2003-05-03 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "frame.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "value.h"
30 #include "language.h"
31 #include "expression.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "target.h"
35 #include "breakpoint.h"
36 #include "demangle.h"
37 #include "valprint.h"
38 #include "annotate.h"
39 #include "symfile.h" /* for overlay functions */
40 #include "objfiles.h" /* ditto */
41 #include "completer.h" /* for completion functions */
42 #include "ui-out.h"
43 #include "gdb_assert.h"
44 #include "block.h"
45 #include "disasm.h"
46
47 extern int asm_demangle; /* Whether to demangle syms in asm printouts */
48 extern int addressprint; /* Whether to print hex addresses in HLL " */
49
50 struct format_data
51 {
52 int count;
53 char format;
54 char size;
55 };
56
57 /* Last specified output format. */
58
59 static char last_format = 'x';
60
61 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
62
63 static char last_size = 'w';
64
65 /* Default address to examine next. */
66
67 static CORE_ADDR next_address;
68
69 /* Default section to examine next. */
70
71 static asection *next_section;
72
73 /* Last address examined. */
74
75 static CORE_ADDR last_examine_address;
76
77 /* Contents of last address examined.
78 This is not valid past the end of the `x' command! */
79
80 static struct value *last_examine_value;
81
82 /* Largest offset between a symbolic value and an address, that will be
83 printed as `0x1234 <symbol+offset>'. */
84
85 static unsigned int max_symbolic_offset = UINT_MAX;
86
87 /* Append the source filename and linenumber of the symbol when
88 printing a symbolic value as `<symbol at filename:linenum>' if set. */
89 static int print_symbol_filename = 0;
90
91 /* Number of auto-display expression currently being displayed.
92 So that we can disable it if we get an error or a signal within it.
93 -1 when not doing one. */
94
95 int current_display_number;
96
97 /* Flag to low-level print routines that this value is being printed
98 in an epoch window. We'd like to pass this as a parameter, but
99 every routine would need to take it. Perhaps we can encapsulate
100 this in the I/O stream once we have GNU stdio. */
101
102 int inspect_it = 0;
103
104 struct display
105 {
106 /* Chain link to next auto-display item. */
107 struct display *next;
108 /* Expression to be evaluated and displayed. */
109 struct expression *exp;
110 /* Item number of this auto-display item. */
111 int number;
112 /* Display format specified. */
113 struct format_data format;
114 /* Innermost block required by this expression when evaluated */
115 struct block *block;
116 /* Status of this display (enabled or disabled) */
117 int enabled_p;
118 };
119
120 /* Chain of expressions whose values should be displayed
121 automatically each time the program stops. */
122
123 static struct display *display_chain;
124
125 static int display_number;
126
127 /* Prototypes for exported functions. */
128
129 void output_command (char *, int);
130
131 void _initialize_printcmd (void);
132
133 /* Prototypes for local functions. */
134
135 static void delete_display (int);
136
137 static void enable_display (char *, int);
138
139 static void disable_display_command (char *, int);
140
141 static void printf_command (char *, int);
142
143 static void print_frame_nameless_args (struct frame_info *, long,
144 int, int, struct ui_file *);
145
146 static void display_info (char *, int);
147
148 static void do_one_display (struct display *);
149
150 static void undisplay_command (char *, int);
151
152 static void free_display (struct display *);
153
154 static void display_command (char *, int);
155
156 void x_command (char *, int);
157
158 static void address_info (char *, int);
159
160 static void set_command (char *, int);
161
162 static void call_command (char *, int);
163
164 static void inspect_command (char *, int);
165
166 static void print_command (char *, int);
167
168 static void print_command_1 (char *, int, int);
169
170 static void validate_format (struct format_data, char *);
171
172 static void do_examine (struct format_data, CORE_ADDR addr,
173 asection * section);
174
175 static void print_formatted (struct value *, int, int, struct ui_file *);
176
177 static struct format_data decode_format (char **, int, int);
178
179 static void sym_info (char *, int);
180 \f
181
182 /* Decode a format specification. *STRING_PTR should point to it.
183 OFORMAT and OSIZE are used as defaults for the format and size
184 if none are given in the format specification.
185 If OSIZE is zero, then the size field of the returned value
186 should be set only if a size is explicitly specified by the
187 user.
188 The structure returned describes all the data
189 found in the specification. In addition, *STRING_PTR is advanced
190 past the specification and past all whitespace following it. */
191
192 static struct format_data
193 decode_format (char **string_ptr, int oformat, int osize)
194 {
195 struct format_data val;
196 register char *p = *string_ptr;
197
198 val.format = '?';
199 val.size = '?';
200 val.count = 1;
201
202 if (*p >= '0' && *p <= '9')
203 val.count = atoi (p);
204 while (*p >= '0' && *p <= '9')
205 p++;
206
207 /* Now process size or format letters that follow. */
208
209 while (1)
210 {
211 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
212 val.size = *p++;
213 else if (*p >= 'a' && *p <= 'z')
214 val.format = *p++;
215 else
216 break;
217 }
218
219 while (*p == ' ' || *p == '\t')
220 p++;
221 *string_ptr = p;
222
223 /* Set defaults for format and size if not specified. */
224 if (val.format == '?')
225 {
226 if (val.size == '?')
227 {
228 /* Neither has been specified. */
229 val.format = oformat;
230 val.size = osize;
231 }
232 else
233 /* If a size is specified, any format makes a reasonable
234 default except 'i'. */
235 val.format = oformat == 'i' ? 'x' : oformat;
236 }
237 else if (val.size == '?')
238 switch (val.format)
239 {
240 case 'a':
241 case 's':
242 /* Pick the appropriate size for an address. */
243 if (TARGET_PTR_BIT == 64)
244 val.size = osize ? 'g' : osize;
245 else if (TARGET_PTR_BIT == 32)
246 val.size = osize ? 'w' : osize;
247 else if (TARGET_PTR_BIT == 16)
248 val.size = osize ? 'h' : osize;
249 else
250 /* Bad value for TARGET_PTR_BIT */
251 internal_error (__FILE__, __LINE__, "failed internal consistency check");
252 break;
253 case 'f':
254 /* Floating point has to be word or giantword. */
255 if (osize == 'w' || osize == 'g')
256 val.size = osize;
257 else
258 /* Default it to giantword if the last used size is not
259 appropriate. */
260 val.size = osize ? 'g' : osize;
261 break;
262 case 'c':
263 /* Characters default to one byte. */
264 val.size = osize ? 'b' : osize;
265 break;
266 default:
267 /* The default is the size most recently specified. */
268 val.size = osize;
269 }
270
271 return val;
272 }
273 \f
274 /* Print value VAL on stream according to FORMAT, a letter or 0.
275 Do not end with a newline.
276 0 means print VAL according to its own type.
277 SIZE is the letter for the size of datum being printed.
278 This is used to pad hex numbers so they line up. */
279
280 static void
281 print_formatted (struct value *val, register int format, int size,
282 struct ui_file *stream)
283 {
284 struct type *type = check_typedef (VALUE_TYPE (val));
285 int len = TYPE_LENGTH (type);
286
287 if (VALUE_LVAL (val) == lval_memory)
288 {
289 next_address = VALUE_ADDRESS (val) + len;
290 next_section = VALUE_BFD_SECTION (val);
291 }
292
293 switch (format)
294 {
295 case 's':
296 /* FIXME: Need to handle wchar_t's here... */
297 next_address = VALUE_ADDRESS (val)
298 + val_print_string (VALUE_ADDRESS (val), -1, 1, stream);
299 next_section = VALUE_BFD_SECTION (val);
300 break;
301
302 case 'i':
303 /* The old comment says
304 "Force output out, print_insn not using _filtered".
305 I'm not completely sure what that means, I suspect most print_insn
306 now do use _filtered, so I guess it's obsolete.
307 --Yes, it does filter now, and so this is obsolete. -JB */
308
309 /* We often wrap here if there are long symbolic names. */
310 wrap_here (" ");
311 next_address = VALUE_ADDRESS (val)
312 + gdb_print_insn (VALUE_ADDRESS (val), stream);
313 next_section = VALUE_BFD_SECTION (val);
314 break;
315
316 default:
317 if (format == 0
318 || TYPE_CODE (type) == TYPE_CODE_ARRAY
319 || TYPE_CODE (type) == TYPE_CODE_STRING
320 || TYPE_CODE (type) == TYPE_CODE_STRUCT
321 || TYPE_CODE (type) == TYPE_CODE_UNION)
322 /* If format is 0, use the 'natural' format for
323 * that type of value. If the type is non-scalar,
324 * we have to use language rules to print it as
325 * a series of scalars.
326 */
327 value_print (val, stream, format, Val_pretty_default);
328 else
329 /* User specified format, so don't look to the
330 * the type to tell us what to do.
331 */
332 print_scalar_formatted (VALUE_CONTENTS (val), type,
333 format, size, stream);
334 }
335 }
336
337 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
338 according to letters FORMAT and SIZE on STREAM.
339 FORMAT may not be zero. Formats s and i are not supported at this level.
340
341 This is how the elements of an array or structure are printed
342 with a format. */
343
344 void
345 print_scalar_formatted (void *valaddr, struct type *type, int format, int size,
346 struct ui_file *stream)
347 {
348 LONGEST val_long;
349 unsigned int len = TYPE_LENGTH (type);
350
351 if (len > sizeof (LONGEST)
352 && (format == 't'
353 || format == 'c'
354 || format == 'o'
355 || format == 'u'
356 || format == 'd'
357 || format == 'x'))
358 {
359 if (!TYPE_UNSIGNED (type)
360 || !extract_long_unsigned_integer (valaddr, len, &val_long))
361 {
362 /* We can't print it normally, but we can print it in hex.
363 Printing it in the wrong radix is more useful than saying
364 "use /x, you dummy". */
365 /* FIXME: we could also do octal or binary if that was the
366 desired format. */
367 /* FIXME: we should be using the size field to give us a
368 minimum field width to print. */
369
370 if (format == 'o')
371 print_octal_chars (stream, valaddr, len);
372 else if (format == 'd')
373 print_decimal_chars (stream, valaddr, len);
374 else if (format == 't')
375 print_binary_chars (stream, valaddr, len);
376 else
377 /* replace with call to print_hex_chars? Looks
378 like val_print_type_code_int is redoing
379 work. - edie */
380
381 val_print_type_code_int (type, valaddr, stream);
382
383 return;
384 }
385
386 /* If we get here, extract_long_unsigned_integer set val_long. */
387 }
388 else if (format != 'f')
389 val_long = unpack_long (type, valaddr);
390
391 /* If the value is a pointer, and pointers and addresses are not the
392 same, then at this point, the value's length (in target bytes) is
393 TARGET_ADDR_BIT/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
394 if (TYPE_CODE (type) == TYPE_CODE_PTR)
395 len = TARGET_ADDR_BIT / TARGET_CHAR_BIT;
396
397 /* If we are printing it as unsigned, truncate it in case it is actually
398 a negative signed value (e.g. "print/u (short)-1" should print 65535
399 (if shorts are 16 bits) instead of 4294967295). */
400 if (format != 'd')
401 {
402 if (len < sizeof (LONGEST))
403 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
404 }
405
406 switch (format)
407 {
408 case 'x':
409 if (!size)
410 {
411 /* no size specified, like in print. Print varying # of digits. */
412 print_longest (stream, 'x', 1, val_long);
413 }
414 else
415 switch (size)
416 {
417 case 'b':
418 case 'h':
419 case 'w':
420 case 'g':
421 print_longest (stream, size, 1, val_long);
422 break;
423 default:
424 error ("Undefined output size \"%c\".", size);
425 }
426 break;
427
428 case 'd':
429 print_longest (stream, 'd', 1, val_long);
430 break;
431
432 case 'u':
433 print_longest (stream, 'u', 0, val_long);
434 break;
435
436 case 'o':
437 if (val_long)
438 print_longest (stream, 'o', 1, val_long);
439 else
440 fprintf_filtered (stream, "0");
441 break;
442
443 case 'a':
444 {
445 CORE_ADDR addr = unpack_pointer (type, valaddr);
446 print_address (addr, stream);
447 }
448 break;
449
450 case 'c':
451 value_print (value_from_longest (builtin_type_true_char, val_long),
452 stream, 0, Val_pretty_default);
453 break;
454
455 case 'f':
456 if (len == TYPE_LENGTH (builtin_type_float))
457 type = builtin_type_float;
458 else if (len == TYPE_LENGTH (builtin_type_double))
459 type = builtin_type_double;
460 else if (len == TYPE_LENGTH (builtin_type_long_double))
461 type = builtin_type_long_double;
462 print_floating (valaddr, type, stream);
463 break;
464
465 case 0:
466 internal_error (__FILE__, __LINE__, "failed internal consistency check");
467
468 case 't':
469 /* Binary; 't' stands for "two". */
470 {
471 char bits[8 * (sizeof val_long) + 1];
472 char buf[8 * (sizeof val_long) + 32];
473 char *cp = bits;
474 int width;
475
476 if (!size)
477 width = 8 * (sizeof val_long);
478 else
479 switch (size)
480 {
481 case 'b':
482 width = 8;
483 break;
484 case 'h':
485 width = 16;
486 break;
487 case 'w':
488 width = 32;
489 break;
490 case 'g':
491 width = 64;
492 break;
493 default:
494 error ("Undefined output size \"%c\".", size);
495 }
496
497 bits[width] = '\0';
498 while (width-- > 0)
499 {
500 bits[width] = (val_long & 1) ? '1' : '0';
501 val_long >>= 1;
502 }
503 if (!size)
504 {
505 while (*cp && *cp == '0')
506 cp++;
507 if (*cp == '\0')
508 cp--;
509 }
510 strcpy (buf, local_binary_format_prefix ());
511 strcat (buf, cp);
512 strcat (buf, local_binary_format_suffix ());
513 fprintf_filtered (stream, buf);
514 }
515 break;
516
517 default:
518 error ("Undefined output format \"%c\".", format);
519 }
520 }
521
522 /* Specify default address for `x' command.
523 `info lines' uses this. */
524
525 void
526 set_next_address (CORE_ADDR addr)
527 {
528 next_address = addr;
529
530 /* Make address available to the user as $_. */
531 set_internalvar (lookup_internalvar ("_"),
532 value_from_pointer (lookup_pointer_type (builtin_type_void),
533 addr));
534 }
535
536 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
537 after LEADIN. Print nothing if no symbolic name is found nearby.
538 Optionally also print source file and line number, if available.
539 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
540 or to interpret it as a possible C++ name and convert it back to source
541 form. However note that DO_DEMANGLE can be overridden by the specific
542 settings of the demangle and asm_demangle variables. */
543
544 void
545 print_address_symbolic (CORE_ADDR addr, struct ui_file *stream, int do_demangle,
546 char *leadin)
547 {
548 char *name = NULL;
549 char *filename = NULL;
550 int unmapped = 0;
551 int offset = 0;
552 int line = 0;
553
554 /* throw away both name and filename */
555 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
556 make_cleanup (free_current_contents, &filename);
557
558 if (build_address_symbolic (addr, do_demangle, &name, &offset, &filename, &line, &unmapped))
559 {
560 do_cleanups (cleanup_chain);
561 return;
562 }
563
564 fputs_filtered (leadin, stream);
565 if (unmapped)
566 fputs_filtered ("<*", stream);
567 else
568 fputs_filtered ("<", stream);
569 fputs_filtered (name, stream);
570 if (offset != 0)
571 fprintf_filtered (stream, "+%u", (unsigned int) offset);
572
573 /* Append source filename and line number if desired. Give specific
574 line # of this addr, if we have it; else line # of the nearest symbol. */
575 if (print_symbol_filename && filename != NULL)
576 {
577 if (line != -1)
578 fprintf_filtered (stream, " at %s:%d", filename, line);
579 else
580 fprintf_filtered (stream, " in %s", filename);
581 }
582 if (unmapped)
583 fputs_filtered ("*>", stream);
584 else
585 fputs_filtered (">", stream);
586
587 do_cleanups (cleanup_chain);
588 }
589
590 /* Given an address ADDR return all the elements needed to print the
591 address in a symbolic form. NAME can be mangled or not depending
592 on DO_DEMANGLE (and also on the asm_demangle global variable,
593 manipulated via ''set print asm-demangle''). Return 0 in case of
594 success, when all the info in the OUT paramters is valid. Return 1
595 otherwise. */
596 int
597 build_address_symbolic (CORE_ADDR addr, /* IN */
598 int do_demangle, /* IN */
599 char **name, /* OUT */
600 int *offset, /* OUT */
601 char **filename, /* OUT */
602 int *line, /* OUT */
603 int *unmapped) /* OUT */
604 {
605 struct minimal_symbol *msymbol;
606 struct symbol *symbol;
607 struct symtab *symtab = 0;
608 CORE_ADDR name_location = 0;
609 asection *section = 0;
610 char *name_temp = "";
611
612 /* Let's say it is unmapped. */
613 *unmapped = 0;
614
615 /* Determine if the address is in an overlay, and whether it is
616 mapped. */
617 if (overlay_debugging)
618 {
619 section = find_pc_overlay (addr);
620 if (pc_in_unmapped_range (addr, section))
621 {
622 *unmapped = 1;
623 addr = overlay_mapped_address (addr, section);
624 }
625 }
626
627 /* First try to find the address in the symbol table, then
628 in the minsyms. Take the closest one. */
629
630 /* This is defective in the sense that it only finds text symbols. So
631 really this is kind of pointless--we should make sure that the
632 minimal symbols have everything we need (by changing that we could
633 save some memory, but for many debug format--ELF/DWARF or
634 anything/stabs--it would be inconvenient to eliminate those minimal
635 symbols anyway). */
636 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
637 symbol = find_pc_sect_function (addr, section);
638
639 if (symbol)
640 {
641 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
642 if (do_demangle || asm_demangle)
643 name_temp = SYMBOL_PRINT_NAME (symbol);
644 else
645 name_temp = DEPRECATED_SYMBOL_NAME (symbol);
646 }
647
648 if (msymbol != NULL)
649 {
650 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
651 {
652 /* The msymbol is closer to the address than the symbol;
653 use the msymbol instead. */
654 symbol = 0;
655 symtab = 0;
656 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
657 if (do_demangle || asm_demangle)
658 name_temp = SYMBOL_PRINT_NAME (msymbol);
659 else
660 name_temp = DEPRECATED_SYMBOL_NAME (msymbol);
661 }
662 }
663 if (symbol == NULL && msymbol == NULL)
664 return 1;
665
666 /* If the nearest symbol is too far away, don't print anything symbolic. */
667
668 /* For when CORE_ADDR is larger than unsigned int, we do math in
669 CORE_ADDR. But when we detect unsigned wraparound in the
670 CORE_ADDR math, we ignore this test and print the offset,
671 because addr+max_symbolic_offset has wrapped through the end
672 of the address space back to the beginning, giving bogus comparison. */
673 if (addr > name_location + max_symbolic_offset
674 && name_location + max_symbolic_offset > name_location)
675 return 1;
676
677 *offset = addr - name_location;
678
679 *name = xstrdup (name_temp);
680
681 if (print_symbol_filename)
682 {
683 struct symtab_and_line sal;
684
685 sal = find_pc_sect_line (addr, section, 0);
686
687 if (sal.symtab)
688 {
689 *filename = xstrdup (sal.symtab->filename);
690 *line = sal.line;
691 }
692 else if (symtab && symbol && symbol->line)
693 {
694 *filename = xstrdup (symtab->filename);
695 *line = symbol->line;
696 }
697 else if (symtab)
698 {
699 *filename = xstrdup (symtab->filename);
700 *line = -1;
701 }
702 }
703 return 0;
704 }
705
706 /* Print address ADDR on STREAM. USE_LOCAL means the same thing as for
707 print_longest. */
708 void
709 print_address_numeric (CORE_ADDR addr, int use_local, struct ui_file *stream)
710 {
711 /* Truncate address to the size of a target address, avoiding shifts
712 larger or equal than the width of a CORE_ADDR. The local
713 variable ADDR_BIT stops the compiler reporting a shift overflow
714 when it won't occur. */
715 /* NOTE: This assumes that the significant address information is
716 kept in the least significant bits of ADDR - the upper bits were
717 either zero or sign extended. Should ADDRESS_TO_POINTER() or
718 some ADDRESS_TO_PRINTABLE() be used to do the conversion? */
719
720 int addr_bit = TARGET_ADDR_BIT;
721
722 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
723 addr &= ((CORE_ADDR) 1 << addr_bit) - 1;
724 print_longest (stream, 'x', use_local, (ULONGEST) addr);
725 }
726
727 /* Print address ADDR symbolically on STREAM.
728 First print it as a number. Then perhaps print
729 <SYMBOL + OFFSET> after the number. */
730
731 void
732 print_address (CORE_ADDR addr, struct ui_file *stream)
733 {
734 print_address_numeric (addr, 1, stream);
735 print_address_symbolic (addr, stream, asm_demangle, " ");
736 }
737
738 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
739 controls whether to print the symbolic name "raw" or demangled.
740 Global setting "addressprint" controls whether to print hex address
741 or not. */
742
743 void
744 print_address_demangle (CORE_ADDR addr, struct ui_file *stream, int do_demangle)
745 {
746 if (addr == 0)
747 {
748 fprintf_filtered (stream, "0");
749 }
750 else if (addressprint)
751 {
752 print_address_numeric (addr, 1, stream);
753 print_address_symbolic (addr, stream, do_demangle, " ");
754 }
755 else
756 {
757 print_address_symbolic (addr, stream, do_demangle, "");
758 }
759 }
760 \f
761
762 /* These are the types that $__ will get after an examine command of one
763 of these sizes. */
764
765 static struct type *examine_i_type;
766
767 static struct type *examine_b_type;
768 static struct type *examine_h_type;
769 static struct type *examine_w_type;
770 static struct type *examine_g_type;
771
772 /* Examine data at address ADDR in format FMT.
773 Fetch it from memory and print on gdb_stdout. */
774
775 static void
776 do_examine (struct format_data fmt, CORE_ADDR addr, asection *sect)
777 {
778 register char format = 0;
779 register char size;
780 register int count = 1;
781 struct type *val_type = NULL;
782 register int i;
783 register int maxelts;
784
785 format = fmt.format;
786 size = fmt.size;
787 count = fmt.count;
788 next_address = addr;
789 next_section = sect;
790
791 /* String or instruction format implies fetch single bytes
792 regardless of the specified size. */
793 if (format == 's' || format == 'i')
794 size = 'b';
795
796 if (format == 'i')
797 val_type = examine_i_type;
798 else if (size == 'b')
799 val_type = examine_b_type;
800 else if (size == 'h')
801 val_type = examine_h_type;
802 else if (size == 'w')
803 val_type = examine_w_type;
804 else if (size == 'g')
805 val_type = examine_g_type;
806
807 maxelts = 8;
808 if (size == 'w')
809 maxelts = 4;
810 if (size == 'g')
811 maxelts = 2;
812 if (format == 's' || format == 'i')
813 maxelts = 1;
814
815 /* Print as many objects as specified in COUNT, at most maxelts per line,
816 with the address of the next one at the start of each line. */
817
818 while (count > 0)
819 {
820 QUIT;
821 print_address (next_address, gdb_stdout);
822 printf_filtered (":");
823 for (i = maxelts;
824 i > 0 && count > 0;
825 i--, count--)
826 {
827 printf_filtered ("\t");
828 /* Note that print_formatted sets next_address for the next
829 object. */
830 last_examine_address = next_address;
831
832 if (last_examine_value)
833 value_free (last_examine_value);
834
835 /* The value to be displayed is not fetched greedily.
836 Instead, to avoid the posibility of a fetched value not
837 being used, its retreval is delayed until the print code
838 uses it. When examining an instruction stream, the
839 disassembler will perform its own memory fetch using just
840 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
841 the disassembler be modified so that LAST_EXAMINE_VALUE
842 is left with the byte sequence from the last complete
843 instruction fetched from memory? */
844 last_examine_value = value_at_lazy (val_type, next_address, sect);
845
846 if (last_examine_value)
847 release_value (last_examine_value);
848
849 print_formatted (last_examine_value, format, size, gdb_stdout);
850 }
851 printf_filtered ("\n");
852 gdb_flush (gdb_stdout);
853 }
854 }
855 \f
856 static void
857 validate_format (struct format_data fmt, char *cmdname)
858 {
859 if (fmt.size != 0)
860 error ("Size letters are meaningless in \"%s\" command.", cmdname);
861 if (fmt.count != 1)
862 error ("Item count other than 1 is meaningless in \"%s\" command.",
863 cmdname);
864 if (fmt.format == 'i' || fmt.format == 's')
865 error ("Format letter \"%c\" is meaningless in \"%s\" command.",
866 fmt.format, cmdname);
867 }
868
869 /* Evaluate string EXP as an expression in the current language and
870 print the resulting value. EXP may contain a format specifier as the
871 first argument ("/x myvar" for example, to print myvar in hex).
872 */
873
874 static void
875 print_command_1 (char *exp, int inspect, int voidprint)
876 {
877 struct expression *expr;
878 register struct cleanup *old_chain = 0;
879 register char format = 0;
880 struct value *val;
881 struct format_data fmt;
882 int cleanup = 0;
883
884 /* Pass inspect flag to the rest of the print routines in a global (sigh). */
885 inspect_it = inspect;
886
887 if (exp && *exp == '/')
888 {
889 exp++;
890 fmt = decode_format (&exp, last_format, 0);
891 validate_format (fmt, "print");
892 last_format = format = fmt.format;
893 }
894 else
895 {
896 fmt.count = 1;
897 fmt.format = 0;
898 fmt.size = 0;
899 }
900
901 if (exp && *exp)
902 {
903 struct type *type;
904 expr = parse_expression (exp);
905 old_chain = make_cleanup (free_current_contents, &expr);
906 cleanup = 1;
907 val = evaluate_expression (expr);
908 }
909 else
910 val = access_value_history (0);
911
912 if (voidprint || (val && VALUE_TYPE (val) &&
913 TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_VOID))
914 {
915 int histindex = record_latest_value (val);
916
917 if (histindex >= 0)
918 annotate_value_history_begin (histindex, VALUE_TYPE (val));
919 else
920 annotate_value_begin (VALUE_TYPE (val));
921
922 if (inspect)
923 printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"", exp, histindex);
924 else if (histindex >= 0)
925 printf_filtered ("$%d = ", histindex);
926
927 if (histindex >= 0)
928 annotate_value_history_value ();
929
930 print_formatted (val, format, fmt.size, gdb_stdout);
931 printf_filtered ("\n");
932
933 if (histindex >= 0)
934 annotate_value_history_end ();
935 else
936 annotate_value_end ();
937
938 if (inspect)
939 printf_unfiltered ("\") )\030");
940 }
941
942 if (cleanup)
943 do_cleanups (old_chain);
944 inspect_it = 0; /* Reset print routines to normal */
945 }
946
947 /* ARGSUSED */
948 static void
949 print_command (char *exp, int from_tty)
950 {
951 print_command_1 (exp, 0, 1);
952 }
953
954 /* Same as print, except in epoch, it gets its own window */
955 /* ARGSUSED */
956 static void
957 inspect_command (char *exp, int from_tty)
958 {
959 extern int epoch_interface;
960
961 print_command_1 (exp, epoch_interface, 1);
962 }
963
964 /* Same as print, except it doesn't print void results. */
965 /* ARGSUSED */
966 static void
967 call_command (char *exp, int from_tty)
968 {
969 print_command_1 (exp, 0, 0);
970 }
971
972 /* ARGSUSED */
973 void
974 output_command (char *exp, int from_tty)
975 {
976 struct expression *expr;
977 register struct cleanup *old_chain;
978 register char format = 0;
979 struct value *val;
980 struct format_data fmt;
981
982 if (exp && *exp == '/')
983 {
984 exp++;
985 fmt = decode_format (&exp, 0, 0);
986 validate_format (fmt, "output");
987 format = fmt.format;
988 }
989
990 expr = parse_expression (exp);
991 old_chain = make_cleanup (free_current_contents, &expr);
992
993 val = evaluate_expression (expr);
994
995 annotate_value_begin (VALUE_TYPE (val));
996
997 print_formatted (val, format, fmt.size, gdb_stdout);
998
999 annotate_value_end ();
1000
1001 wrap_here ("");
1002 gdb_flush (gdb_stdout);
1003
1004 do_cleanups (old_chain);
1005 }
1006
1007 /* ARGSUSED */
1008 static void
1009 set_command (char *exp, int from_tty)
1010 {
1011 struct expression *expr = parse_expression (exp);
1012 register struct cleanup *old_chain =
1013 make_cleanup (free_current_contents, &expr);
1014 evaluate_expression (expr);
1015 do_cleanups (old_chain);
1016 }
1017
1018 /* ARGSUSED */
1019 static void
1020 sym_info (char *arg, int from_tty)
1021 {
1022 struct minimal_symbol *msymbol;
1023 struct objfile *objfile;
1024 struct obj_section *osect;
1025 asection *sect;
1026 CORE_ADDR addr, sect_addr;
1027 int matches = 0;
1028 unsigned int offset;
1029
1030 if (!arg)
1031 error_no_arg ("address");
1032
1033 addr = parse_and_eval_address (arg);
1034 ALL_OBJSECTIONS (objfile, osect)
1035 {
1036 sect = osect->the_bfd_section;
1037 sect_addr = overlay_mapped_address (addr, sect);
1038
1039 if (osect->addr <= sect_addr && sect_addr < osect->endaddr &&
1040 (msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, sect)))
1041 {
1042 matches = 1;
1043 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
1044 if (offset)
1045 printf_filtered ("%s + %u in ",
1046 SYMBOL_PRINT_NAME (msymbol), offset);
1047 else
1048 printf_filtered ("%s in ",
1049 SYMBOL_PRINT_NAME (msymbol));
1050 if (pc_in_unmapped_range (addr, sect))
1051 printf_filtered ("load address range of ");
1052 if (section_is_overlay (sect))
1053 printf_filtered ("%s overlay ",
1054 section_is_mapped (sect) ? "mapped" : "unmapped");
1055 printf_filtered ("section %s", sect->name);
1056 printf_filtered ("\n");
1057 }
1058 }
1059 if (matches == 0)
1060 printf_filtered ("No symbol matches %s.\n", arg);
1061 }
1062
1063 /* ARGSUSED */
1064 static void
1065 address_info (char *exp, int from_tty)
1066 {
1067 register struct symbol *sym;
1068 register struct minimal_symbol *msymbol;
1069 register long val;
1070 register long basereg;
1071 asection *section;
1072 CORE_ADDR load_addr;
1073 int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
1074 if exp is a field of `this'. */
1075
1076 if (exp == 0)
1077 error ("Argument required.");
1078
1079 sym = lookup_symbol (exp, get_selected_block (0), VAR_NAMESPACE,
1080 &is_a_field_of_this, (struct symtab **) NULL);
1081 if (sym == NULL)
1082 {
1083 if (is_a_field_of_this)
1084 {
1085 printf_filtered ("Symbol \"");
1086 fprintf_symbol_filtered (gdb_stdout, exp,
1087 current_language->la_language, DMGL_ANSI);
1088 printf_filtered ("\" is a field of the local class variable ");
1089 if (current_language->la_language == language_objc)
1090 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1091 else
1092 printf_filtered ("`this'\n");
1093 return;
1094 }
1095
1096 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1097
1098 if (msymbol != NULL)
1099 {
1100 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1101
1102 printf_filtered ("Symbol \"");
1103 fprintf_symbol_filtered (gdb_stdout, exp,
1104 current_language->la_language, DMGL_ANSI);
1105 printf_filtered ("\" is at ");
1106 print_address_numeric (load_addr, 1, gdb_stdout);
1107 printf_filtered (" in a file compiled without debugging");
1108 section = SYMBOL_BFD_SECTION (msymbol);
1109 if (section_is_overlay (section))
1110 {
1111 load_addr = overlay_unmapped_address (load_addr, section);
1112 printf_filtered (",\n -- loaded at ");
1113 print_address_numeric (load_addr, 1, gdb_stdout);
1114 printf_filtered (" in overlay section %s", section->name);
1115 }
1116 printf_filtered (".\n");
1117 }
1118 else
1119 error ("No symbol \"%s\" in current context.", exp);
1120 return;
1121 }
1122
1123 printf_filtered ("Symbol \"");
1124 fprintf_symbol_filtered (gdb_stdout, DEPRECATED_SYMBOL_NAME (sym),
1125 current_language->la_language, DMGL_ANSI);
1126 printf_filtered ("\" is ");
1127 val = SYMBOL_VALUE (sym);
1128 basereg = SYMBOL_BASEREG (sym);
1129 section = SYMBOL_BFD_SECTION (sym);
1130
1131 switch (SYMBOL_CLASS (sym))
1132 {
1133 case LOC_CONST:
1134 case LOC_CONST_BYTES:
1135 printf_filtered ("constant");
1136 break;
1137
1138 case LOC_LABEL:
1139 printf_filtered ("a label at address ");
1140 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1141 1, gdb_stdout);
1142 if (section_is_overlay (section))
1143 {
1144 load_addr = overlay_unmapped_address (load_addr, section);
1145 printf_filtered (",\n -- loaded at ");
1146 print_address_numeric (load_addr, 1, gdb_stdout);
1147 printf_filtered (" in overlay section %s", section->name);
1148 }
1149 break;
1150
1151 case LOC_COMPUTED:
1152 case LOC_COMPUTED_ARG:
1153 (SYMBOL_LOCATION_FUNCS (sym)->describe_location) (sym, gdb_stdout);
1154 break;
1155
1156 case LOC_REGISTER:
1157 printf_filtered ("a variable in register %s", REGISTER_NAME (val));
1158 break;
1159
1160 case LOC_STATIC:
1161 printf_filtered ("static storage at address ");
1162 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1163 1, gdb_stdout);
1164 if (section_is_overlay (section))
1165 {
1166 load_addr = overlay_unmapped_address (load_addr, section);
1167 printf_filtered (",\n -- loaded at ");
1168 print_address_numeric (load_addr, 1, gdb_stdout);
1169 printf_filtered (" in overlay section %s", section->name);
1170 }
1171 break;
1172
1173 case LOC_INDIRECT:
1174 printf_filtered ("external global (indirect addressing), at address *(");
1175 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1176 1, gdb_stdout);
1177 printf_filtered (")");
1178 if (section_is_overlay (section))
1179 {
1180 load_addr = overlay_unmapped_address (load_addr, section);
1181 printf_filtered (",\n -- loaded at ");
1182 print_address_numeric (load_addr, 1, gdb_stdout);
1183 printf_filtered (" in overlay section %s", section->name);
1184 }
1185 break;
1186
1187 case LOC_REGPARM:
1188 printf_filtered ("an argument in register %s", REGISTER_NAME (val));
1189 break;
1190
1191 case LOC_REGPARM_ADDR:
1192 printf_filtered ("address of an argument in register %s", REGISTER_NAME (val));
1193 break;
1194
1195 case LOC_ARG:
1196 printf_filtered ("an argument at offset %ld", val);
1197 break;
1198
1199 case LOC_LOCAL_ARG:
1200 printf_filtered ("an argument at frame offset %ld", val);
1201 break;
1202
1203 case LOC_LOCAL:
1204 printf_filtered ("a local variable at frame offset %ld", val);
1205 break;
1206
1207 case LOC_REF_ARG:
1208 printf_filtered ("a reference argument at offset %ld", val);
1209 break;
1210
1211 case LOC_BASEREG:
1212 printf_filtered ("a variable at offset %ld from register %s",
1213 val, REGISTER_NAME (basereg));
1214 break;
1215
1216 case LOC_BASEREG_ARG:
1217 printf_filtered ("an argument at offset %ld from register %s",
1218 val, REGISTER_NAME (basereg));
1219 break;
1220
1221 case LOC_TYPEDEF:
1222 printf_filtered ("a typedef");
1223 break;
1224
1225 case LOC_BLOCK:
1226 printf_filtered ("a function at address ");
1227 print_address_numeric (load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
1228 1, gdb_stdout);
1229 if (section_is_overlay (section))
1230 {
1231 load_addr = overlay_unmapped_address (load_addr, section);
1232 printf_filtered (",\n -- loaded at ");
1233 print_address_numeric (load_addr, 1, gdb_stdout);
1234 printf_filtered (" in overlay section %s", section->name);
1235 }
1236 break;
1237
1238 case LOC_UNRESOLVED:
1239 {
1240 struct minimal_symbol *msym;
1241
1242 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, NULL);
1243 if (msym == NULL)
1244 printf_filtered ("unresolved");
1245 else
1246 {
1247 section = SYMBOL_BFD_SECTION (msym);
1248 printf_filtered ("static storage at address ");
1249 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (msym),
1250 1, gdb_stdout);
1251 if (section_is_overlay (section))
1252 {
1253 load_addr = overlay_unmapped_address (load_addr, section);
1254 printf_filtered (",\n -- loaded at ");
1255 print_address_numeric (load_addr, 1, gdb_stdout);
1256 printf_filtered (" in overlay section %s", section->name);
1257 }
1258 }
1259 }
1260 break;
1261
1262 case LOC_HP_THREAD_LOCAL_STATIC:
1263 printf_filtered (
1264 "a thread-local variable at offset %ld from the thread base register %s",
1265 val, REGISTER_NAME (basereg));
1266 break;
1267
1268 case LOC_THREAD_LOCAL_STATIC:
1269 printf_filtered ("a thread-local variable at offset %ld in the "
1270 "thread-local storage for `%s'",
1271 val, SYMBOL_OBJFILE (sym)->name);
1272 break;
1273
1274 case LOC_OPTIMIZED_OUT:
1275 printf_filtered ("optimized out");
1276 break;
1277
1278 default:
1279 printf_filtered ("of unknown (botched) type");
1280 break;
1281 }
1282 printf_filtered (".\n");
1283 }
1284 \f
1285 void
1286 x_command (char *exp, int from_tty)
1287 {
1288 struct expression *expr;
1289 struct format_data fmt;
1290 struct cleanup *old_chain;
1291 struct value *val;
1292
1293 fmt.format = last_format;
1294 fmt.size = last_size;
1295 fmt.count = 1;
1296
1297 if (exp && *exp == '/')
1298 {
1299 exp++;
1300 fmt = decode_format (&exp, last_format, last_size);
1301 }
1302
1303 /* If we have an expression, evaluate it and use it as the address. */
1304
1305 if (exp != 0 && *exp != 0)
1306 {
1307 expr = parse_expression (exp);
1308 /* Cause expression not to be there any more
1309 if this command is repeated with Newline.
1310 But don't clobber a user-defined command's definition. */
1311 if (from_tty)
1312 *exp = 0;
1313 old_chain = make_cleanup (free_current_contents, &expr);
1314 val = evaluate_expression (expr);
1315 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_REF)
1316 val = value_ind (val);
1317 /* In rvalue contexts, such as this, functions are coerced into
1318 pointers to functions. This makes "x/i main" work. */
1319 if (/* last_format == 'i' && */
1320 TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
1321 && VALUE_LVAL (val) == lval_memory)
1322 next_address = VALUE_ADDRESS (val);
1323 else
1324 next_address = value_as_address (val);
1325 if (VALUE_BFD_SECTION (val))
1326 next_section = VALUE_BFD_SECTION (val);
1327 do_cleanups (old_chain);
1328 }
1329
1330 do_examine (fmt, next_address, next_section);
1331
1332 /* If the examine succeeds, we remember its size and format for next time. */
1333 last_size = fmt.size;
1334 last_format = fmt.format;
1335
1336 /* Set a couple of internal variables if appropriate. */
1337 if (last_examine_value)
1338 {
1339 /* Make last address examined available to the user as $_. Use
1340 the correct pointer type. */
1341 struct type *pointer_type
1342 = lookup_pointer_type (VALUE_TYPE (last_examine_value));
1343 set_internalvar (lookup_internalvar ("_"),
1344 value_from_pointer (pointer_type,
1345 last_examine_address));
1346
1347 /* Make contents of last address examined available to the user as $__. */
1348 /* If the last value has not been fetched from memory then don't
1349 fetch it now - instead mark it by voiding the $__ variable. */
1350 if (VALUE_LAZY (last_examine_value))
1351 set_internalvar (lookup_internalvar ("__"),
1352 allocate_value (builtin_type_void));
1353 else
1354 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1355 }
1356 }
1357 \f
1358
1359 /* Add an expression to the auto-display chain.
1360 Specify the expression. */
1361
1362 static void
1363 display_command (char *exp, int from_tty)
1364 {
1365 struct format_data fmt;
1366 register struct expression *expr;
1367 register struct display *new;
1368 int display_it = 1;
1369
1370 #if defined(TUI)
1371 /* NOTE: cagney/2003-02-13 The `tui_active' was previously
1372 `tui_version'. */
1373 if (tui_active && *exp == '$')
1374 display_it = (tui_set_layout (exp) == TUI_FAILURE);
1375 #endif
1376
1377 if (display_it)
1378 {
1379 if (exp == 0)
1380 {
1381 do_displays ();
1382 return;
1383 }
1384
1385 if (*exp == '/')
1386 {
1387 exp++;
1388 fmt = decode_format (&exp, 0, 0);
1389 if (fmt.size && fmt.format == 0)
1390 fmt.format = 'x';
1391 if (fmt.format == 'i' || fmt.format == 's')
1392 fmt.size = 'b';
1393 }
1394 else
1395 {
1396 fmt.format = 0;
1397 fmt.size = 0;
1398 fmt.count = 0;
1399 }
1400
1401 innermost_block = 0;
1402 expr = parse_expression (exp);
1403
1404 new = (struct display *) xmalloc (sizeof (struct display));
1405
1406 new->exp = expr;
1407 new->block = innermost_block;
1408 new->next = display_chain;
1409 new->number = ++display_number;
1410 new->format = fmt;
1411 new->enabled_p = 1;
1412 display_chain = new;
1413
1414 if (from_tty && target_has_execution)
1415 do_one_display (new);
1416
1417 dont_repeat ();
1418 }
1419 }
1420
1421 static void
1422 free_display (struct display *d)
1423 {
1424 xfree (d->exp);
1425 xfree (d);
1426 }
1427
1428 /* Clear out the display_chain.
1429 Done when new symtabs are loaded, since this invalidates
1430 the types stored in many expressions. */
1431
1432 void
1433 clear_displays (void)
1434 {
1435 register struct display *d;
1436
1437 while ((d = display_chain) != NULL)
1438 {
1439 xfree (d->exp);
1440 display_chain = d->next;
1441 xfree (d);
1442 }
1443 }
1444
1445 /* Delete the auto-display number NUM. */
1446
1447 static void
1448 delete_display (int num)
1449 {
1450 register struct display *d1, *d;
1451
1452 if (!display_chain)
1453 error ("No display number %d.", num);
1454
1455 if (display_chain->number == num)
1456 {
1457 d1 = display_chain;
1458 display_chain = d1->next;
1459 free_display (d1);
1460 }
1461 else
1462 for (d = display_chain;; d = d->next)
1463 {
1464 if (d->next == 0)
1465 error ("No display number %d.", num);
1466 if (d->next->number == num)
1467 {
1468 d1 = d->next;
1469 d->next = d1->next;
1470 free_display (d1);
1471 break;
1472 }
1473 }
1474 }
1475
1476 /* Delete some values from the auto-display chain.
1477 Specify the element numbers. */
1478
1479 static void
1480 undisplay_command (char *args, int from_tty)
1481 {
1482 register char *p = args;
1483 register char *p1;
1484 register int num;
1485
1486 if (args == 0)
1487 {
1488 if (query ("Delete all auto-display expressions? "))
1489 clear_displays ();
1490 dont_repeat ();
1491 return;
1492 }
1493
1494 while (*p)
1495 {
1496 p1 = p;
1497 while (*p1 >= '0' && *p1 <= '9')
1498 p1++;
1499 if (*p1 && *p1 != ' ' && *p1 != '\t')
1500 error ("Arguments must be display numbers.");
1501
1502 num = atoi (p);
1503
1504 delete_display (num);
1505
1506 p = p1;
1507 while (*p == ' ' || *p == '\t')
1508 p++;
1509 }
1510 dont_repeat ();
1511 }
1512
1513 /* Display a single auto-display.
1514 Do nothing if the display cannot be printed in the current context,
1515 or if the display is disabled. */
1516
1517 static void
1518 do_one_display (struct display *d)
1519 {
1520 int within_current_scope;
1521
1522 if (d->enabled_p == 0)
1523 return;
1524
1525 if (d->block)
1526 within_current_scope = contained_in (get_selected_block (0), d->block);
1527 else
1528 within_current_scope = 1;
1529 if (!within_current_scope)
1530 return;
1531
1532 current_display_number = d->number;
1533
1534 annotate_display_begin ();
1535 printf_filtered ("%d", d->number);
1536 annotate_display_number_end ();
1537 printf_filtered (": ");
1538 if (d->format.size)
1539 {
1540 CORE_ADDR addr;
1541 struct value *val;
1542
1543 annotate_display_format ();
1544
1545 printf_filtered ("x/");
1546 if (d->format.count != 1)
1547 printf_filtered ("%d", d->format.count);
1548 printf_filtered ("%c", d->format.format);
1549 if (d->format.format != 'i' && d->format.format != 's')
1550 printf_filtered ("%c", d->format.size);
1551 printf_filtered (" ");
1552
1553 annotate_display_expression ();
1554
1555 print_expression (d->exp, gdb_stdout);
1556 annotate_display_expression_end ();
1557
1558 if (d->format.count != 1)
1559 printf_filtered ("\n");
1560 else
1561 printf_filtered (" ");
1562
1563 val = evaluate_expression (d->exp);
1564 addr = value_as_address (val);
1565 if (d->format.format == 'i')
1566 addr = ADDR_BITS_REMOVE (addr);
1567
1568 annotate_display_value ();
1569
1570 do_examine (d->format, addr, VALUE_BFD_SECTION (val));
1571 }
1572 else
1573 {
1574 annotate_display_format ();
1575
1576 if (d->format.format)
1577 printf_filtered ("/%c ", d->format.format);
1578
1579 annotate_display_expression ();
1580
1581 print_expression (d->exp, gdb_stdout);
1582 annotate_display_expression_end ();
1583
1584 printf_filtered (" = ");
1585
1586 annotate_display_expression ();
1587
1588 print_formatted (evaluate_expression (d->exp),
1589 d->format.format, d->format.size, gdb_stdout);
1590 printf_filtered ("\n");
1591 }
1592
1593 annotate_display_end ();
1594
1595 gdb_flush (gdb_stdout);
1596 current_display_number = -1;
1597 }
1598
1599 /* Display all of the values on the auto-display chain which can be
1600 evaluated in the current scope. */
1601
1602 void
1603 do_displays (void)
1604 {
1605 register struct display *d;
1606
1607 for (d = display_chain; d; d = d->next)
1608 do_one_display (d);
1609 }
1610
1611 /* Delete the auto-display which we were in the process of displaying.
1612 This is done when there is an error or a signal. */
1613
1614 void
1615 disable_display (int num)
1616 {
1617 register struct display *d;
1618
1619 for (d = display_chain; d; d = d->next)
1620 if (d->number == num)
1621 {
1622 d->enabled_p = 0;
1623 return;
1624 }
1625 printf_unfiltered ("No display number %d.\n", num);
1626 }
1627
1628 void
1629 disable_current_display (void)
1630 {
1631 if (current_display_number >= 0)
1632 {
1633 disable_display (current_display_number);
1634 fprintf_unfiltered (gdb_stderr, "Disabling display %d to avoid infinite recursion.\n",
1635 current_display_number);
1636 }
1637 current_display_number = -1;
1638 }
1639
1640 static void
1641 display_info (char *ignore, int from_tty)
1642 {
1643 register struct display *d;
1644
1645 if (!display_chain)
1646 printf_unfiltered ("There are no auto-display expressions now.\n");
1647 else
1648 printf_filtered ("Auto-display expressions now in effect:\n\
1649 Num Enb Expression\n");
1650
1651 for (d = display_chain; d; d = d->next)
1652 {
1653 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
1654 if (d->format.size)
1655 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1656 d->format.format);
1657 else if (d->format.format)
1658 printf_filtered ("/%c ", d->format.format);
1659 print_expression (d->exp, gdb_stdout);
1660 if (d->block && !contained_in (get_selected_block (0), d->block))
1661 printf_filtered (" (cannot be evaluated in the current context)");
1662 printf_filtered ("\n");
1663 gdb_flush (gdb_stdout);
1664 }
1665 }
1666
1667 static void
1668 enable_display (char *args, int from_tty)
1669 {
1670 register char *p = args;
1671 register char *p1;
1672 register int num;
1673 register struct display *d;
1674
1675 if (p == 0)
1676 {
1677 for (d = display_chain; d; d = d->next)
1678 d->enabled_p = 1;
1679 }
1680 else
1681 while (*p)
1682 {
1683 p1 = p;
1684 while (*p1 >= '0' && *p1 <= '9')
1685 p1++;
1686 if (*p1 && *p1 != ' ' && *p1 != '\t')
1687 error ("Arguments must be display numbers.");
1688
1689 num = atoi (p);
1690
1691 for (d = display_chain; d; d = d->next)
1692 if (d->number == num)
1693 {
1694 d->enabled_p = 1;
1695 goto win;
1696 }
1697 printf_unfiltered ("No display number %d.\n", num);
1698 win:
1699 p = p1;
1700 while (*p == ' ' || *p == '\t')
1701 p++;
1702 }
1703 }
1704
1705 /* ARGSUSED */
1706 static void
1707 disable_display_command (char *args, int from_tty)
1708 {
1709 register char *p = args;
1710 register char *p1;
1711 register struct display *d;
1712
1713 if (p == 0)
1714 {
1715 for (d = display_chain; d; d = d->next)
1716 d->enabled_p = 0;
1717 }
1718 else
1719 while (*p)
1720 {
1721 p1 = p;
1722 while (*p1 >= '0' && *p1 <= '9')
1723 p1++;
1724 if (*p1 && *p1 != ' ' && *p1 != '\t')
1725 error ("Arguments must be display numbers.");
1726
1727 disable_display (atoi (p));
1728
1729 p = p1;
1730 while (*p == ' ' || *p == '\t')
1731 p++;
1732 }
1733 }
1734 \f
1735
1736 /* Print the value in stack frame FRAME of a variable
1737 specified by a struct symbol. */
1738
1739 void
1740 print_variable_value (struct symbol *var, struct frame_info *frame,
1741 struct ui_file *stream)
1742 {
1743 struct value *val = read_var_value (var, frame);
1744
1745 value_print (val, stream, 0, Val_pretty_default);
1746 }
1747
1748 /* Print the arguments of a stack frame, given the function FUNC
1749 running in that frame (as a symbol), the info on the frame,
1750 and the number of args according to the stack frame (or -1 if unknown). */
1751
1752 /* References here and elsewhere to "number of args according to the
1753 stack frame" appear in all cases to refer to "number of ints of args
1754 according to the stack frame". At least for VAX, i386, isi. */
1755
1756 void
1757 print_frame_args (struct symbol *func, struct frame_info *fi, int num,
1758 struct ui_file *stream)
1759 {
1760 struct block *b = NULL;
1761 int first = 1;
1762 register int i;
1763 register struct symbol *sym;
1764 struct value *val;
1765 /* Offset of next stack argument beyond the one we have seen that is
1766 at the highest offset.
1767 -1 if we haven't come to a stack argument yet. */
1768 long highest_offset = -1;
1769 int arg_size;
1770 /* Number of ints of arguments that we have printed so far. */
1771 int args_printed = 0;
1772 struct cleanup *old_chain, *list_chain;
1773 struct ui_stream *stb;
1774
1775 stb = ui_out_stream_new (uiout);
1776 old_chain = make_cleanup_ui_out_stream_delete (stb);
1777
1778 if (func)
1779 {
1780 b = SYMBOL_BLOCK_VALUE (func);
1781 /* Function blocks are order sensitive, and thus should not be
1782 hashed. */
1783 gdb_assert (BLOCK_HASHTABLE (b) == 0);
1784
1785 ALL_BLOCK_SYMBOLS (b, i, sym)
1786 {
1787 QUIT;
1788
1789 /* Keep track of the highest stack argument offset seen, and
1790 skip over any kinds of symbols we don't care about. */
1791
1792 switch (SYMBOL_CLASS (sym))
1793 {
1794 case LOC_ARG:
1795 case LOC_REF_ARG:
1796 {
1797 long current_offset = SYMBOL_VALUE (sym);
1798 arg_size = TYPE_LENGTH (SYMBOL_TYPE (sym));
1799
1800 /* Compute address of next argument by adding the size of
1801 this argument and rounding to an int boundary. */
1802 current_offset =
1803 ((current_offset + arg_size + sizeof (int) - 1)
1804 & ~(sizeof (int) - 1));
1805
1806 /* If this is the highest offset seen yet, set highest_offset. */
1807 if (highest_offset == -1
1808 || (current_offset > highest_offset))
1809 highest_offset = current_offset;
1810
1811 /* Add the number of ints we're about to print to args_printed. */
1812 args_printed += (arg_size + sizeof (int) - 1) / sizeof (int);
1813 }
1814
1815 /* We care about types of symbols, but don't need to keep track of
1816 stack offsets in them. */
1817 case LOC_REGPARM:
1818 case LOC_REGPARM_ADDR:
1819 case LOC_LOCAL_ARG:
1820 case LOC_BASEREG_ARG:
1821 case LOC_COMPUTED_ARG:
1822 break;
1823
1824 /* Other types of symbols we just skip over. */
1825 default:
1826 continue;
1827 }
1828
1829 /* We have to look up the symbol because arguments can have
1830 two entries (one a parameter, one a local) and the one we
1831 want is the local, which lookup_symbol will find for us.
1832 This includes gcc1 (not gcc2) on the sparc when passing a
1833 small structure and gcc2 when the argument type is float
1834 and it is passed as a double and converted to float by
1835 the prologue (in the latter case the type of the LOC_ARG
1836 symbol is double and the type of the LOC_LOCAL symbol is
1837 float). */
1838 /* But if the parameter name is null, don't try it.
1839 Null parameter names occur on the RS/6000, for traceback tables.
1840 FIXME, should we even print them? */
1841
1842 if (*DEPRECATED_SYMBOL_NAME (sym))
1843 {
1844 struct symbol *nsym;
1845 nsym = lookup_symbol
1846 (DEPRECATED_SYMBOL_NAME (sym),
1847 b, VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL);
1848 if (SYMBOL_CLASS (nsym) == LOC_REGISTER)
1849 {
1850 /* There is a LOC_ARG/LOC_REGISTER pair. This means that
1851 it was passed on the stack and loaded into a register,
1852 or passed in a register and stored in a stack slot.
1853 GDB 3.x used the LOC_ARG; GDB 4.0-4.11 used the LOC_REGISTER.
1854
1855 Reasons for using the LOC_ARG:
1856 (1) because find_saved_registers may be slow for remote
1857 debugging,
1858 (2) because registers are often re-used and stack slots
1859 rarely (never?) are. Therefore using the stack slot is
1860 much less likely to print garbage.
1861
1862 Reasons why we might want to use the LOC_REGISTER:
1863 (1) So that the backtrace prints the same value as
1864 "print foo". I see no compelling reason why this needs
1865 to be the case; having the backtrace print the value which
1866 was passed in, and "print foo" print the value as modified
1867 within the called function, makes perfect sense to me.
1868
1869 Additional note: It might be nice if "info args" displayed
1870 both values.
1871 One more note: There is a case with sparc structure passing
1872 where we need to use the LOC_REGISTER, but this is dealt with
1873 by creating a single LOC_REGPARM in symbol reading. */
1874
1875 /* Leave sym (the LOC_ARG) alone. */
1876 ;
1877 }
1878 else
1879 sym = nsym;
1880 }
1881
1882 /* Print the current arg. */
1883 if (!first)
1884 ui_out_text (uiout, ", ");
1885 ui_out_wrap_hint (uiout, " ");
1886
1887 annotate_arg_begin ();
1888
1889 list_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1890 fprintf_symbol_filtered (stb->stream, SYMBOL_PRINT_NAME (sym),
1891 SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
1892 ui_out_field_stream (uiout, "name", stb);
1893 annotate_arg_name_end ();
1894 ui_out_text (uiout, "=");
1895
1896 /* Avoid value_print because it will deref ref parameters. We just
1897 want to print their addresses. Print ??? for args whose address
1898 we do not know. We pass 2 as "recurse" to val_print because our
1899 standard indentation here is 4 spaces, and val_print indents
1900 2 for each recurse. */
1901 val = read_var_value (sym, fi);
1902
1903 annotate_arg_value (val == NULL ? NULL : VALUE_TYPE (val));
1904
1905 if (val)
1906 {
1907 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), 0,
1908 VALUE_ADDRESS (val),
1909 stb->stream, 0, 0, 2, Val_no_prettyprint);
1910 ui_out_field_stream (uiout, "value", stb);
1911 }
1912 else
1913 ui_out_text (uiout, "???");
1914
1915 /* Invoke ui_out_tuple_end. */
1916 do_cleanups (list_chain);
1917
1918 annotate_arg_end ();
1919
1920 first = 0;
1921 }
1922 }
1923
1924 /* Don't print nameless args in situations where we don't know
1925 enough about the stack to find them. */
1926 if (num != -1)
1927 {
1928 long start;
1929
1930 if (highest_offset == -1)
1931 start = FRAME_ARGS_SKIP;
1932 else
1933 start = highest_offset;
1934
1935 print_frame_nameless_args (fi, start, num - args_printed,
1936 first, stream);
1937 }
1938 do_cleanups (old_chain);
1939 }
1940
1941 /* Print nameless args on STREAM.
1942 FI is the frameinfo for this frame, START is the offset
1943 of the first nameless arg, and NUM is the number of nameless args to
1944 print. FIRST is nonzero if this is the first argument (not just
1945 the first nameless arg). */
1946
1947 static void
1948 print_frame_nameless_args (struct frame_info *fi, long start, int num,
1949 int first, struct ui_file *stream)
1950 {
1951 int i;
1952 CORE_ADDR argsaddr;
1953 long arg_value;
1954
1955 for (i = 0; i < num; i++)
1956 {
1957 QUIT;
1958 argsaddr = get_frame_args_address (fi);
1959 if (!argsaddr)
1960 return;
1961 arg_value = read_memory_integer (argsaddr + start, sizeof (int));
1962 if (!first)
1963 fprintf_filtered (stream, ", ");
1964 fprintf_filtered (stream, "%ld", arg_value);
1965 first = 0;
1966 start += sizeof (int);
1967 }
1968 }
1969 \f
1970 /* ARGSUSED */
1971 static void
1972 printf_command (char *arg, int from_tty)
1973 {
1974 register char *f = NULL;
1975 register char *s = arg;
1976 char *string = NULL;
1977 struct value **val_args;
1978 char *substrings;
1979 char *current_substring;
1980 int nargs = 0;
1981 int allocated_args = 20;
1982 struct cleanup *old_cleanups;
1983
1984 val_args = (struct value **) xmalloc (allocated_args
1985 * sizeof (struct value *));
1986 old_cleanups = make_cleanup (free_current_contents, &val_args);
1987
1988 if (s == 0)
1989 error_no_arg ("format-control string and values to print");
1990
1991 /* Skip white space before format string */
1992 while (*s == ' ' || *s == '\t')
1993 s++;
1994
1995 /* A format string should follow, enveloped in double quotes */
1996 if (*s++ != '"')
1997 error ("Bad format string, missing '\"'.");
1998
1999 /* Parse the format-control string and copy it into the string STRING,
2000 processing some kinds of escape sequence. */
2001
2002 f = string = (char *) alloca (strlen (s) + 1);
2003
2004 while (*s != '"')
2005 {
2006 int c = *s++;
2007 switch (c)
2008 {
2009 case '\0':
2010 error ("Bad format string, non-terminated '\"'.");
2011
2012 case '\\':
2013 switch (c = *s++)
2014 {
2015 case '\\':
2016 *f++ = '\\';
2017 break;
2018 case 'a':
2019 *f++ = '\a';
2020 break;
2021 case 'b':
2022 *f++ = '\b';
2023 break;
2024 case 'f':
2025 *f++ = '\f';
2026 break;
2027 case 'n':
2028 *f++ = '\n';
2029 break;
2030 case 'r':
2031 *f++ = '\r';
2032 break;
2033 case 't':
2034 *f++ = '\t';
2035 break;
2036 case 'v':
2037 *f++ = '\v';
2038 break;
2039 case '"':
2040 *f++ = '"';
2041 break;
2042 default:
2043 /* ??? TODO: handle other escape sequences */
2044 error ("Unrecognized escape character \\%c in format string.",
2045 c);
2046 }
2047 break;
2048
2049 default:
2050 *f++ = c;
2051 }
2052 }
2053
2054 /* Skip over " and following space and comma. */
2055 s++;
2056 *f++ = '\0';
2057 while (*s == ' ' || *s == '\t')
2058 s++;
2059
2060 if (*s != ',' && *s != 0)
2061 error ("Invalid argument syntax");
2062
2063 if (*s == ',')
2064 s++;
2065 while (*s == ' ' || *s == '\t')
2066 s++;
2067
2068 /* Need extra space for the '\0's. Doubling the size is sufficient. */
2069 substrings = alloca (strlen (string) * 2);
2070 current_substring = substrings;
2071
2072 {
2073 /* Now scan the string for %-specs and see what kinds of args they want.
2074 argclass[I] classifies the %-specs so we can give printf_filtered
2075 something of the right size. */
2076
2077 enum argclass
2078 {
2079 no_arg, int_arg, string_arg, double_arg, long_long_arg
2080 };
2081 enum argclass *argclass;
2082 enum argclass this_argclass;
2083 char *last_arg;
2084 int nargs_wanted;
2085 int lcount;
2086 int i;
2087
2088 argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
2089 nargs_wanted = 0;
2090 f = string;
2091 last_arg = string;
2092 while (*f)
2093 if (*f++ == '%')
2094 {
2095 lcount = 0;
2096 while (strchr ("0123456789.hlL-+ #", *f))
2097 {
2098 if (*f == 'l' || *f == 'L')
2099 lcount++;
2100 f++;
2101 }
2102 switch (*f)
2103 {
2104 case 's':
2105 this_argclass = string_arg;
2106 break;
2107
2108 case 'e':
2109 case 'f':
2110 case 'g':
2111 this_argclass = double_arg;
2112 break;
2113
2114 case '*':
2115 error ("`*' not supported for precision or width in printf");
2116
2117 case 'n':
2118 error ("Format specifier `n' not supported in printf");
2119
2120 case '%':
2121 this_argclass = no_arg;
2122 break;
2123
2124 default:
2125 if (lcount > 1)
2126 this_argclass = long_long_arg;
2127 else
2128 this_argclass = int_arg;
2129 break;
2130 }
2131 f++;
2132 if (this_argclass != no_arg)
2133 {
2134 strncpy (current_substring, last_arg, f - last_arg);
2135 current_substring += f - last_arg;
2136 *current_substring++ = '\0';
2137 last_arg = f;
2138 argclass[nargs_wanted++] = this_argclass;
2139 }
2140 }
2141
2142 /* Now, parse all arguments and evaluate them.
2143 Store the VALUEs in VAL_ARGS. */
2144
2145 while (*s != '\0')
2146 {
2147 char *s1;
2148 if (nargs == allocated_args)
2149 val_args = (struct value **) xrealloc ((char *) val_args,
2150 (allocated_args *= 2)
2151 * sizeof (struct value *));
2152 s1 = s;
2153 val_args[nargs] = parse_to_comma_and_eval (&s1);
2154
2155 /* If format string wants a float, unchecked-convert the value to
2156 floating point of the same size */
2157
2158 if (argclass[nargs] == double_arg)
2159 {
2160 struct type *type = VALUE_TYPE (val_args[nargs]);
2161 if (TYPE_LENGTH (type) == sizeof (float))
2162 VALUE_TYPE (val_args[nargs]) = builtin_type_float;
2163 if (TYPE_LENGTH (type) == sizeof (double))
2164 VALUE_TYPE (val_args[nargs]) = builtin_type_double;
2165 }
2166 nargs++;
2167 s = s1;
2168 if (*s == ',')
2169 s++;
2170 }
2171
2172 if (nargs != nargs_wanted)
2173 error ("Wrong number of arguments for specified format-string");
2174
2175 /* Now actually print them. */
2176 current_substring = substrings;
2177 for (i = 0; i < nargs; i++)
2178 {
2179 switch (argclass[i])
2180 {
2181 case string_arg:
2182 {
2183 char *str;
2184 CORE_ADDR tem;
2185 int j;
2186 tem = value_as_address (val_args[i]);
2187
2188 /* This is a %s argument. Find the length of the string. */
2189 for (j = 0;; j++)
2190 {
2191 char c;
2192 QUIT;
2193 read_memory (tem + j, &c, 1);
2194 if (c == 0)
2195 break;
2196 }
2197
2198 /* Copy the string contents into a string inside GDB. */
2199 str = (char *) alloca (j + 1);
2200 if (j != 0)
2201 read_memory (tem, str, j);
2202 str[j] = 0;
2203
2204 printf_filtered (current_substring, str);
2205 }
2206 break;
2207 case double_arg:
2208 {
2209 double val = value_as_double (val_args[i]);
2210 printf_filtered (current_substring, val);
2211 break;
2212 }
2213 case long_long_arg:
2214 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2215 {
2216 long long val = value_as_long (val_args[i]);
2217 printf_filtered (current_substring, val);
2218 break;
2219 }
2220 #else
2221 error ("long long not supported in printf");
2222 #endif
2223 case int_arg:
2224 {
2225 /* FIXME: there should be separate int_arg and long_arg. */
2226 long val = value_as_long (val_args[i]);
2227 printf_filtered (current_substring, val);
2228 break;
2229 }
2230 default: /* purecov: deadcode */
2231 error ("internal error in printf_command"); /* purecov: deadcode */
2232 }
2233 /* Skip to the next substring. */
2234 current_substring += strlen (current_substring) + 1;
2235 }
2236 /* Print the portion of the format string after the last argument. */
2237 printf_filtered (last_arg);
2238 }
2239 do_cleanups (old_cleanups);
2240 }
2241
2242 void
2243 _initialize_printcmd (void)
2244 {
2245 struct cmd_list_element *c;
2246
2247 current_display_number = -1;
2248
2249 add_info ("address", address_info,
2250 "Describe where symbol SYM is stored.");
2251
2252 add_info ("symbol", sym_info,
2253 "Describe what symbol is at location ADDR.\n\
2254 Only for symbols with fixed locations (global or static scope).");
2255
2256 add_com ("x", class_vars, x_command,
2257 concat ("Examine memory: x/FMT ADDRESS.\n\
2258 ADDRESS is an expression for the memory address to examine.\n\
2259 FMT is a repeat count followed by a format letter and a size letter.\n\
2260 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2261 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n",
2262 "Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2263 The specified number of objects of the specified size are printed\n\
2264 according to the format.\n\n\
2265 Defaults for format and size letters are those previously used.\n\
2266 Default count is 1. Default address is following last thing printed\n\
2267 with this command or \"print\".", NULL));
2268
2269 #if 0
2270 add_com ("whereis", class_vars, whereis_command,
2271 "Print line number and file of definition of variable.");
2272 #endif
2273
2274 add_info ("display", display_info,
2275 "Expressions to display when program stops, with code numbers.");
2276
2277 add_cmd ("undisplay", class_vars, undisplay_command,
2278 "Cancel some expressions to be displayed when program stops.\n\
2279 Arguments are the code numbers of the expressions to stop displaying.\n\
2280 No argument means cancel all automatic-display expressions.\n\
2281 \"delete display\" has the same effect as this command.\n\
2282 Do \"info display\" to see current list of code numbers.",
2283 &cmdlist);
2284
2285 add_com ("display", class_vars, display_command,
2286 "Print value of expression EXP each time the program stops.\n\
2287 /FMT may be used before EXP as in the \"print\" command.\n\
2288 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2289 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2290 and examining is done as in the \"x\" command.\n\n\
2291 With no argument, display all currently requested auto-display expressions.\n\
2292 Use \"undisplay\" to cancel display requests previously made."
2293 );
2294
2295 add_cmd ("display", class_vars, enable_display,
2296 "Enable some expressions to be displayed when program stops.\n\
2297 Arguments are the code numbers of the expressions to resume displaying.\n\
2298 No argument means enable all automatic-display expressions.\n\
2299 Do \"info display\" to see current list of code numbers.", &enablelist);
2300
2301 add_cmd ("display", class_vars, disable_display_command,
2302 "Disable some expressions to be displayed when program stops.\n\
2303 Arguments are the code numbers of the expressions to stop displaying.\n\
2304 No argument means disable all automatic-display expressions.\n\
2305 Do \"info display\" to see current list of code numbers.", &disablelist);
2306
2307 add_cmd ("display", class_vars, undisplay_command,
2308 "Cancel some expressions to be displayed when program stops.\n\
2309 Arguments are the code numbers of the expressions to stop displaying.\n\
2310 No argument means cancel all automatic-display expressions.\n\
2311 Do \"info display\" to see current list of code numbers.", &deletelist);
2312
2313 add_com ("printf", class_vars, printf_command,
2314 "printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2315 This is useful for formatted output in user-defined commands.");
2316
2317 add_com ("output", class_vars, output_command,
2318 "Like \"print\" but don't put in value history and don't print newline.\n\
2319 This is useful in user-defined commands.");
2320
2321 add_prefix_cmd ("set", class_vars, set_command,
2322 concat ("Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2323 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2324 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2325 with $), a register (a few standard names starting with $), or an actual\n\
2326 variable in the program being debugged. EXP is any valid expression.\n",
2327 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2328 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2329 You can see these environment settings with the \"show\" command.", NULL),
2330 &setlist, "set ", 1, &cmdlist);
2331 if (dbx_commands)
2332 add_com ("assign", class_vars, set_command, concat ("Evaluate expression \
2333 EXP and assign result to variable VAR, using assignment\n\
2334 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2335 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2336 with $), a register (a few standard names starting with $), or an actual\n\
2337 variable in the program being debugged. EXP is any valid expression.\n",
2338 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2339 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2340 You can see these environment settings with the \"show\" command.", NULL));
2341
2342 /* "call" is the same as "set", but handy for dbx users to call fns. */
2343 c = add_com ("call", class_vars, call_command,
2344 "Call a function in the program.\n\
2345 The argument is the function name and arguments, in the notation of the\n\
2346 current working language. The result is printed and saved in the value\n\
2347 history, if it is not void.");
2348 set_cmd_completer (c, location_completer);
2349
2350 add_cmd ("variable", class_vars, set_command,
2351 "Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2352 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2353 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2354 with $), a register (a few standard names starting with $), or an actual\n\
2355 variable in the program being debugged. EXP is any valid expression.\n\
2356 This may usually be abbreviated to simply \"set\".",
2357 &setlist);
2358
2359 c = add_com ("print", class_vars, print_command,
2360 concat ("Print value of expression EXP.\n\
2361 Variables accessible are those of the lexical environment of the selected\n\
2362 stack frame, plus all those whose scope is global or an entire file.\n\
2363 \n\
2364 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2365 $$NUM refers to NUM'th value back from the last one.\n\
2366 Names starting with $ refer to registers (with the values they would have\n",
2367 "if the program were to return to the stack frame now selected, restoring\n\
2368 all registers saved by frames farther in) or else to debugger\n\
2369 \"convenience\" variables (any such name not a known register).\n\
2370 Use assignment expressions to give values to convenience variables.\n",
2371 "\n\
2372 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2373 @ is a binary operator for treating consecutive data objects\n\
2374 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2375 element is FOO, whose second element is stored in the space following\n\
2376 where FOO is stored, etc. FOO must be an expression whose value\n\
2377 resides in memory.\n",
2378 "\n\
2379 EXP may be preceded with /FMT, where FMT is a format letter\n\
2380 but no count or size letter (see \"x\" command).", NULL));
2381 set_cmd_completer (c, location_completer);
2382 add_com_alias ("p", "print", class_vars, 1);
2383
2384 c = add_com ("inspect", class_vars, inspect_command,
2385 "Same as \"print\" command, except that if you are running in the epoch\n\
2386 environment, the value is printed in its own window.");
2387 set_cmd_completer (c, location_completer);
2388
2389 add_show_from_set (
2390 add_set_cmd ("max-symbolic-offset", no_class, var_uinteger,
2391 (char *) &max_symbolic_offset,
2392 "Set the largest offset that will be printed in <symbol+1234> form.",
2393 &setprintlist),
2394 &showprintlist);
2395 add_show_from_set (
2396 add_set_cmd ("symbol-filename", no_class, var_boolean,
2397 (char *) &print_symbol_filename,
2398 "Set printing of source filename and line number with <symbol>.",
2399 &setprintlist),
2400 &showprintlist);
2401
2402 /* For examine/instruction a single byte quantity is specified as
2403 the data. This avoids problems with value_at_lazy() requiring a
2404 valid data type (and rejecting VOID). */
2405 examine_i_type = init_type (TYPE_CODE_INT, 1, 0, "examine_i_type", NULL);
2406
2407 examine_b_type = init_type (TYPE_CODE_INT, 1, 0, "examine_b_type", NULL);
2408 examine_h_type = init_type (TYPE_CODE_INT, 2, 0, "examine_h_type", NULL);
2409 examine_w_type = init_type (TYPE_CODE_INT, 4, 0, "examine_w_type", NULL);
2410 examine_g_type = init_type (TYPE_CODE_INT, 8, 0, "examine_g_type", NULL);
2411
2412 }
This page took 0.130166 seconds and 4 git commands to generate.