \
40 | (((ra) & 0x1f) << 16) \
44 #define insn_xfx(opcd, rts, spr, xo) \
45 ((((opcd) & 0x3f) << 26) \
46 | (((rts) & 0x1f) << 21) \
47 | (((spr) & 0x1f) << 16) \
48 | (((spr) & 0x3e0) << 6) \
49 | (((xo) & 0x3ff) << 1))
51 /* If PLT is the address of a 64-bit PowerPC PLT entry,
52 return the function's entry point. */
55 ppc64_plt_entry_point (struct gdbarch
*gdbarch
, CORE_ADDR plt
)
57 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
58 /* The first word of the PLT entry is the function entry point. */
59 return (CORE_ADDR
) read_memory_unsigned_integer (plt
, 8, byte_order
);
62 /* Patterns for the standard linkage functions. These are built by
63 build_plt_stub in bfd/elf64-ppc.c. */
65 /* Old ELFv1 PLT call stub. */
67 static struct ppc_insn_pattern ppc64_standard_linkage1
[] =
69 /* addis r12, r2, <any> */
70 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
73 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
75 /* ld r11, <any>(r12) */
76 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
78 /* addis r12, r12, 1 <optional> */
79 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
81 /* ld r2, <any>(r12) */
82 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
84 /* addis r12, r12, 1 <optional> */
85 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
88 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
90 /* ld r11, <any>(r12) <optional> */
91 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
94 { -1, 0x4e800420, 0 },
99 /* ELFv1 PLT call stub to access PLT entries more than +/- 32k from r2.
100 Also supports older stub with different placement of std 2,40(1),
101 a stub that omits the std 2,40(1), and both versions of power7
102 thread safety read barriers. Note that there are actually two more
103 instructions following "cmpldi r2, 0", "bnectr+" and "b <glink_i>",
104 but there isn't any need to match them. */
106 static struct ppc_insn_pattern ppc64_standard_linkage2
[] =
108 /* std r2, 40(r1) <optional> */
109 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
111 /* addis r12, r2, <any> */
112 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
114 /* std r2, 40(r1) <optional> */
115 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
117 /* ld r11, <any>(r12) */
118 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
120 /* addi r12, r12, <any> <optional> */
121 { insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 },
124 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
126 /* xor r11, r11, r11 <optional> */
127 { -1, 0x7d6b5a78, 1 },
129 /* add r12, r12, r11 <optional> */
130 { -1, 0x7d8c5a14, 1 },
132 /* ld r2, <any>(r12) */
133 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
135 /* ld r11, <any>(r12) <optional> */
136 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
138 /* bctr <optional> */
139 { -1, 0x4e800420, 1 },
141 /* cmpldi r2, 0 <optional> */
142 { -1, 0x28220000, 1 },
147 /* ELFv1 PLT call stub to access PLT entries within +/- 32k of r2. */
149 static struct ppc_insn_pattern ppc64_standard_linkage3
[] =
151 /* std r2, 40(r1) <optional> */
152 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
154 /* ld r11, <any>(r2) */
155 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
157 /* addi r2, r2, <any> <optional> */
158 { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
161 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
163 /* xor r11, r11, r11 <optional> */
164 { -1, 0x7d6b5a78, 1 },
166 /* add r2, r2, r11 <optional> */
167 { -1, 0x7c425a14, 1 },
169 /* ld r11, <any>(r2) <optional> */
170 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 1 },
172 /* ld r2, <any>(r2) */
173 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
175 /* bctr <optional> */
176 { -1, 0x4e800420, 1 },
178 /* cmpldi r2, 0 <optional> */
179 { -1, 0x28220000, 1 },
184 /* ELFv1 PLT call stub to access PLT entries more than +/- 32k from r2.
185 A more modern variant of ppc64_standard_linkage2 differing in
188 static struct ppc_insn_pattern ppc64_standard_linkage4
[] =
190 /* std r2, 40(r1) <optional> */
191 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
193 /* addis r11, r2, <any> */
194 { insn_d (-1, -1, -1, 0), insn_d (15, 11, 2, 0), 0 },
196 /* ld r12, <any>(r11) */
197 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 11, 0, 0), 0 },
199 /* addi r11, r11, <any> <optional> */
200 { insn_d (-1, -1, -1, 0), insn_d (14, 11, 11, 0), 1 },
203 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
205 /* xor r2, r12, r12 <optional> */
206 { -1, 0x7d826278, 1 },
208 /* add r11, r11, r2 <optional> */
209 { -1, 0x7d6b1214, 1 },
211 /* ld r2, <any>(r11) */
212 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 11, 0, 0), 0 },
214 /* ld r11, <any>(r11) <optional> */
215 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 11, 0, 0), 1 },
217 /* bctr <optional> */
218 { -1, 0x4e800420, 1 },
220 /* cmpldi r2, 0 <optional> */
221 { -1, 0x28220000, 1 },
226 /* ELFv1 PLT call stub to access PLT entries within +/- 32k of r2.
227 A more modern variant of ppc64_standard_linkage3 differing in
230 static struct ppc_insn_pattern ppc64_standard_linkage5
[] =
232 /* std r2, 40(r1) <optional> */
233 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
235 /* ld r12, <any>(r2) */
236 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 2, 0, 0), 0 },
238 /* addi r2, r2, <any> <optional> */
239 { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
242 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
244 /* xor r11, r12, r12 <optional> */
245 { -1, 0x7d8b6278, 1 },
247 /* add r2, r2, r11 <optional> */
248 { -1, 0x7c425a14, 1 },
250 /* ld r11, <any>(r2) <optional> */
251 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 1 },
253 /* ld r2, <any>(r2) */
254 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
256 /* bctr <optional> */
257 { -1, 0x4e800420, 1 },
259 /* cmpldi r2, 0 <optional> */
260 { -1, 0x28220000, 1 },
265 /* ELFv2 PLT call stub to access PLT entries more than +/- 32k from r2. */
267 static struct ppc_insn_pattern ppc64_standard_linkage6
[] =
269 /* std r2, 24(r1) <optional> */
270 { -1, insn_ds (62, 2, 1, 24, 0), 1 },
272 /* addis r11, r2, <any> */
273 { insn_d (-1, -1, -1, 0), insn_d (15, 11, 2, 0), 0 },
275 /* ld r12, <any>(r11) */
276 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 11, 0, 0), 0 },
279 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
282 { -1, 0x4e800420, 0 },
287 /* ELFv2 PLT call stub to access PLT entries within +/- 32k of r2. */
289 static struct ppc_insn_pattern ppc64_standard_linkage7
[] =
291 /* std r2, 24(r1) <optional> */
292 { -1, insn_ds (62, 2, 1, 24, 0), 1 },
294 /* ld r12, <any>(r2) */
295 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 2, 0, 0), 0 },
298 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
301 { -1, 0x4e800420, 0 },
306 /* ELFv2 PLT call stub to access PLT entries more than +/- 32k from r2,
307 supporting fusion. */
309 static struct ppc_insn_pattern ppc64_standard_linkage8
[] =
311 /* std r2, 24(r1) <optional> */
312 { -1, insn_ds (62, 2, 1, 24, 0), 1 },
314 /* addis r12, r2, <any> */
315 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
317 /* ld r12, <any>(r12) */
318 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 12, 0, 0), 0 },
321 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
324 { -1, 0x4e800420, 0 },
329 /* When the dynamic linker is doing lazy symbol resolution, the first
330 call to a function in another object will go like this:
332 - The user's function calls the linkage function:
334 100003d4: 4b ff ff ad bl 10000380 <nnnn.plt_call.printf>
335 100003d8: e8 41 00 28 ld r2,40(r1)
337 - The linkage function loads the entry point and toc pointer from
338 the function descriptor in the PLT, and jumps to it:
340 <nnnn.plt_call.printf>:
341 10000380: f8 41 00 28 std r2,40(r1)
342 10000384: e9 62 80 78 ld r11,-32648(r2)
343 10000388: 7d 69 03 a6 mtctr r11
344 1000038c: e8 42 80 80 ld r2,-32640(r2)
345 10000390: 28 22 00 00 cmpldi r2,0
346 10000394: 4c e2 04 20 bnectr+
347 10000398: 48 00 03 a0 b 10000738 <printf@plt>
349 - But since this is the first time that PLT entry has been used, it
350 sends control to its glink entry. That loads the number of the
351 PLT entry and jumps to the common glink0 code:
354 10000738: 38 00 00 01 li r0,1
355 1000073c: 4b ff ff bc b 100006f8 <__glink_PLTresolve>
357 - The common glink0 code then transfers control to the dynamic
360 100006f0: 0000000000010440 .quad plt0 - (. + 16)
361 <__glink_PLTresolve>:
362 100006f8: 7d 88 02 a6 mflr r12
363 100006fc: 42 9f 00 05 bcl 20,4*cr7+so,10000700
364 10000700: 7d 68 02 a6 mflr r11
365 10000704: e8 4b ff f0 ld r2,-16(r11)
366 10000708: 7d 88 03 a6 mtlr r12
367 1000070c: 7d 82 5a 14 add r12,r2,r11
368 10000710: e9 6c 00 00 ld r11,0(r12)
369 10000714: e8 4c 00 08 ld r2,8(r12)
370 10000718: 7d 69 03 a6 mtctr r11
371 1000071c: e9 6c 00 10 ld r11,16(r12)
372 10000720: 4e 80 04 20 bctr
374 Eventually, this code will figure out how to skip all of this,
375 including the dynamic linker. At the moment, we just get through
376 the linkage function. */
378 /* If the current thread is about to execute a series of instructions
379 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
380 from that pattern match, return the code address to which the
381 standard linkage function will send them. (This doesn't deal with
382 dynamic linker lazy symbol resolution stubs.) */
385 ppc64_standard_linkage1_target (struct frame_info
*frame
,
386 CORE_ADDR pc
, unsigned int *insn
)
388 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
389 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
391 /* The address of the PLT entry this linkage function references. */
393 = ((CORE_ADDR
) get_frame_register_unsigned (frame
,
394 tdep
->ppc_gp0_regnum
+ 2)
395 + (ppc_insn_d_field (insn
[0]) << 16)
396 + ppc_insn_ds_field (insn
[2]));
398 return ppc64_plt_entry_point (gdbarch
, plt
);
402 ppc64_standard_linkage2_target (struct frame_info
*frame
,
403 CORE_ADDR pc
, unsigned int *insn
)
405 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
406 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
408 /* The address of the PLT entry this linkage function references. */
410 = ((CORE_ADDR
) get_frame_register_unsigned (frame
,
411 tdep
->ppc_gp0_regnum
+ 2)
412 + (ppc_insn_d_field (insn
[1]) << 16)
413 + ppc_insn_ds_field (insn
[3]));
415 return ppc64_plt_entry_point (gdbarch
, plt
);
419 ppc64_standard_linkage3_target (struct frame_info
*frame
,
420 CORE_ADDR pc
, unsigned int *insn
)
422 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
423 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
425 /* The address of the PLT entry this linkage function references. */
427 = ((CORE_ADDR
) get_frame_register_unsigned (frame
,
428 tdep
->ppc_gp0_regnum
+ 2)
429 + ppc_insn_ds_field (insn
[1]));
431 return ppc64_plt_entry_point (gdbarch
, plt
);
435 ppc64_standard_linkage4_target (struct frame_info
*frame
,
436 CORE_ADDR pc
, unsigned int *insn
)
438 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
439 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
442 = ((CORE_ADDR
) get_frame_register_unsigned (frame
, tdep
->ppc_gp0_regnum
+ 2)
443 + (ppc_insn_d_field (insn
[1]) << 16)
444 + ppc_insn_ds_field (insn
[2]));
446 return ppc64_plt_entry_point (gdbarch
, plt
);
450 /* Given that we've begun executing a call trampoline at PC, return
451 the entry point of the function the trampoline will go to. */
454 ppc64_skip_trampoline_code (struct frame_info
*frame
, CORE_ADDR pc
)
456 #define MAX(a,b) ((a) > (b) ? (a) : (b))
457 unsigned int insns
[MAX (MAX (MAX (ARRAY_SIZE (ppc64_standard_linkage1
),
458 ARRAY_SIZE (ppc64_standard_linkage2
)),
459 MAX (ARRAY_SIZE (ppc64_standard_linkage3
),
460 ARRAY_SIZE (ppc64_standard_linkage4
))),
461 MAX (MAX (ARRAY_SIZE (ppc64_standard_linkage5
),
462 ARRAY_SIZE (ppc64_standard_linkage6
)),
463 MAX (ARRAY_SIZE (ppc64_standard_linkage7
),
464 ARRAY_SIZE (ppc64_standard_linkage8
))))
468 if (ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage8
, insns
))
469 pc
= ppc64_standard_linkage4_target (frame
, pc
, insns
);
470 else if (ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage7
, insns
))
471 pc
= ppc64_standard_linkage3_target (frame
, pc
, insns
);
472 else if (ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage6
, insns
))
473 pc
= ppc64_standard_linkage4_target (frame
, pc
, insns
);
474 else if (ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage5
, insns
)
475 && (insns
[8] != 0 || insns
[9] != 0))
476 pc
= ppc64_standard_linkage3_target (frame
, pc
, insns
);
477 else if (ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage4
, insns
)
478 && (insns
[9] != 0 || insns
[10] != 0))
479 pc
= ppc64_standard_linkage4_target (frame
, pc
, insns
);
480 else if (ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage3
, insns
)
481 && (insns
[8] != 0 || insns
[9] != 0))
482 pc
= ppc64_standard_linkage3_target (frame
, pc
, insns
);
483 else if (ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage2
, insns
)
484 && (insns
[10] != 0 || insns
[11] != 0))
485 pc
= ppc64_standard_linkage2_target (frame
, pc
, insns
);
486 else if (ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage1
, insns
))
487 pc
= ppc64_standard_linkage1_target (frame
, pc
, insns
);
491 /* The PLT descriptor will either point to the already resolved target
492 address, or else to a glink stub. As the latter carry synthetic @plt
493 symbols, find_solib_trampoline_target should be able to resolve them. */
494 target
= find_solib_trampoline_target (frame
, pc
);
495 return target
? target
: pc
;
498 /* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
501 Usually a function pointer's representation is simply the address
502 of the function. On GNU/Linux on the PowerPC however, a function
503 pointer may be a pointer to a function descriptor.
505 For PPC64, a function descriptor is a TOC entry, in a data section,
506 which contains three words: the first word is the address of the
507 function, the second word is the TOC pointer (r2), and the third word
508 is the static chain value.
510 Throughout GDB it is currently assumed that a function pointer contains
511 the address of the function, which is not easy to fix. In addition, the
512 conversion of a function address to a function pointer would
513 require allocation of a TOC entry in the inferior's memory space,
514 with all its drawbacks. To be able to call C++ virtual methods in
515 the inferior (which are called via function pointers),
516 find_function_addr uses this function to get the function address
517 from a function pointer.
519 If ADDR points at what is clearly a function descriptor, transform
520 it into the address of the corresponding function, if needed. Be
521 conservative, otherwise GDB will do the transformation on any
522 random addresses such as occur when there is no symbol table. */
525 ppc64_convert_from_func_ptr_addr (struct gdbarch
*gdbarch
,
527 struct target_ops
*targ
)
529 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
530 struct target_section
*s
= target_section_by_addr (targ
, addr
);
532 /* Check if ADDR points to a function descriptor. */
533 if (s
&& strcmp (s
->the_bfd_section
->name
, ".opd") == 0)
535 /* There may be relocations that need to be applied to the .opd
536 section. Unfortunately, this function may be called at a time
537 where these relocations have not yet been performed -- this can
538 happen for example shortly after a library has been loaded with
539 dlopen, but ld.so has not yet applied the relocations.
541 To cope with both the case where the relocation has been applied,
542 and the case where it has not yet been applied, we do *not* read
543 the (maybe) relocated value from target memory, but we instead
544 read the non-relocated value from the BFD, and apply the relocation
547 This makes the assumption that all .opd entries are always relocated
548 by the same offset the section itself was relocated. This should
549 always be the case for GNU/Linux executables and shared libraries.
550 Note that other kind of object files (e.g. those added via
551 add-symbol-files) will currently never end up here anyway, as this
552 function accesses *target* sections only; only the main exec and
553 shared libraries are ever added to the target. */
558 res
= bfd_get_section_contents (s
->the_bfd_section
->owner
,
560 &buf
, addr
- s
->addr
, 8);
562 return extract_unsigned_integer (buf
, 8, byte_order
)
563 - bfd_section_vma (s
->bfd
, s
->the_bfd_section
) + s
->addr
;
569 /* A synthetic 'dot' symbols on ppc64 has the udata.p entry pointing
570 back to the original ELF symbol it was derived from. Get the size
574 ppc64_elf_make_msymbol_special (asymbol
*sym
, struct minimal_symbol
*msym
)
576 if ((sym
->flags
& BSF_SYNTHETIC
) != 0 && sym
->udata
.p
!= NULL
)
578 elf_symbol_type
*elf_sym
= (elf_symbol_type
*) sym
->udata
.p
;
579 SET_MSYMBOL_SIZE (msym
, elf_sym
->internal_elf_sym
.st_size
);