Refresh regs window in display_registers_from
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "c-lang.h"
27 #include "expression.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "breakpoint.h"
32 #include "demangle.h"
33 #include "gdb-demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38 #include "completer.h" /* for completion functions */
39 #include "ui-out.h"
40 #include "block.h"
41 #include "disasm.h"
42 #include "target-float.h"
43 #include "observable.h"
44 #include "solist.h"
45 #include "parser-defs.h"
46 #include "charset.h"
47 #include "arch-utils.h"
48 #include "cli/cli-utils.h"
49 #include "cli/cli-option.h"
50 #include "cli/cli-script.h"
51 #include "cli/cli-style.h"
52 #include "gdbsupport/format.h"
53 #include "source.h"
54 #include "gdbsupport/byte-vector.h"
55 #include "gdbsupport/gdb_optional.h"
56 #include "safe-ctype.h"
57
58 /* Last specified output format. */
59
60 static char last_format = 0;
61
62 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
63
64 static char last_size = 'w';
65
66 /* Last specified count for the 'x' command. */
67
68 static int last_count;
69
70 /* Default address to examine next, and associated architecture. */
71
72 static struct gdbarch *next_gdbarch;
73 static CORE_ADDR next_address;
74
75 /* Number of delay instructions following current disassembled insn. */
76
77 static int branch_delay_insns;
78
79 /* Last address examined. */
80
81 static CORE_ADDR last_examine_address;
82
83 /* Contents of last address examined.
84 This is not valid past the end of the `x' command! */
85
86 static value_ref_ptr last_examine_value;
87
88 /* Largest offset between a symbolic value and an address, that will be
89 printed as `0x1234 <symbol+offset>'. */
90
91 static unsigned int max_symbolic_offset = UINT_MAX;
92 static void
93 show_max_symbolic_offset (struct ui_file *file, int from_tty,
94 struct cmd_list_element *c, const char *value)
95 {
96 fprintf_filtered (file,
97 _("The largest offset that will be "
98 "printed in <symbol+1234> form is %s.\n"),
99 value);
100 }
101
102 /* Append the source filename and linenumber of the symbol when
103 printing a symbolic value as `<symbol at filename:linenum>' if set. */
104 static bool print_symbol_filename = false;
105 static void
106 show_print_symbol_filename (struct ui_file *file, int from_tty,
107 struct cmd_list_element *c, const char *value)
108 {
109 fprintf_filtered (file, _("Printing of source filename and "
110 "line number with <symbol> is %s.\n"),
111 value);
112 }
113
114 /* Number of auto-display expression currently being displayed.
115 So that we can disable it if we get a signal within it.
116 -1 when not doing one. */
117
118 static int current_display_number;
119
120 /* Last allocated display number. */
121
122 static int display_number;
123
124 struct display
125 {
126 display (const char *exp_string_, expression_up &&exp_,
127 const struct format_data &format_, struct program_space *pspace_,
128 const struct block *block_)
129 : exp_string (exp_string_),
130 exp (std::move (exp_)),
131 number (++display_number),
132 format (format_),
133 pspace (pspace_),
134 block (block_),
135 enabled_p (true)
136 {
137 }
138
139 /* The expression as the user typed it. */
140 std::string exp_string;
141
142 /* Expression to be evaluated and displayed. */
143 expression_up exp;
144
145 /* Item number of this auto-display item. */
146 int number;
147
148 /* Display format specified. */
149 struct format_data format;
150
151 /* Program space associated with `block'. */
152 struct program_space *pspace;
153
154 /* Innermost block required by this expression when evaluated. */
155 const struct block *block;
156
157 /* Status of this display (enabled or disabled). */
158 bool enabled_p;
159 };
160
161 /* Expressions whose values should be displayed automatically each
162 time the program stops. */
163
164 static std::vector<std::unique_ptr<struct display>> all_displays;
165
166 /* Prototypes for local functions. */
167
168 static void do_one_display (struct display *);
169 \f
170
171 /* Decode a format specification. *STRING_PTR should point to it.
172 OFORMAT and OSIZE are used as defaults for the format and size
173 if none are given in the format specification.
174 If OSIZE is zero, then the size field of the returned value
175 should be set only if a size is explicitly specified by the
176 user.
177 The structure returned describes all the data
178 found in the specification. In addition, *STRING_PTR is advanced
179 past the specification and past all whitespace following it. */
180
181 static struct format_data
182 decode_format (const char **string_ptr, int oformat, int osize)
183 {
184 struct format_data val;
185 const char *p = *string_ptr;
186
187 val.format = '?';
188 val.size = '?';
189 val.count = 1;
190 val.raw = 0;
191
192 if (*p == '-')
193 {
194 val.count = -1;
195 p++;
196 }
197 if (*p >= '0' && *p <= '9')
198 val.count *= atoi (p);
199 while (*p >= '0' && *p <= '9')
200 p++;
201
202 /* Now process size or format letters that follow. */
203
204 while (1)
205 {
206 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
207 val.size = *p++;
208 else if (*p == 'r')
209 {
210 val.raw = 1;
211 p++;
212 }
213 else if (*p >= 'a' && *p <= 'z')
214 val.format = *p++;
215 else
216 break;
217 }
218
219 *string_ptr = skip_spaces (p);
220
221 /* Set defaults for format and size if not specified. */
222 if (val.format == '?')
223 {
224 if (val.size == '?')
225 {
226 /* Neither has been specified. */
227 val.format = oformat;
228 val.size = osize;
229 }
230 else
231 /* If a size is specified, any format makes a reasonable
232 default except 'i'. */
233 val.format = oformat == 'i' ? 'x' : oformat;
234 }
235 else if (val.size == '?')
236 switch (val.format)
237 {
238 case 'a':
239 /* Pick the appropriate size for an address. This is deferred
240 until do_examine when we know the actual architecture to use.
241 A special size value of 'a' is used to indicate this case. */
242 val.size = osize ? 'a' : osize;
243 break;
244 case 'f':
245 /* Floating point has to be word or giantword. */
246 if (osize == 'w' || osize == 'g')
247 val.size = osize;
248 else
249 /* Default it to giantword if the last used size is not
250 appropriate. */
251 val.size = osize ? 'g' : osize;
252 break;
253 case 'c':
254 /* Characters default to one byte. */
255 val.size = osize ? 'b' : osize;
256 break;
257 case 's':
258 /* Display strings with byte size chars unless explicitly
259 specified. */
260 val.size = '\0';
261 break;
262
263 default:
264 /* The default is the size most recently specified. */
265 val.size = osize;
266 }
267
268 return val;
269 }
270 \f
271 /* Print value VAL on stream according to OPTIONS.
272 Do not end with a newline.
273 SIZE is the letter for the size of datum being printed.
274 This is used to pad hex numbers so they line up. SIZE is 0
275 for print / output and set for examine. */
276
277 static void
278 print_formatted (struct value *val, int size,
279 const struct value_print_options *options,
280 struct ui_file *stream)
281 {
282 struct type *type = check_typedef (value_type (val));
283 int len = TYPE_LENGTH (type);
284
285 if (VALUE_LVAL (val) == lval_memory)
286 next_address = value_address (val) + len;
287
288 if (size)
289 {
290 switch (options->format)
291 {
292 case 's':
293 {
294 struct type *elttype = value_type (val);
295
296 next_address = (value_address (val)
297 + val_print_string (elttype, NULL,
298 value_address (val), -1,
299 stream, options) * len);
300 }
301 return;
302
303 case 'i':
304 /* We often wrap here if there are long symbolic names. */
305 wrap_here (" ");
306 next_address = (value_address (val)
307 + gdb_print_insn (type->arch (),
308 value_address (val), stream,
309 &branch_delay_insns));
310 return;
311 }
312 }
313
314 if (options->format == 0 || options->format == 's'
315 || type->code () == TYPE_CODE_VOID
316 || type->code () == TYPE_CODE_REF
317 || type->code () == TYPE_CODE_ARRAY
318 || type->code () == TYPE_CODE_STRING
319 || type->code () == TYPE_CODE_STRUCT
320 || type->code () == TYPE_CODE_UNION
321 || type->code () == TYPE_CODE_NAMESPACE)
322 value_print (val, stream, options);
323 else
324 /* User specified format, so don't look to the type to tell us
325 what to do. */
326 value_print_scalar_formatted (val, options, size, stream);
327 }
328
329 /* Return builtin floating point type of same length as TYPE.
330 If no such type is found, return TYPE itself. */
331 static struct type *
332 float_type_from_length (struct type *type)
333 {
334 struct gdbarch *gdbarch = type->arch ();
335 const struct builtin_type *builtin = builtin_type (gdbarch);
336
337 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
338 type = builtin->builtin_float;
339 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
340 type = builtin->builtin_double;
341 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
342 type = builtin->builtin_long_double;
343
344 return type;
345 }
346
347 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
348 according to OPTIONS and SIZE on STREAM. Formats s and i are not
349 supported at this level. */
350
351 void
352 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
353 const struct value_print_options *options,
354 int size, struct ui_file *stream)
355 {
356 struct gdbarch *gdbarch = type->arch ();
357 unsigned int len = TYPE_LENGTH (type);
358 enum bfd_endian byte_order = type_byte_order (type);
359
360 /* String printing should go through val_print_scalar_formatted. */
361 gdb_assert (options->format != 's');
362
363 /* If the value is a pointer, and pointers and addresses are not the
364 same, then at this point, the value's length (in target bytes) is
365 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
366 if (type->code () == TYPE_CODE_PTR)
367 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
368
369 /* If we are printing it as unsigned, truncate it in case it is actually
370 a negative signed value (e.g. "print/u (short)-1" should print 65535
371 (if shorts are 16 bits) instead of 4294967295). */
372 if (options->format != 'c'
373 && (options->format != 'd' || type->is_unsigned ()))
374 {
375 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
376 valaddr += TYPE_LENGTH (type) - len;
377 }
378
379 /* Allow LEN == 0, and in this case, don't assume that VALADDR is
380 valid. */
381 const gdb_byte zero = 0;
382 if (len == 0)
383 {
384 len = 1;
385 valaddr = &zero;
386 }
387
388 if (size != 0 && (options->format == 'x' || options->format == 't'))
389 {
390 /* Truncate to fit. */
391 unsigned newlen;
392 switch (size)
393 {
394 case 'b':
395 newlen = 1;
396 break;
397 case 'h':
398 newlen = 2;
399 break;
400 case 'w':
401 newlen = 4;
402 break;
403 case 'g':
404 newlen = 8;
405 break;
406 default:
407 error (_("Undefined output size \"%c\"."), size);
408 }
409 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
410 valaddr += len - newlen;
411 len = newlen;
412 }
413
414 /* Historically gdb has printed floats by first casting them to a
415 long, and then printing the long. PR cli/16242 suggests changing
416 this to using C-style hex float format.
417
418 Biased range types and sub-word scalar types must also be handled
419 here; the value is correctly computed by unpack_long. */
420 gdb::byte_vector converted_bytes;
421 /* Some cases below will unpack the value again. In the biased
422 range case, we want to avoid this, so we store the unpacked value
423 here for possible use later. */
424 gdb::optional<LONGEST> val_long;
425 if (((type->code () == TYPE_CODE_FLT
426 || is_fixed_point_type (type))
427 && (options->format == 'o'
428 || options->format == 'x'
429 || options->format == 't'
430 || options->format == 'z'
431 || options->format == 'd'
432 || options->format == 'u'))
433 || (type->code () == TYPE_CODE_RANGE && type->bounds ()->bias != 0)
434 || type->bit_size_differs_p ())
435 {
436 val_long.emplace (unpack_long (type, valaddr));
437 converted_bytes.resize (TYPE_LENGTH (type));
438 store_signed_integer (converted_bytes.data (), TYPE_LENGTH (type),
439 byte_order, *val_long);
440 valaddr = converted_bytes.data ();
441 }
442
443 /* Printing a non-float type as 'f' will interpret the data as if it were
444 of a floating-point type of the same length, if that exists. Otherwise,
445 the data is printed as integer. */
446 char format = options->format;
447 if (format == 'f' && type->code () != TYPE_CODE_FLT)
448 {
449 type = float_type_from_length (type);
450 if (type->code () != TYPE_CODE_FLT)
451 format = 0;
452 }
453
454 switch (format)
455 {
456 case 'o':
457 print_octal_chars (stream, valaddr, len, byte_order);
458 break;
459 case 'd':
460 print_decimal_chars (stream, valaddr, len, true, byte_order);
461 break;
462 case 'u':
463 print_decimal_chars (stream, valaddr, len, false, byte_order);
464 break;
465 case 0:
466 if (type->code () != TYPE_CODE_FLT)
467 {
468 print_decimal_chars (stream, valaddr, len, !type->is_unsigned (),
469 byte_order);
470 break;
471 }
472 /* FALLTHROUGH */
473 case 'f':
474 print_floating (valaddr, type, stream);
475 break;
476
477 case 't':
478 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
479 break;
480 case 'x':
481 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
482 break;
483 case 'z':
484 print_hex_chars (stream, valaddr, len, byte_order, true);
485 break;
486 case 'c':
487 {
488 struct value_print_options opts = *options;
489
490 if (!val_long.has_value ())
491 val_long.emplace (unpack_long (type, valaddr));
492
493 opts.format = 0;
494 if (type->is_unsigned ())
495 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
496 else
497 type = builtin_type (gdbarch)->builtin_true_char;
498
499 value_print (value_from_longest (type, *val_long), stream, &opts);
500 }
501 break;
502
503 case 'a':
504 {
505 if (!val_long.has_value ())
506 val_long.emplace (unpack_long (type, valaddr));
507 print_address (gdbarch, *val_long, stream);
508 }
509 break;
510
511 default:
512 error (_("Undefined output format \"%c\"."), format);
513 }
514 }
515
516 /* Specify default address for `x' command.
517 The `info lines' command uses this. */
518
519 void
520 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
521 {
522 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
523
524 next_gdbarch = gdbarch;
525 next_address = addr;
526
527 /* Make address available to the user as $_. */
528 set_internalvar (lookup_internalvar ("_"),
529 value_from_pointer (ptr_type, addr));
530 }
531
532 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
533 after LEADIN. Print nothing if no symbolic name is found nearby.
534 Optionally also print source file and line number, if available.
535 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
536 or to interpret it as a possible C++ name and convert it back to source
537 form. However note that DO_DEMANGLE can be overridden by the specific
538 settings of the demangle and asm_demangle variables. Returns
539 non-zero if anything was printed; zero otherwise. */
540
541 int
542 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
543 struct ui_file *stream,
544 int do_demangle, const char *leadin)
545 {
546 std::string name, filename;
547 int unmapped = 0;
548 int offset = 0;
549 int line = 0;
550
551 if (build_address_symbolic (gdbarch, addr, do_demangle, false, &name,
552 &offset, &filename, &line, &unmapped))
553 return 0;
554
555 fputs_filtered (leadin, stream);
556 if (unmapped)
557 fputs_filtered ("<*", stream);
558 else
559 fputs_filtered ("<", stream);
560 fputs_styled (name.c_str (), function_name_style.style (), stream);
561 if (offset != 0)
562 fprintf_filtered (stream, "%+d", offset);
563
564 /* Append source filename and line number if desired. Give specific
565 line # of this addr, if we have it; else line # of the nearest symbol. */
566 if (print_symbol_filename && !filename.empty ())
567 {
568 fputs_filtered (line == -1 ? " in " : " at ", stream);
569 fputs_styled (filename.c_str (), file_name_style.style (), stream);
570 if (line != -1)
571 fprintf_filtered (stream, ":%d", line);
572 }
573 if (unmapped)
574 fputs_filtered ("*>", stream);
575 else
576 fputs_filtered (">", stream);
577
578 return 1;
579 }
580
581 /* See valprint.h. */
582
583 int
584 build_address_symbolic (struct gdbarch *gdbarch,
585 CORE_ADDR addr, /* IN */
586 bool do_demangle, /* IN */
587 bool prefer_sym_over_minsym, /* IN */
588 std::string *name, /* OUT */
589 int *offset, /* OUT */
590 std::string *filename, /* OUT */
591 int *line, /* OUT */
592 int *unmapped) /* OUT */
593 {
594 struct bound_minimal_symbol msymbol;
595 struct symbol *symbol;
596 CORE_ADDR name_location = 0;
597 struct obj_section *section = NULL;
598 const char *name_temp = "";
599
600 /* Let's say it is mapped (not unmapped). */
601 *unmapped = 0;
602
603 /* Determine if the address is in an overlay, and whether it is
604 mapped. */
605 if (overlay_debugging)
606 {
607 section = find_pc_overlay (addr);
608 if (pc_in_unmapped_range (addr, section))
609 {
610 *unmapped = 1;
611 addr = overlay_mapped_address (addr, section);
612 }
613 }
614
615 /* Try to find the address in both the symbol table and the minsyms.
616 In most cases, we'll prefer to use the symbol instead of the
617 minsym. However, there are cases (see below) where we'll choose
618 to use the minsym instead. */
619
620 /* This is defective in the sense that it only finds text symbols. So
621 really this is kind of pointless--we should make sure that the
622 minimal symbols have everything we need (by changing that we could
623 save some memory, but for many debug format--ELF/DWARF or
624 anything/stabs--it would be inconvenient to eliminate those minimal
625 symbols anyway). */
626 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
627 symbol = find_pc_sect_function (addr, section);
628
629 if (symbol)
630 {
631 /* If this is a function (i.e. a code address), strip out any
632 non-address bits. For instance, display a pointer to the
633 first instruction of a Thumb function as <function>; the
634 second instruction will be <function+2>, even though the
635 pointer is <function+3>. This matches the ISA behavior. */
636 addr = gdbarch_addr_bits_remove (gdbarch, addr);
637
638 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
639 if (do_demangle || asm_demangle)
640 name_temp = symbol->print_name ();
641 else
642 name_temp = symbol->linkage_name ();
643 }
644
645 if (msymbol.minsym != NULL
646 && MSYMBOL_HAS_SIZE (msymbol.minsym)
647 && MSYMBOL_SIZE (msymbol.minsym) == 0
648 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
649 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
650 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
651 msymbol.minsym = NULL;
652
653 if (msymbol.minsym != NULL)
654 {
655 /* Use the minsym if no symbol is found.
656
657 Additionally, use the minsym instead of a (found) symbol if
658 the following conditions all hold:
659 1) The prefer_sym_over_minsym flag is false.
660 2) The minsym address is identical to that of the address under
661 consideration.
662 3) The symbol address is not identical to that of the address
663 under consideration. */
664 if (symbol == NULL ||
665 (!prefer_sym_over_minsym
666 && BMSYMBOL_VALUE_ADDRESS (msymbol) == addr
667 && name_location != addr))
668 {
669 /* If this is a function (i.e. a code address), strip out any
670 non-address bits. For instance, display a pointer to the
671 first instruction of a Thumb function as <function>; the
672 second instruction will be <function+2>, even though the
673 pointer is <function+3>. This matches the ISA behavior. */
674 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
675 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
676 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
677 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
678 addr = gdbarch_addr_bits_remove (gdbarch, addr);
679
680 symbol = 0;
681 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
682 if (do_demangle || asm_demangle)
683 name_temp = msymbol.minsym->print_name ();
684 else
685 name_temp = msymbol.minsym->linkage_name ();
686 }
687 }
688 if (symbol == NULL && msymbol.minsym == NULL)
689 return 1;
690
691 /* If the nearest symbol is too far away, don't print anything symbolic. */
692
693 /* For when CORE_ADDR is larger than unsigned int, we do math in
694 CORE_ADDR. But when we detect unsigned wraparound in the
695 CORE_ADDR math, we ignore this test and print the offset,
696 because addr+max_symbolic_offset has wrapped through the end
697 of the address space back to the beginning, giving bogus comparison. */
698 if (addr > name_location + max_symbolic_offset
699 && name_location + max_symbolic_offset > name_location)
700 return 1;
701
702 *offset = (LONGEST) addr - name_location;
703
704 *name = name_temp;
705
706 if (print_symbol_filename)
707 {
708 struct symtab_and_line sal;
709
710 sal = find_pc_sect_line (addr, section, 0);
711
712 if (sal.symtab)
713 {
714 *filename = symtab_to_filename_for_display (sal.symtab);
715 *line = sal.line;
716 }
717 }
718 return 0;
719 }
720
721
722 /* Print address ADDR symbolically on STREAM.
723 First print it as a number. Then perhaps print
724 <SYMBOL + OFFSET> after the number. */
725
726 void
727 print_address (struct gdbarch *gdbarch,
728 CORE_ADDR addr, struct ui_file *stream)
729 {
730 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
731 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
732 }
733
734 /* Return a prefix for instruction address:
735 "=> " for current instruction, else " ". */
736
737 const char *
738 pc_prefix (CORE_ADDR addr)
739 {
740 if (has_stack_frames ())
741 {
742 struct frame_info *frame;
743 CORE_ADDR pc;
744
745 frame = get_selected_frame (NULL);
746 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
747 return "=> ";
748 }
749 return " ";
750 }
751
752 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
753 controls whether to print the symbolic name "raw" or demangled.
754 Return non-zero if anything was printed; zero otherwise. */
755
756 int
757 print_address_demangle (const struct value_print_options *opts,
758 struct gdbarch *gdbarch, CORE_ADDR addr,
759 struct ui_file *stream, int do_demangle)
760 {
761 if (opts->addressprint)
762 {
763 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
764 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
765 }
766 else
767 {
768 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
769 }
770 return 1;
771 }
772 \f
773
774 /* Find the address of the instruction that is INST_COUNT instructions before
775 the instruction at ADDR.
776 Since some architectures have variable-length instructions, we can't just
777 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
778 number information to locate the nearest known instruction boundary,
779 and disassemble forward from there. If we go out of the symbol range
780 during disassembling, we return the lowest address we've got so far and
781 set the number of instructions read to INST_READ. */
782
783 static CORE_ADDR
784 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
785 int inst_count, int *inst_read)
786 {
787 /* The vector PCS is used to store instruction addresses within
788 a pc range. */
789 CORE_ADDR loop_start, loop_end, p;
790 std::vector<CORE_ADDR> pcs;
791 struct symtab_and_line sal;
792
793 *inst_read = 0;
794 loop_start = loop_end = addr;
795
796 /* In each iteration of the outer loop, we get a pc range that ends before
797 LOOP_START, then we count and store every instruction address of the range
798 iterated in the loop.
799 If the number of instructions counted reaches INST_COUNT, return the
800 stored address that is located INST_COUNT instructions back from ADDR.
801 If INST_COUNT is not reached, we subtract the number of counted
802 instructions from INST_COUNT, and go to the next iteration. */
803 do
804 {
805 pcs.clear ();
806 sal = find_pc_sect_line (loop_start, NULL, 1);
807 if (sal.line <= 0)
808 {
809 /* We reach here when line info is not available. In this case,
810 we print a message and just exit the loop. The return value
811 is calculated after the loop. */
812 printf_filtered (_("No line number information available "
813 "for address "));
814 wrap_here (" ");
815 print_address (gdbarch, loop_start - 1, gdb_stdout);
816 printf_filtered ("\n");
817 break;
818 }
819
820 loop_end = loop_start;
821 loop_start = sal.pc;
822
823 /* This loop pushes instruction addresses in the range from
824 LOOP_START to LOOP_END. */
825 for (p = loop_start; p < loop_end;)
826 {
827 pcs.push_back (p);
828 p += gdb_insn_length (gdbarch, p);
829 }
830
831 inst_count -= pcs.size ();
832 *inst_read += pcs.size ();
833 }
834 while (inst_count > 0);
835
836 /* After the loop, the vector PCS has instruction addresses of the last
837 source line we processed, and INST_COUNT has a negative value.
838 We return the address at the index of -INST_COUNT in the vector for
839 the reason below.
840 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
841 Line X of File
842 0x4000
843 0x4001
844 0x4005
845 Line Y of File
846 0x4009
847 0x400c
848 => 0x400e
849 0x4011
850 find_instruction_backward is called with INST_COUNT = 4 and expected to
851 return 0x4001. When we reach here, INST_COUNT is set to -1 because
852 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
853 4001 is located at the index 1 of the last iterated line (= Line X),
854 which is simply calculated by -INST_COUNT.
855 The case when the length of PCS is 0 means that we reached an area for
856 which line info is not available. In such case, we return LOOP_START,
857 which was the lowest instruction address that had line info. */
858 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
859
860 /* INST_READ includes all instruction addresses in a pc range. Need to
861 exclude the beginning part up to the address we're returning. That
862 is, exclude {0x4000} in the example above. */
863 if (inst_count < 0)
864 *inst_read += inst_count;
865
866 return p;
867 }
868
869 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
870 placing the results in GDB's memory from MYADDR + LEN. Returns
871 a count of the bytes actually read. */
872
873 static int
874 read_memory_backward (struct gdbarch *gdbarch,
875 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
876 {
877 int errcode;
878 int nread; /* Number of bytes actually read. */
879
880 /* First try a complete read. */
881 errcode = target_read_memory (memaddr, myaddr, len);
882 if (errcode == 0)
883 {
884 /* Got it all. */
885 nread = len;
886 }
887 else
888 {
889 /* Loop, reading one byte at a time until we get as much as we can. */
890 memaddr += len;
891 myaddr += len;
892 for (nread = 0; nread < len; ++nread)
893 {
894 errcode = target_read_memory (--memaddr, --myaddr, 1);
895 if (errcode != 0)
896 {
897 /* The read was unsuccessful, so exit the loop. */
898 printf_filtered (_("Cannot access memory at address %s\n"),
899 paddress (gdbarch, memaddr));
900 break;
901 }
902 }
903 }
904 return nread;
905 }
906
907 /* Returns true if X (which is LEN bytes wide) is the number zero. */
908
909 static int
910 integer_is_zero (const gdb_byte *x, int len)
911 {
912 int i = 0;
913
914 while (i < len && x[i] == 0)
915 ++i;
916 return (i == len);
917 }
918
919 /* Find the start address of a string in which ADDR is included.
920 Basically we search for '\0' and return the next address,
921 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
922 we stop searching and return the address to print characters as many as
923 PRINT_MAX from the string. */
924
925 static CORE_ADDR
926 find_string_backward (struct gdbarch *gdbarch,
927 CORE_ADDR addr, int count, int char_size,
928 const struct value_print_options *options,
929 int *strings_counted)
930 {
931 const int chunk_size = 0x20;
932 int read_error = 0;
933 int chars_read = 0;
934 int chars_to_read = chunk_size;
935 int chars_counted = 0;
936 int count_original = count;
937 CORE_ADDR string_start_addr = addr;
938
939 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
940 gdb::byte_vector buffer (chars_to_read * char_size);
941 while (count > 0 && read_error == 0)
942 {
943 int i;
944
945 addr -= chars_to_read * char_size;
946 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
947 chars_to_read * char_size);
948 chars_read /= char_size;
949 read_error = (chars_read == chars_to_read) ? 0 : 1;
950 /* Searching for '\0' from the end of buffer in backward direction. */
951 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
952 {
953 int offset = (chars_to_read - i - 1) * char_size;
954
955 if (integer_is_zero (&buffer[offset], char_size)
956 || chars_counted == options->print_max)
957 {
958 /* Found '\0' or reached print_max. As OFFSET is the offset to
959 '\0', we add CHAR_SIZE to return the start address of
960 a string. */
961 --count;
962 string_start_addr = addr + offset + char_size;
963 chars_counted = 0;
964 }
965 }
966 }
967
968 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
969 *strings_counted = count_original - count;
970
971 if (read_error != 0)
972 {
973 /* In error case, STRING_START_ADDR is pointing to the string that
974 was last successfully loaded. Rewind the partially loaded string. */
975 string_start_addr -= chars_counted * char_size;
976 }
977
978 return string_start_addr;
979 }
980
981 /* Examine data at address ADDR in format FMT.
982 Fetch it from memory and print on gdb_stdout. */
983
984 static void
985 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
986 {
987 char format = 0;
988 char size;
989 int count = 1;
990 struct type *val_type = NULL;
991 int i;
992 int maxelts;
993 struct value_print_options opts;
994 int need_to_update_next_address = 0;
995 CORE_ADDR addr_rewound = 0;
996
997 format = fmt.format;
998 size = fmt.size;
999 count = fmt.count;
1000 next_gdbarch = gdbarch;
1001 next_address = addr;
1002
1003 /* Instruction format implies fetch single bytes
1004 regardless of the specified size.
1005 The case of strings is handled in decode_format, only explicit
1006 size operator are not changed to 'b'. */
1007 if (format == 'i')
1008 size = 'b';
1009
1010 if (size == 'a')
1011 {
1012 /* Pick the appropriate size for an address. */
1013 if (gdbarch_ptr_bit (next_gdbarch) == 64)
1014 size = 'g';
1015 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
1016 size = 'w';
1017 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
1018 size = 'h';
1019 else
1020 /* Bad value for gdbarch_ptr_bit. */
1021 internal_error (__FILE__, __LINE__,
1022 _("failed internal consistency check"));
1023 }
1024
1025 if (size == 'b')
1026 val_type = builtin_type (next_gdbarch)->builtin_int8;
1027 else if (size == 'h')
1028 val_type = builtin_type (next_gdbarch)->builtin_int16;
1029 else if (size == 'w')
1030 val_type = builtin_type (next_gdbarch)->builtin_int32;
1031 else if (size == 'g')
1032 val_type = builtin_type (next_gdbarch)->builtin_int64;
1033
1034 if (format == 's')
1035 {
1036 struct type *char_type = NULL;
1037
1038 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1039 if type is not found. */
1040 if (size == 'h')
1041 char_type = builtin_type (next_gdbarch)->builtin_char16;
1042 else if (size == 'w')
1043 char_type = builtin_type (next_gdbarch)->builtin_char32;
1044 if (char_type)
1045 val_type = char_type;
1046 else
1047 {
1048 if (size != '\0' && size != 'b')
1049 warning (_("Unable to display strings with "
1050 "size '%c', using 'b' instead."), size);
1051 size = 'b';
1052 val_type = builtin_type (next_gdbarch)->builtin_int8;
1053 }
1054 }
1055
1056 maxelts = 8;
1057 if (size == 'w')
1058 maxelts = 4;
1059 if (size == 'g')
1060 maxelts = 2;
1061 if (format == 's' || format == 'i')
1062 maxelts = 1;
1063
1064 get_formatted_print_options (&opts, format);
1065
1066 if (count < 0)
1067 {
1068 /* This is the negative repeat count case.
1069 We rewind the address based on the given repeat count and format,
1070 then examine memory from there in forward direction. */
1071
1072 count = -count;
1073 if (format == 'i')
1074 {
1075 next_address = find_instruction_backward (gdbarch, addr, count,
1076 &count);
1077 }
1078 else if (format == 's')
1079 {
1080 next_address = find_string_backward (gdbarch, addr, count,
1081 TYPE_LENGTH (val_type),
1082 &opts, &count);
1083 }
1084 else
1085 {
1086 next_address = addr - count * TYPE_LENGTH (val_type);
1087 }
1088
1089 /* The following call to print_formatted updates next_address in every
1090 iteration. In backward case, we store the start address here
1091 and update next_address with it before exiting the function. */
1092 addr_rewound = (format == 's'
1093 ? next_address - TYPE_LENGTH (val_type)
1094 : next_address);
1095 need_to_update_next_address = 1;
1096 }
1097
1098 /* Print as many objects as specified in COUNT, at most maxelts per line,
1099 with the address of the next one at the start of each line. */
1100
1101 while (count > 0)
1102 {
1103 QUIT;
1104 if (format == 'i')
1105 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1106 print_address (next_gdbarch, next_address, gdb_stdout);
1107 printf_filtered (":");
1108 for (i = maxelts;
1109 i > 0 && count > 0;
1110 i--, count--)
1111 {
1112 printf_filtered ("\t");
1113 /* Note that print_formatted sets next_address for the next
1114 object. */
1115 last_examine_address = next_address;
1116
1117 /* The value to be displayed is not fetched greedily.
1118 Instead, to avoid the possibility of a fetched value not
1119 being used, its retrieval is delayed until the print code
1120 uses it. When examining an instruction stream, the
1121 disassembler will perform its own memory fetch using just
1122 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1123 the disassembler be modified so that LAST_EXAMINE_VALUE
1124 is left with the byte sequence from the last complete
1125 instruction fetched from memory? */
1126 last_examine_value
1127 = release_value (value_at_lazy (val_type, next_address));
1128
1129 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1130
1131 /* Display any branch delay slots following the final insn. */
1132 if (format == 'i' && count == 1)
1133 count += branch_delay_insns;
1134 }
1135 printf_filtered ("\n");
1136 }
1137
1138 if (need_to_update_next_address)
1139 next_address = addr_rewound;
1140 }
1141 \f
1142 static void
1143 validate_format (struct format_data fmt, const char *cmdname)
1144 {
1145 if (fmt.size != 0)
1146 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1147 if (fmt.count != 1)
1148 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1149 cmdname);
1150 if (fmt.format == 'i')
1151 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1152 fmt.format, cmdname);
1153 }
1154
1155 /* Parse print command format string into *OPTS and update *EXPP.
1156 CMDNAME should name the current command. */
1157
1158 void
1159 print_command_parse_format (const char **expp, const char *cmdname,
1160 value_print_options *opts)
1161 {
1162 const char *exp = *expp;
1163
1164 /* opts->raw value might already have been set by 'set print raw-values'
1165 or by using 'print -raw-values'.
1166 So, do not set opts->raw to 0, only set it to 1 if /r is given. */
1167 if (exp && *exp == '/')
1168 {
1169 format_data fmt;
1170
1171 exp++;
1172 fmt = decode_format (&exp, last_format, 0);
1173 validate_format (fmt, cmdname);
1174 last_format = fmt.format;
1175
1176 opts->format = fmt.format;
1177 opts->raw = opts->raw || fmt.raw;
1178 }
1179 else
1180 {
1181 opts->format = 0;
1182 }
1183
1184 *expp = exp;
1185 }
1186
1187 /* See valprint.h. */
1188
1189 void
1190 print_value (value *val, const value_print_options &opts)
1191 {
1192 int histindex = record_latest_value (val);
1193
1194 annotate_value_history_begin (histindex, value_type (val));
1195
1196 printf_filtered ("$%d = ", histindex);
1197
1198 annotate_value_history_value ();
1199
1200 print_formatted (val, 0, &opts, gdb_stdout);
1201 printf_filtered ("\n");
1202
1203 annotate_value_history_end ();
1204 }
1205
1206 /* Implementation of the "print" and "call" commands. */
1207
1208 static void
1209 print_command_1 (const char *args, bool voidprint)
1210 {
1211 struct value *val;
1212 value_print_options print_opts;
1213
1214 get_user_print_options (&print_opts);
1215 /* Override global settings with explicit options, if any. */
1216 auto group = make_value_print_options_def_group (&print_opts);
1217 gdb::option::process_options
1218 (&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group);
1219
1220 print_command_parse_format (&args, "print", &print_opts);
1221
1222 const char *exp = args;
1223
1224 if (exp != nullptr && *exp)
1225 {
1226 /* VOIDPRINT is true to indicate that we do want to print a void
1227 value, so invert it for parse_expression. */
1228 expression_up expr = parse_expression (exp, nullptr, !voidprint);
1229 val = evaluate_expression (expr.get ());
1230 }
1231 else
1232 val = access_value_history (0);
1233
1234 if (voidprint || (val && value_type (val) &&
1235 value_type (val)->code () != TYPE_CODE_VOID))
1236 print_value (val, print_opts);
1237 }
1238
1239 /* Called from command completion function to skip over /FMT
1240 specifications, allowing the rest of the line to be completed. Returns
1241 true if the /FMT is at the end of the current line and there is nothing
1242 left to complete, otherwise false is returned.
1243
1244 In either case *ARGS can be updated to point after any part of /FMT that
1245 is present.
1246
1247 This function is designed so that trying to complete '/' will offer no
1248 completions, the user needs to insert the format specification
1249 themselves. Trying to complete '/FMT' (where FMT is any non-empty set
1250 of alpha-numeric characters) will cause readline to insert a single
1251 space, setting the user up to enter the expression. */
1252
1253 static bool
1254 skip_over_slash_fmt (completion_tracker &tracker, const char **args)
1255 {
1256 const char *text = *args;
1257
1258 if (text[0] == '/')
1259 {
1260 bool in_fmt;
1261 tracker.set_use_custom_word_point (true);
1262
1263 if (text[1] == '\0')
1264 {
1265 /* The user tried to complete after typing just the '/' character
1266 of the /FMT string. Step the completer past the '/', but we
1267 don't offer any completions. */
1268 in_fmt = true;
1269 ++text;
1270 }
1271 else
1272 {
1273 /* The user has typed some characters after the '/', we assume
1274 this is a complete /FMT string, first skip over it. */
1275 text = skip_to_space (text);
1276
1277 if (*text == '\0')
1278 {
1279 /* We're at the end of the input string. The user has typed
1280 '/FMT' and asked for a completion. Push an empty
1281 completion string, this will cause readline to insert a
1282 space so the user now has '/FMT '. */
1283 in_fmt = true;
1284 tracker.add_completion (make_unique_xstrdup (text));
1285 }
1286 else
1287 {
1288 /* The user has already typed things after the /FMT, skip the
1289 whitespace and return false. Whoever called this function
1290 should then try to complete what comes next. */
1291 in_fmt = false;
1292 text = skip_spaces (text);
1293 }
1294 }
1295
1296 tracker.advance_custom_word_point_by (text - *args);
1297 *args = text;
1298 return in_fmt;
1299 }
1300
1301 return false;
1302 }
1303
1304 /* See valprint.h. */
1305
1306 void
1307 print_command_completer (struct cmd_list_element *ignore,
1308 completion_tracker &tracker,
1309 const char *text, const char * /*word*/)
1310 {
1311 const auto group = make_value_print_options_def_group (nullptr);
1312 if (gdb::option::complete_options
1313 (tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group))
1314 return;
1315
1316 if (skip_over_slash_fmt (tracker, &text))
1317 return;
1318
1319 const char *word = advance_to_expression_complete_word_point (tracker, text);
1320 expression_completer (ignore, tracker, text, word);
1321 }
1322
1323 static void
1324 print_command (const char *exp, int from_tty)
1325 {
1326 print_command_1 (exp, true);
1327 }
1328
1329 /* Same as print, except it doesn't print void results. */
1330 static void
1331 call_command (const char *exp, int from_tty)
1332 {
1333 print_command_1 (exp, false);
1334 }
1335
1336 /* Implementation of the "output" command. */
1337
1338 void
1339 output_command (const char *exp, int from_tty)
1340 {
1341 char format = 0;
1342 struct value *val;
1343 struct format_data fmt;
1344 struct value_print_options opts;
1345
1346 fmt.size = 0;
1347 fmt.raw = 0;
1348
1349 if (exp && *exp == '/')
1350 {
1351 exp++;
1352 fmt = decode_format (&exp, 0, 0);
1353 validate_format (fmt, "output");
1354 format = fmt.format;
1355 }
1356
1357 expression_up expr = parse_expression (exp);
1358
1359 val = evaluate_expression (expr.get ());
1360
1361 annotate_value_begin (value_type (val));
1362
1363 get_formatted_print_options (&opts, format);
1364 opts.raw = fmt.raw;
1365 print_formatted (val, fmt.size, &opts, gdb_stdout);
1366
1367 annotate_value_end ();
1368
1369 wrap_here ("");
1370 gdb_flush (gdb_stdout);
1371 }
1372
1373 static void
1374 set_command (const char *exp, int from_tty)
1375 {
1376 expression_up expr = parse_expression (exp);
1377
1378 if (expr->nelts >= 1)
1379 switch (expr->elts[0].opcode)
1380 {
1381 case UNOP_PREINCREMENT:
1382 case UNOP_POSTINCREMENT:
1383 case UNOP_PREDECREMENT:
1384 case UNOP_POSTDECREMENT:
1385 case BINOP_ASSIGN:
1386 case BINOP_ASSIGN_MODIFY:
1387 case BINOP_COMMA:
1388 break;
1389 default:
1390 warning
1391 (_("Expression is not an assignment (and might have no effect)"));
1392 }
1393
1394 evaluate_expression (expr.get ());
1395 }
1396
1397 static void
1398 info_symbol_command (const char *arg, int from_tty)
1399 {
1400 struct minimal_symbol *msymbol;
1401 struct obj_section *osect;
1402 CORE_ADDR addr, sect_addr;
1403 int matches = 0;
1404 unsigned int offset;
1405
1406 if (!arg)
1407 error_no_arg (_("address"));
1408
1409 addr = parse_and_eval_address (arg);
1410 for (objfile *objfile : current_program_space->objfiles ())
1411 ALL_OBJFILE_OSECTIONS (objfile, osect)
1412 {
1413 /* Only process each object file once, even if there's a separate
1414 debug file. */
1415 if (objfile->separate_debug_objfile_backlink)
1416 continue;
1417
1418 sect_addr = overlay_mapped_address (addr, osect);
1419
1420 if (obj_section_addr (osect) <= sect_addr
1421 && sect_addr < obj_section_endaddr (osect)
1422 && (msymbol
1423 = lookup_minimal_symbol_by_pc_section (sect_addr,
1424 osect).minsym))
1425 {
1426 const char *obj_name, *mapped, *sec_name, *msym_name;
1427 const char *loc_string;
1428
1429 matches = 1;
1430 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1431 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1432 sec_name = osect->the_bfd_section->name;
1433 msym_name = msymbol->print_name ();
1434
1435 /* Don't print the offset if it is zero.
1436 We assume there's no need to handle i18n of "sym + offset". */
1437 std::string string_holder;
1438 if (offset)
1439 {
1440 string_holder = string_printf ("%s + %u", msym_name, offset);
1441 loc_string = string_holder.c_str ();
1442 }
1443 else
1444 loc_string = msym_name;
1445
1446 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1447 obj_name = objfile_name (osect->objfile);
1448
1449 if (current_program_space->multi_objfile_p ())
1450 if (pc_in_unmapped_range (addr, osect))
1451 if (section_is_overlay (osect))
1452 printf_filtered (_("%s in load address range of "
1453 "%s overlay section %s of %s\n"),
1454 loc_string, mapped, sec_name, obj_name);
1455 else
1456 printf_filtered (_("%s in load address range of "
1457 "section %s of %s\n"),
1458 loc_string, sec_name, obj_name);
1459 else
1460 if (section_is_overlay (osect))
1461 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1462 loc_string, mapped, sec_name, obj_name);
1463 else
1464 printf_filtered (_("%s in section %s of %s\n"),
1465 loc_string, sec_name, obj_name);
1466 else
1467 if (pc_in_unmapped_range (addr, osect))
1468 if (section_is_overlay (osect))
1469 printf_filtered (_("%s in load address range of %s overlay "
1470 "section %s\n"),
1471 loc_string, mapped, sec_name);
1472 else
1473 printf_filtered
1474 (_("%s in load address range of section %s\n"),
1475 loc_string, sec_name);
1476 else
1477 if (section_is_overlay (osect))
1478 printf_filtered (_("%s in %s overlay section %s\n"),
1479 loc_string, mapped, sec_name);
1480 else
1481 printf_filtered (_("%s in section %s\n"),
1482 loc_string, sec_name);
1483 }
1484 }
1485 if (matches == 0)
1486 printf_filtered (_("No symbol matches %s.\n"), arg);
1487 }
1488
1489 static void
1490 info_address_command (const char *exp, int from_tty)
1491 {
1492 struct gdbarch *gdbarch;
1493 int regno;
1494 struct symbol *sym;
1495 struct bound_minimal_symbol msymbol;
1496 long val;
1497 struct obj_section *section;
1498 CORE_ADDR load_addr, context_pc = 0;
1499 struct field_of_this_result is_a_field_of_this;
1500
1501 if (exp == 0)
1502 error (_("Argument required."));
1503
1504 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1505 &is_a_field_of_this).symbol;
1506 if (sym == NULL)
1507 {
1508 if (is_a_field_of_this.type != NULL)
1509 {
1510 printf_filtered ("Symbol \"");
1511 fprintf_symbol_filtered (gdb_stdout, exp,
1512 current_language->la_language, DMGL_ANSI);
1513 printf_filtered ("\" is a field of the local class variable ");
1514 if (current_language->la_language == language_objc)
1515 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1516 else
1517 printf_filtered ("`this'\n");
1518 return;
1519 }
1520
1521 msymbol = lookup_bound_minimal_symbol (exp);
1522
1523 if (msymbol.minsym != NULL)
1524 {
1525 struct objfile *objfile = msymbol.objfile;
1526
1527 gdbarch = objfile->arch ();
1528 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1529
1530 printf_filtered ("Symbol \"");
1531 fprintf_symbol_filtered (gdb_stdout, exp,
1532 current_language->la_language, DMGL_ANSI);
1533 printf_filtered ("\" is at ");
1534 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1535 gdb_stdout);
1536 printf_filtered (" in a file compiled without debugging");
1537 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1538 if (section_is_overlay (section))
1539 {
1540 load_addr = overlay_unmapped_address (load_addr, section);
1541 printf_filtered (",\n -- loaded at ");
1542 fputs_styled (paddress (gdbarch, load_addr),
1543 address_style.style (),
1544 gdb_stdout);
1545 printf_filtered (" in overlay section %s",
1546 section->the_bfd_section->name);
1547 }
1548 printf_filtered (".\n");
1549 }
1550 else
1551 error (_("No symbol \"%s\" in current context."), exp);
1552 return;
1553 }
1554
1555 printf_filtered ("Symbol \"");
1556 fprintf_symbol_filtered (gdb_stdout, sym->print_name (),
1557 current_language->la_language, DMGL_ANSI);
1558 printf_filtered ("\" is ");
1559 val = SYMBOL_VALUE (sym);
1560 if (SYMBOL_OBJFILE_OWNED (sym))
1561 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1562 else
1563 section = NULL;
1564 gdbarch = symbol_arch (sym);
1565
1566 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1567 {
1568 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1569 gdb_stdout);
1570 printf_filtered (".\n");
1571 return;
1572 }
1573
1574 switch (SYMBOL_CLASS (sym))
1575 {
1576 case LOC_CONST:
1577 case LOC_CONST_BYTES:
1578 printf_filtered ("constant");
1579 break;
1580
1581 case LOC_LABEL:
1582 printf_filtered ("a label at address ");
1583 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1584 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1585 gdb_stdout);
1586 if (section_is_overlay (section))
1587 {
1588 load_addr = overlay_unmapped_address (load_addr, section);
1589 printf_filtered (",\n -- loaded at ");
1590 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1591 gdb_stdout);
1592 printf_filtered (" in overlay section %s",
1593 section->the_bfd_section->name);
1594 }
1595 break;
1596
1597 case LOC_COMPUTED:
1598 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1599
1600 case LOC_REGISTER:
1601 /* GDBARCH is the architecture associated with the objfile the symbol
1602 is defined in; the target architecture may be different, and may
1603 provide additional registers. However, we do not know the target
1604 architecture at this point. We assume the objfile architecture
1605 will contain all the standard registers that occur in debug info
1606 in that objfile. */
1607 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1608
1609 if (SYMBOL_IS_ARGUMENT (sym))
1610 printf_filtered (_("an argument in register %s"),
1611 gdbarch_register_name (gdbarch, regno));
1612 else
1613 printf_filtered (_("a variable in register %s"),
1614 gdbarch_register_name (gdbarch, regno));
1615 break;
1616
1617 case LOC_STATIC:
1618 printf_filtered (_("static storage at address "));
1619 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1620 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1621 gdb_stdout);
1622 if (section_is_overlay (section))
1623 {
1624 load_addr = overlay_unmapped_address (load_addr, section);
1625 printf_filtered (_(",\n -- loaded at "));
1626 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1627 gdb_stdout);
1628 printf_filtered (_(" in overlay section %s"),
1629 section->the_bfd_section->name);
1630 }
1631 break;
1632
1633 case LOC_REGPARM_ADDR:
1634 /* Note comment at LOC_REGISTER. */
1635 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1636 printf_filtered (_("address of an argument in register %s"),
1637 gdbarch_register_name (gdbarch, regno));
1638 break;
1639
1640 case LOC_ARG:
1641 printf_filtered (_("an argument at offset %ld"), val);
1642 break;
1643
1644 case LOC_LOCAL:
1645 printf_filtered (_("a local variable at frame offset %ld"), val);
1646 break;
1647
1648 case LOC_REF_ARG:
1649 printf_filtered (_("a reference argument at offset %ld"), val);
1650 break;
1651
1652 case LOC_TYPEDEF:
1653 printf_filtered (_("a typedef"));
1654 break;
1655
1656 case LOC_BLOCK:
1657 printf_filtered (_("a function at address "));
1658 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1659 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1660 gdb_stdout);
1661 if (section_is_overlay (section))
1662 {
1663 load_addr = overlay_unmapped_address (load_addr, section);
1664 printf_filtered (_(",\n -- loaded at "));
1665 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1666 gdb_stdout);
1667 printf_filtered (_(" in overlay section %s"),
1668 section->the_bfd_section->name);
1669 }
1670 break;
1671
1672 case LOC_UNRESOLVED:
1673 {
1674 struct bound_minimal_symbol msym;
1675
1676 msym = lookup_bound_minimal_symbol (sym->linkage_name ());
1677 if (msym.minsym == NULL)
1678 printf_filtered ("unresolved");
1679 else
1680 {
1681 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1682
1683 if (section
1684 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1685 {
1686 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1687 printf_filtered (_("a thread-local variable at offset %s "
1688 "in the thread-local storage for `%s'"),
1689 paddress (gdbarch, load_addr),
1690 objfile_name (section->objfile));
1691 }
1692 else
1693 {
1694 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1695 printf_filtered (_("static storage at address "));
1696 fputs_styled (paddress (gdbarch, load_addr),
1697 address_style.style (), gdb_stdout);
1698 if (section_is_overlay (section))
1699 {
1700 load_addr = overlay_unmapped_address (load_addr, section);
1701 printf_filtered (_(",\n -- loaded at "));
1702 fputs_styled (paddress (gdbarch, load_addr),
1703 address_style.style (),
1704 gdb_stdout);
1705 printf_filtered (_(" in overlay section %s"),
1706 section->the_bfd_section->name);
1707 }
1708 }
1709 }
1710 }
1711 break;
1712
1713 case LOC_OPTIMIZED_OUT:
1714 printf_filtered (_("optimized out"));
1715 break;
1716
1717 default:
1718 printf_filtered (_("of unknown (botched) type"));
1719 break;
1720 }
1721 printf_filtered (".\n");
1722 }
1723 \f
1724
1725 static void
1726 x_command (const char *exp, int from_tty)
1727 {
1728 struct format_data fmt;
1729 struct value *val;
1730
1731 fmt.format = last_format ? last_format : 'x';
1732 fmt.size = last_size;
1733 fmt.count = 1;
1734 fmt.raw = 0;
1735
1736 /* If there is no expression and no format, use the most recent
1737 count. */
1738 if (exp == nullptr && last_count > 0)
1739 fmt.count = last_count;
1740
1741 if (exp && *exp == '/')
1742 {
1743 const char *tmp = exp + 1;
1744
1745 fmt = decode_format (&tmp, last_format, last_size);
1746 exp = (char *) tmp;
1747 }
1748
1749 last_count = fmt.count;
1750
1751 /* If we have an expression, evaluate it and use it as the address. */
1752
1753 if (exp != 0 && *exp != 0)
1754 {
1755 expression_up expr = parse_expression (exp);
1756 /* Cause expression not to be there any more if this command is
1757 repeated with Newline. But don't clobber a user-defined
1758 command's definition. */
1759 if (from_tty)
1760 set_repeat_arguments ("");
1761 val = evaluate_expression (expr.get ());
1762 if (TYPE_IS_REFERENCE (value_type (val)))
1763 val = coerce_ref (val);
1764 /* In rvalue contexts, such as this, functions are coerced into
1765 pointers to functions. This makes "x/i main" work. */
1766 if (value_type (val)->code () == TYPE_CODE_FUNC
1767 && VALUE_LVAL (val) == lval_memory)
1768 next_address = value_address (val);
1769 else
1770 next_address = value_as_address (val);
1771
1772 next_gdbarch = expr->gdbarch;
1773 }
1774
1775 if (!next_gdbarch)
1776 error_no_arg (_("starting display address"));
1777
1778 do_examine (fmt, next_gdbarch, next_address);
1779
1780 /* If the examine succeeds, we remember its size and format for next
1781 time. Set last_size to 'b' for strings. */
1782 if (fmt.format == 's')
1783 last_size = 'b';
1784 else
1785 last_size = fmt.size;
1786 last_format = fmt.format;
1787
1788 /* Set a couple of internal variables if appropriate. */
1789 if (last_examine_value != nullptr)
1790 {
1791 /* Make last address examined available to the user as $_. Use
1792 the correct pointer type. */
1793 struct type *pointer_type
1794 = lookup_pointer_type (value_type (last_examine_value.get ()));
1795 set_internalvar (lookup_internalvar ("_"),
1796 value_from_pointer (pointer_type,
1797 last_examine_address));
1798
1799 /* Make contents of last address examined available to the user
1800 as $__. If the last value has not been fetched from memory
1801 then don't fetch it now; instead mark it by voiding the $__
1802 variable. */
1803 if (value_lazy (last_examine_value.get ()))
1804 clear_internalvar (lookup_internalvar ("__"));
1805 else
1806 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1807 }
1808 }
1809
1810 /* Command completion for the 'display' and 'x' commands. */
1811
1812 static void
1813 display_and_x_command_completer (struct cmd_list_element *ignore,
1814 completion_tracker &tracker,
1815 const char *text, const char * /*word*/)
1816 {
1817 if (skip_over_slash_fmt (tracker, &text))
1818 return;
1819
1820 const char *word = advance_to_expression_complete_word_point (tracker, text);
1821 expression_completer (ignore, tracker, text, word);
1822 }
1823
1824 \f
1825
1826 /* Add an expression to the auto-display chain.
1827 Specify the expression. */
1828
1829 static void
1830 display_command (const char *arg, int from_tty)
1831 {
1832 struct format_data fmt;
1833 struct display *newobj;
1834 const char *exp = arg;
1835
1836 if (exp == 0)
1837 {
1838 do_displays ();
1839 return;
1840 }
1841
1842 if (*exp == '/')
1843 {
1844 exp++;
1845 fmt = decode_format (&exp, 0, 0);
1846 if (fmt.size && fmt.format == 0)
1847 fmt.format = 'x';
1848 if (fmt.format == 'i' || fmt.format == 's')
1849 fmt.size = 'b';
1850 }
1851 else
1852 {
1853 fmt.format = 0;
1854 fmt.size = 0;
1855 fmt.count = 0;
1856 fmt.raw = 0;
1857 }
1858
1859 innermost_block_tracker tracker;
1860 expression_up expr = parse_expression (exp, &tracker);
1861
1862 newobj = new display (exp, std::move (expr), fmt,
1863 current_program_space, tracker.block ());
1864 all_displays.emplace_back (newobj);
1865
1866 if (from_tty)
1867 do_one_display (newobj);
1868
1869 dont_repeat ();
1870 }
1871
1872 /* Clear out the display_chain. Done when new symtabs are loaded,
1873 since this invalidates the types stored in many expressions. */
1874
1875 void
1876 clear_displays ()
1877 {
1878 all_displays.clear ();
1879 }
1880
1881 /* Delete the auto-display DISPLAY. */
1882
1883 static void
1884 delete_display (struct display *display)
1885 {
1886 gdb_assert (display != NULL);
1887
1888 auto iter = std::find_if (all_displays.begin (),
1889 all_displays.end (),
1890 [=] (const std::unique_ptr<struct display> &item)
1891 {
1892 return item.get () == display;
1893 });
1894 gdb_assert (iter != all_displays.end ());
1895 all_displays.erase (iter);
1896 }
1897
1898 /* Call FUNCTION on each of the displays whose numbers are given in
1899 ARGS. DATA is passed unmodified to FUNCTION. */
1900
1901 static void
1902 map_display_numbers (const char *args,
1903 gdb::function_view<void (struct display *)> function)
1904 {
1905 int num;
1906
1907 if (args == NULL)
1908 error_no_arg (_("one or more display numbers"));
1909
1910 number_or_range_parser parser (args);
1911
1912 while (!parser.finished ())
1913 {
1914 const char *p = parser.cur_tok ();
1915
1916 num = parser.get_number ();
1917 if (num == 0)
1918 warning (_("bad display number at or near '%s'"), p);
1919 else
1920 {
1921 auto iter = std::find_if (all_displays.begin (),
1922 all_displays.end (),
1923 [=] (const std::unique_ptr<display> &item)
1924 {
1925 return item->number == num;
1926 });
1927 if (iter == all_displays.end ())
1928 printf_unfiltered (_("No display number %d.\n"), num);
1929 else
1930 function (iter->get ());
1931 }
1932 }
1933 }
1934
1935 /* "undisplay" command. */
1936
1937 static void
1938 undisplay_command (const char *args, int from_tty)
1939 {
1940 if (args == NULL)
1941 {
1942 if (query (_("Delete all auto-display expressions? ")))
1943 clear_displays ();
1944 dont_repeat ();
1945 return;
1946 }
1947
1948 map_display_numbers (args, delete_display);
1949 dont_repeat ();
1950 }
1951
1952 /* Display a single auto-display.
1953 Do nothing if the display cannot be printed in the current context,
1954 or if the display is disabled. */
1955
1956 static void
1957 do_one_display (struct display *d)
1958 {
1959 int within_current_scope;
1960
1961 if (!d->enabled_p)
1962 return;
1963
1964 /* The expression carries the architecture that was used at parse time.
1965 This is a problem if the expression depends on architecture features
1966 (e.g. register numbers), and the current architecture is now different.
1967 For example, a display statement like "display/i $pc" is expected to
1968 display the PC register of the current architecture, not the arch at
1969 the time the display command was given. Therefore, we re-parse the
1970 expression if the current architecture has changed. */
1971 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1972 {
1973 d->exp.reset ();
1974 d->block = NULL;
1975 }
1976
1977 if (d->exp == NULL)
1978 {
1979
1980 try
1981 {
1982 innermost_block_tracker tracker;
1983 d->exp = parse_expression (d->exp_string.c_str (), &tracker);
1984 d->block = tracker.block ();
1985 }
1986 catch (const gdb_exception &ex)
1987 {
1988 /* Can't re-parse the expression. Disable this display item. */
1989 d->enabled_p = false;
1990 warning (_("Unable to display \"%s\": %s"),
1991 d->exp_string.c_str (), ex.what ());
1992 return;
1993 }
1994 }
1995
1996 if (d->block)
1997 {
1998 if (d->pspace == current_program_space)
1999 within_current_scope = contained_in (get_selected_block (0), d->block,
2000 true);
2001 else
2002 within_current_scope = 0;
2003 }
2004 else
2005 within_current_scope = 1;
2006 if (!within_current_scope)
2007 return;
2008
2009 scoped_restore save_display_number
2010 = make_scoped_restore (&current_display_number, d->number);
2011
2012 annotate_display_begin ();
2013 printf_filtered ("%d", d->number);
2014 annotate_display_number_end ();
2015 printf_filtered (": ");
2016 if (d->format.size)
2017 {
2018
2019 annotate_display_format ();
2020
2021 printf_filtered ("x/");
2022 if (d->format.count != 1)
2023 printf_filtered ("%d", d->format.count);
2024 printf_filtered ("%c", d->format.format);
2025 if (d->format.format != 'i' && d->format.format != 's')
2026 printf_filtered ("%c", d->format.size);
2027 printf_filtered (" ");
2028
2029 annotate_display_expression ();
2030
2031 puts_filtered (d->exp_string.c_str ());
2032 annotate_display_expression_end ();
2033
2034 if (d->format.count != 1 || d->format.format == 'i')
2035 printf_filtered ("\n");
2036 else
2037 printf_filtered (" ");
2038
2039 annotate_display_value ();
2040
2041 try
2042 {
2043 struct value *val;
2044 CORE_ADDR addr;
2045
2046 val = evaluate_expression (d->exp.get ());
2047 addr = value_as_address (val);
2048 if (d->format.format == 'i')
2049 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
2050 do_examine (d->format, d->exp->gdbarch, addr);
2051 }
2052 catch (const gdb_exception_error &ex)
2053 {
2054 fprintf_filtered (gdb_stdout, _("%p[<error: %s>%p]\n"),
2055 metadata_style.style ().ptr (), ex.what (),
2056 nullptr);
2057 }
2058 }
2059 else
2060 {
2061 struct value_print_options opts;
2062
2063 annotate_display_format ();
2064
2065 if (d->format.format)
2066 printf_filtered ("/%c ", d->format.format);
2067
2068 annotate_display_expression ();
2069
2070 puts_filtered (d->exp_string.c_str ());
2071 annotate_display_expression_end ();
2072
2073 printf_filtered (" = ");
2074
2075 annotate_display_expression ();
2076
2077 get_formatted_print_options (&opts, d->format.format);
2078 opts.raw = d->format.raw;
2079
2080 try
2081 {
2082 struct value *val;
2083
2084 val = evaluate_expression (d->exp.get ());
2085 print_formatted (val, d->format.size, &opts, gdb_stdout);
2086 }
2087 catch (const gdb_exception_error &ex)
2088 {
2089 fprintf_styled (gdb_stdout, metadata_style.style (),
2090 _("<error: %s>"), ex.what ());
2091 }
2092
2093 printf_filtered ("\n");
2094 }
2095
2096 annotate_display_end ();
2097
2098 gdb_flush (gdb_stdout);
2099 }
2100
2101 /* Display all of the values on the auto-display chain which can be
2102 evaluated in the current scope. */
2103
2104 void
2105 do_displays (void)
2106 {
2107 for (auto &d : all_displays)
2108 do_one_display (d.get ());
2109 }
2110
2111 /* Delete the auto-display which we were in the process of displaying.
2112 This is done when there is an error or a signal. */
2113
2114 void
2115 disable_display (int num)
2116 {
2117 for (auto &d : all_displays)
2118 if (d->number == num)
2119 {
2120 d->enabled_p = false;
2121 return;
2122 }
2123 printf_unfiltered (_("No display number %d.\n"), num);
2124 }
2125
2126 void
2127 disable_current_display (void)
2128 {
2129 if (current_display_number >= 0)
2130 {
2131 disable_display (current_display_number);
2132 fprintf_unfiltered (gdb_stderr,
2133 _("Disabling display %d to "
2134 "avoid infinite recursion.\n"),
2135 current_display_number);
2136 }
2137 current_display_number = -1;
2138 }
2139
2140 static void
2141 info_display_command (const char *ignore, int from_tty)
2142 {
2143 if (all_displays.empty ())
2144 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2145 else
2146 printf_filtered (_("Auto-display expressions now in effect:\n\
2147 Num Enb Expression\n"));
2148
2149 for (auto &d : all_displays)
2150 {
2151 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2152 if (d->format.size)
2153 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2154 d->format.format);
2155 else if (d->format.format)
2156 printf_filtered ("/%c ", d->format.format);
2157 puts_filtered (d->exp_string.c_str ());
2158 if (d->block && !contained_in (get_selected_block (0), d->block, true))
2159 printf_filtered (_(" (cannot be evaluated in the current context)"));
2160 printf_filtered ("\n");
2161 }
2162 }
2163
2164 /* Implementation of both the "disable display" and "enable display"
2165 commands. ENABLE decides what to do. */
2166
2167 static void
2168 enable_disable_display_command (const char *args, int from_tty, bool enable)
2169 {
2170 if (args == NULL)
2171 {
2172 for (auto &d : all_displays)
2173 d->enabled_p = enable;
2174 return;
2175 }
2176
2177 map_display_numbers (args,
2178 [=] (struct display *d)
2179 {
2180 d->enabled_p = enable;
2181 });
2182 }
2183
2184 /* The "enable display" command. */
2185
2186 static void
2187 enable_display_command (const char *args, int from_tty)
2188 {
2189 enable_disable_display_command (args, from_tty, true);
2190 }
2191
2192 /* The "disable display" command. */
2193
2194 static void
2195 disable_display_command (const char *args, int from_tty)
2196 {
2197 enable_disable_display_command (args, from_tty, false);
2198 }
2199
2200 /* display_chain items point to blocks and expressions. Some expressions in
2201 turn may point to symbols.
2202 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2203 obstack_free'd when a shared library is unloaded.
2204 Clear pointers that are about to become dangling.
2205 Both .exp and .block fields will be restored next time we need to display
2206 an item by re-parsing .exp_string field in the new execution context. */
2207
2208 static void
2209 clear_dangling_display_expressions (struct objfile *objfile)
2210 {
2211 struct program_space *pspace;
2212
2213 /* With no symbol file we cannot have a block or expression from it. */
2214 if (objfile == NULL)
2215 return;
2216 pspace = objfile->pspace;
2217 if (objfile->separate_debug_objfile_backlink)
2218 {
2219 objfile = objfile->separate_debug_objfile_backlink;
2220 gdb_assert (objfile->pspace == pspace);
2221 }
2222
2223 for (auto &d : all_displays)
2224 {
2225 if (d->pspace != pspace)
2226 continue;
2227
2228 struct objfile *bl_objf = nullptr;
2229 if (d->block != nullptr)
2230 {
2231 bl_objf = block_objfile (d->block);
2232 if (bl_objf->separate_debug_objfile_backlink != nullptr)
2233 bl_objf = bl_objf->separate_debug_objfile_backlink;
2234 }
2235
2236 if (bl_objf == objfile
2237 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2238 {
2239 d->exp.reset ();
2240 d->block = NULL;
2241 }
2242 }
2243 }
2244 \f
2245
2246 /* Print the value in stack frame FRAME of a variable specified by a
2247 struct symbol. NAME is the name to print; if NULL then VAR's print
2248 name will be used. STREAM is the ui_file on which to print the
2249 value. INDENT specifies the number of indent levels to print
2250 before printing the variable name.
2251
2252 This function invalidates FRAME. */
2253
2254 void
2255 print_variable_and_value (const char *name, struct symbol *var,
2256 struct frame_info *frame,
2257 struct ui_file *stream, int indent)
2258 {
2259
2260 if (!name)
2261 name = var->print_name ();
2262
2263 fprintf_filtered (stream, "%*s%ps = ", 2 * indent, "",
2264 styled_string (variable_name_style.style (), name));
2265
2266 try
2267 {
2268 struct value *val;
2269 struct value_print_options opts;
2270
2271 /* READ_VAR_VALUE needs a block in order to deal with non-local
2272 references (i.e. to handle nested functions). In this context, we
2273 print variables that are local to this frame, so we can avoid passing
2274 a block to it. */
2275 val = read_var_value (var, NULL, frame);
2276 get_user_print_options (&opts);
2277 opts.deref_ref = 1;
2278 common_val_print (val, stream, indent, &opts, current_language);
2279
2280 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2281 function. */
2282 frame = NULL;
2283 }
2284 catch (const gdb_exception_error &except)
2285 {
2286 fprintf_styled (stream, metadata_style.style (),
2287 "<error reading variable %s (%s)>", name,
2288 except.what ());
2289 }
2290
2291 fprintf_filtered (stream, "\n");
2292 }
2293
2294 /* Subroutine of ui_printf to simplify it.
2295 Print VALUE to STREAM using FORMAT.
2296 VALUE is a C-style string either on the target or
2297 in a GDB internal variable. */
2298
2299 static void
2300 printf_c_string (struct ui_file *stream, const char *format,
2301 struct value *value)
2302 {
2303 const gdb_byte *str;
2304
2305 if (value_type (value)->code () != TYPE_CODE_PTR
2306 && VALUE_LVAL (value) == lval_internalvar
2307 && c_is_string_type_p (value_type (value)))
2308 {
2309 size_t len = TYPE_LENGTH (value_type (value));
2310
2311 /* Copy the internal var value to TEM_STR and append a terminating null
2312 character. This protects against corrupted C-style strings that lack
2313 the terminating null char. It also allows Ada-style strings (not
2314 null terminated) to be printed without problems. */
2315 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2316
2317 memcpy (tem_str, value_contents (value), len);
2318 tem_str [len] = 0;
2319 str = tem_str;
2320 }
2321 else
2322 {
2323 CORE_ADDR tem = value_as_address (value);;
2324
2325 if (tem == 0)
2326 {
2327 DIAGNOSTIC_PUSH
2328 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2329 fprintf_filtered (stream, format, "(null)");
2330 DIAGNOSTIC_POP
2331 return;
2332 }
2333
2334 /* This is a %s argument. Find the length of the string. */
2335 size_t len;
2336
2337 for (len = 0;; len++)
2338 {
2339 gdb_byte c;
2340
2341 QUIT;
2342 read_memory (tem + len, &c, 1);
2343 if (c == 0)
2344 break;
2345 }
2346
2347 /* Copy the string contents into a string inside GDB. */
2348 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2349
2350 if (len != 0)
2351 read_memory (tem, tem_str, len);
2352 tem_str[len] = 0;
2353 str = tem_str;
2354 }
2355
2356 DIAGNOSTIC_PUSH
2357 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2358 fprintf_filtered (stream, format, (char *) str);
2359 DIAGNOSTIC_POP
2360 }
2361
2362 /* Subroutine of ui_printf to simplify it.
2363 Print VALUE to STREAM using FORMAT.
2364 VALUE is a wide C-style string on the target or
2365 in a GDB internal variable. */
2366
2367 static void
2368 printf_wide_c_string (struct ui_file *stream, const char *format,
2369 struct value *value)
2370 {
2371 const gdb_byte *str;
2372 size_t len;
2373 struct gdbarch *gdbarch = value_type (value)->arch ();
2374 struct type *wctype = lookup_typename (current_language,
2375 "wchar_t", NULL, 0);
2376 int wcwidth = TYPE_LENGTH (wctype);
2377
2378 if (VALUE_LVAL (value) == lval_internalvar
2379 && c_is_string_type_p (value_type (value)))
2380 {
2381 str = value_contents (value);
2382 len = TYPE_LENGTH (value_type (value));
2383 }
2384 else
2385 {
2386 CORE_ADDR tem = value_as_address (value);
2387
2388 if (tem == 0)
2389 {
2390 DIAGNOSTIC_PUSH
2391 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2392 fprintf_filtered (stream, format, "(null)");
2393 DIAGNOSTIC_POP
2394 return;
2395 }
2396
2397 /* This is a %s argument. Find the length of the string. */
2398 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2399 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2400
2401 for (len = 0;; len += wcwidth)
2402 {
2403 QUIT;
2404 read_memory (tem + len, buf, wcwidth);
2405 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2406 break;
2407 }
2408
2409 /* Copy the string contents into a string inside GDB. */
2410 gdb_byte *tem_str = (gdb_byte *) alloca (len + wcwidth);
2411
2412 if (len != 0)
2413 read_memory (tem, tem_str, len);
2414 memset (&tem_str[len], 0, wcwidth);
2415 str = tem_str;
2416 }
2417
2418 auto_obstack output;
2419
2420 convert_between_encodings (target_wide_charset (gdbarch),
2421 host_charset (),
2422 str, len, wcwidth,
2423 &output, translit_char);
2424 obstack_grow_str0 (&output, "");
2425
2426 DIAGNOSTIC_PUSH
2427 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2428 fprintf_filtered (stream, format, obstack_base (&output));
2429 DIAGNOSTIC_POP
2430 }
2431
2432 /* Subroutine of ui_printf to simplify it.
2433 Print VALUE, a floating point value, to STREAM using FORMAT. */
2434
2435 static void
2436 printf_floating (struct ui_file *stream, const char *format,
2437 struct value *value, enum argclass argclass)
2438 {
2439 /* Parameter data. */
2440 struct type *param_type = value_type (value);
2441 struct gdbarch *gdbarch = param_type->arch ();
2442
2443 /* Determine target type corresponding to the format string. */
2444 struct type *fmt_type;
2445 switch (argclass)
2446 {
2447 case double_arg:
2448 fmt_type = builtin_type (gdbarch)->builtin_double;
2449 break;
2450 case long_double_arg:
2451 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2452 break;
2453 case dec32float_arg:
2454 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2455 break;
2456 case dec64float_arg:
2457 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2458 break;
2459 case dec128float_arg:
2460 fmt_type = builtin_type (gdbarch)->builtin_declong;
2461 break;
2462 default:
2463 gdb_assert_not_reached ("unexpected argument class");
2464 }
2465
2466 /* To match the traditional GDB behavior, the conversion is
2467 done differently depending on the type of the parameter:
2468
2469 - if the parameter has floating-point type, it's value
2470 is converted to the target type;
2471
2472 - otherwise, if the parameter has a type that is of the
2473 same size as a built-in floating-point type, the value
2474 bytes are interpreted as if they were of that type, and
2475 then converted to the target type (this is not done for
2476 decimal floating-point argument classes);
2477
2478 - otherwise, if the source value has an integer value,
2479 it's value is converted to the target type;
2480
2481 - otherwise, an error is raised.
2482
2483 In either case, the result of the conversion is a byte buffer
2484 formatted in the target format for the target type. */
2485
2486 if (fmt_type->code () == TYPE_CODE_FLT)
2487 {
2488 param_type = float_type_from_length (param_type);
2489 if (param_type != value_type (value))
2490 value = value_from_contents (param_type, value_contents (value));
2491 }
2492
2493 value = value_cast (fmt_type, value);
2494
2495 /* Convert the value to a string and print it. */
2496 std::string str
2497 = target_float_to_string (value_contents (value), fmt_type, format);
2498 fputs_filtered (str.c_str (), stream);
2499 }
2500
2501 /* Subroutine of ui_printf to simplify it.
2502 Print VALUE, a target pointer, to STREAM using FORMAT. */
2503
2504 static void
2505 printf_pointer (struct ui_file *stream, const char *format,
2506 struct value *value)
2507 {
2508 /* We avoid the host's %p because pointers are too
2509 likely to be the wrong size. The only interesting
2510 modifier for %p is a width; extract that, and then
2511 handle %p as glibc would: %#x or a literal "(nil)". */
2512
2513 const char *p;
2514 char *fmt, *fmt_p;
2515 #ifdef PRINTF_HAS_LONG_LONG
2516 long long val = value_as_long (value);
2517 #else
2518 long val = value_as_long (value);
2519 #endif
2520
2521 fmt = (char *) alloca (strlen (format) + 5);
2522
2523 /* Copy up to the leading %. */
2524 p = format;
2525 fmt_p = fmt;
2526 while (*p)
2527 {
2528 int is_percent = (*p == '%');
2529
2530 *fmt_p++ = *p++;
2531 if (is_percent)
2532 {
2533 if (*p == '%')
2534 *fmt_p++ = *p++;
2535 else
2536 break;
2537 }
2538 }
2539
2540 if (val != 0)
2541 *fmt_p++ = '#';
2542
2543 /* Copy any width or flags. Only the "-" flag is valid for pointers
2544 -- see the format_pieces constructor. */
2545 while (*p == '-' || (*p >= '0' && *p < '9'))
2546 *fmt_p++ = *p++;
2547
2548 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2549 if (val != 0)
2550 {
2551 #ifdef PRINTF_HAS_LONG_LONG
2552 *fmt_p++ = 'l';
2553 #endif
2554 *fmt_p++ = 'l';
2555 *fmt_p++ = 'x';
2556 *fmt_p++ = '\0';
2557 DIAGNOSTIC_PUSH
2558 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2559 fprintf_filtered (stream, fmt, val);
2560 DIAGNOSTIC_POP
2561 }
2562 else
2563 {
2564 *fmt_p++ = 's';
2565 *fmt_p++ = '\0';
2566 DIAGNOSTIC_PUSH
2567 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2568 fprintf_filtered (stream, fmt, "(nil)");
2569 DIAGNOSTIC_POP
2570 }
2571 }
2572
2573 /* printf "printf format string" ARG to STREAM. */
2574
2575 static void
2576 ui_printf (const char *arg, struct ui_file *stream)
2577 {
2578 const char *s = arg;
2579 std::vector<struct value *> val_args;
2580
2581 if (s == 0)
2582 error_no_arg (_("format-control string and values to print"));
2583
2584 s = skip_spaces (s);
2585
2586 /* A format string should follow, enveloped in double quotes. */
2587 if (*s++ != '"')
2588 error (_("Bad format string, missing '\"'."));
2589
2590 format_pieces fpieces (&s);
2591
2592 if (*s++ != '"')
2593 error (_("Bad format string, non-terminated '\"'."));
2594
2595 s = skip_spaces (s);
2596
2597 if (*s != ',' && *s != 0)
2598 error (_("Invalid argument syntax"));
2599
2600 if (*s == ',')
2601 s++;
2602 s = skip_spaces (s);
2603
2604 {
2605 int nargs_wanted;
2606 int i;
2607 const char *current_substring;
2608
2609 nargs_wanted = 0;
2610 for (auto &&piece : fpieces)
2611 if (piece.argclass != literal_piece)
2612 ++nargs_wanted;
2613
2614 /* Now, parse all arguments and evaluate them.
2615 Store the VALUEs in VAL_ARGS. */
2616
2617 while (*s != '\0')
2618 {
2619 const char *s1;
2620
2621 s1 = s;
2622 val_args.push_back (parse_to_comma_and_eval (&s1));
2623
2624 s = s1;
2625 if (*s == ',')
2626 s++;
2627 }
2628
2629 if (val_args.size () != nargs_wanted)
2630 error (_("Wrong number of arguments for specified format-string"));
2631
2632 /* Now actually print them. */
2633 i = 0;
2634 for (auto &&piece : fpieces)
2635 {
2636 current_substring = piece.string;
2637 switch (piece.argclass)
2638 {
2639 case string_arg:
2640 printf_c_string (stream, current_substring, val_args[i]);
2641 break;
2642 case wide_string_arg:
2643 printf_wide_c_string (stream, current_substring, val_args[i]);
2644 break;
2645 case wide_char_arg:
2646 {
2647 struct gdbarch *gdbarch = value_type (val_args[i])->arch ();
2648 struct type *wctype = lookup_typename (current_language,
2649 "wchar_t", NULL, 0);
2650 struct type *valtype;
2651 const gdb_byte *bytes;
2652
2653 valtype = value_type (val_args[i]);
2654 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2655 || valtype->code () != TYPE_CODE_INT)
2656 error (_("expected wchar_t argument for %%lc"));
2657
2658 bytes = value_contents (val_args[i]);
2659
2660 auto_obstack output;
2661
2662 convert_between_encodings (target_wide_charset (gdbarch),
2663 host_charset (),
2664 bytes, TYPE_LENGTH (valtype),
2665 TYPE_LENGTH (valtype),
2666 &output, translit_char);
2667 obstack_grow_str0 (&output, "");
2668
2669 DIAGNOSTIC_PUSH
2670 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2671 fprintf_filtered (stream, current_substring,
2672 obstack_base (&output));
2673 DIAGNOSTIC_POP
2674 }
2675 break;
2676 case long_long_arg:
2677 #ifdef PRINTF_HAS_LONG_LONG
2678 {
2679 long long val = value_as_long (val_args[i]);
2680
2681 DIAGNOSTIC_PUSH
2682 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2683 fprintf_filtered (stream, current_substring, val);
2684 DIAGNOSTIC_POP
2685 break;
2686 }
2687 #else
2688 error (_("long long not supported in printf"));
2689 #endif
2690 case int_arg:
2691 {
2692 int val = value_as_long (val_args[i]);
2693
2694 DIAGNOSTIC_PUSH
2695 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2696 fprintf_filtered (stream, current_substring, val);
2697 DIAGNOSTIC_POP
2698 break;
2699 }
2700 case long_arg:
2701 {
2702 long val = value_as_long (val_args[i]);
2703
2704 DIAGNOSTIC_PUSH
2705 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2706 fprintf_filtered (stream, current_substring, val);
2707 DIAGNOSTIC_POP
2708 break;
2709 }
2710 case size_t_arg:
2711 {
2712 size_t val = value_as_long (val_args[i]);
2713
2714 DIAGNOSTIC_PUSH
2715 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2716 fprintf_filtered (stream, current_substring, val);
2717 DIAGNOSTIC_POP
2718 break;
2719 }
2720 /* Handles floating-point values. */
2721 case double_arg:
2722 case long_double_arg:
2723 case dec32float_arg:
2724 case dec64float_arg:
2725 case dec128float_arg:
2726 printf_floating (stream, current_substring, val_args[i],
2727 piece.argclass);
2728 break;
2729 case ptr_arg:
2730 printf_pointer (stream, current_substring, val_args[i]);
2731 break;
2732 case literal_piece:
2733 /* Print a portion of the format string that has no
2734 directives. Note that this will not include any
2735 ordinary %-specs, but it might include "%%". That is
2736 why we use printf_filtered and not puts_filtered here.
2737 Also, we pass a dummy argument because some platforms
2738 have modified GCC to include -Wformat-security by
2739 default, which will warn here if there is no
2740 argument. */
2741 DIAGNOSTIC_PUSH
2742 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2743 fprintf_filtered (stream, current_substring, 0);
2744 DIAGNOSTIC_POP
2745 break;
2746 default:
2747 internal_error (__FILE__, __LINE__,
2748 _("failed internal consistency check"));
2749 }
2750 /* Maybe advance to the next argument. */
2751 if (piece.argclass != literal_piece)
2752 ++i;
2753 }
2754 }
2755 }
2756
2757 /* Implement the "printf" command. */
2758
2759 static void
2760 printf_command (const char *arg, int from_tty)
2761 {
2762 ui_printf (arg, gdb_stdout);
2763 reset_terminal_style (gdb_stdout);
2764 wrap_here ("");
2765 gdb_stdout->flush ();
2766 }
2767
2768 /* Implement the "eval" command. */
2769
2770 static void
2771 eval_command (const char *arg, int from_tty)
2772 {
2773 string_file stb;
2774
2775 ui_printf (arg, &stb);
2776
2777 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2778
2779 execute_command (expanded.c_str (), from_tty);
2780 }
2781
2782 void _initialize_printcmd ();
2783 void
2784 _initialize_printcmd ()
2785 {
2786 struct cmd_list_element *c;
2787
2788 current_display_number = -1;
2789
2790 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2791
2792 add_info ("address", info_address_command,
2793 _("Describe where symbol SYM is stored.\n\
2794 Usage: info address SYM"));
2795
2796 add_info ("symbol", info_symbol_command, _("\
2797 Describe what symbol is at location ADDR.\n\
2798 Usage: info symbol ADDR\n\
2799 Only for symbols with fixed locations (global or static scope)."));
2800
2801 c = add_com ("x", class_vars, x_command, _("\
2802 Examine memory: x/FMT ADDRESS.\n\
2803 ADDRESS is an expression for the memory address to examine.\n\
2804 FMT is a repeat count followed by a format letter and a size letter.\n\
2805 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2806 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2807 and z(hex, zero padded on the left).\n\
2808 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2809 The specified number of objects of the specified size are printed\n\
2810 according to the format. If a negative number is specified, memory is\n\
2811 examined backward from the address.\n\n\
2812 Defaults for format and size letters are those previously used.\n\
2813 Default count is 1. Default address is following last thing printed\n\
2814 with this command or \"print\"."));
2815 set_cmd_completer_handle_brkchars (c, display_and_x_command_completer);
2816
2817 add_info ("display", info_display_command, _("\
2818 Expressions to display when program stops, with code numbers.\n\
2819 Usage: info display"));
2820
2821 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2822 Cancel some expressions to be displayed when program stops.\n\
2823 Usage: undisplay [NUM]...\n\
2824 Arguments are the code numbers of the expressions to stop displaying.\n\
2825 No argument means cancel all automatic-display expressions.\n\
2826 \"delete display\" has the same effect as this command.\n\
2827 Do \"info display\" to see current list of code numbers."),
2828 &cmdlist);
2829
2830 c = add_com ("display", class_vars, display_command, _("\
2831 Print value of expression EXP each time the program stops.\n\
2832 Usage: display[/FMT] EXP\n\
2833 /FMT may be used before EXP as in the \"print\" command.\n\
2834 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2835 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2836 and examining is done as in the \"x\" command.\n\n\
2837 With no argument, display all currently requested auto-display expressions.\n\
2838 Use \"undisplay\" to cancel display requests previously made."));
2839 set_cmd_completer_handle_brkchars (c, display_and_x_command_completer);
2840
2841 add_cmd ("display", class_vars, enable_display_command, _("\
2842 Enable some expressions to be displayed when program stops.\n\
2843 Usage: enable display [NUM]...\n\
2844 Arguments are the code numbers of the expressions to resume displaying.\n\
2845 No argument means enable all automatic-display expressions.\n\
2846 Do \"info display\" to see current list of code numbers."), &enablelist);
2847
2848 add_cmd ("display", class_vars, disable_display_command, _("\
2849 Disable some expressions to be displayed when program stops.\n\
2850 Usage: disable display [NUM]...\n\
2851 Arguments are the code numbers of the expressions to stop displaying.\n\
2852 No argument means disable all automatic-display expressions.\n\
2853 Do \"info display\" to see current list of code numbers."), &disablelist);
2854
2855 add_cmd ("display", class_vars, undisplay_command, _("\
2856 Cancel some expressions to be displayed when program stops.\n\
2857 Usage: delete display [NUM]...\n\
2858 Arguments are the code numbers of the expressions to stop displaying.\n\
2859 No argument means cancel all automatic-display expressions.\n\
2860 Do \"info display\" to see current list of code numbers."), &deletelist);
2861
2862 add_com ("printf", class_vars, printf_command, _("\
2863 Formatted printing, like the C \"printf\" function.\n\
2864 Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2865 This supports most C printf format specifications, like %s, %d, etc."));
2866
2867 add_com ("output", class_vars, output_command, _("\
2868 Like \"print\" but don't put in value history and don't print newline.\n\
2869 Usage: output EXP\n\
2870 This is useful in user-defined commands."));
2871
2872 add_prefix_cmd ("set", class_vars, set_command, _("\
2873 Evaluate expression EXP and assign result to variable VAR.\n\
2874 Usage: set VAR = EXP\n\
2875 This uses assignment syntax appropriate for the current language\n\
2876 (VAR = EXP or VAR := EXP for example).\n\
2877 VAR may be a debugger \"convenience\" variable (names starting\n\
2878 with $), a register (a few standard names starting with $), or an actual\n\
2879 variable in the program being debugged. EXP is any valid expression.\n\
2880 Use \"set variable\" for variables with names identical to set subcommands.\n\
2881 \n\
2882 With a subcommand, this command modifies parts of the gdb environment.\n\
2883 You can see these environment settings with the \"show\" command."),
2884 &setlist, "set ", 1, &cmdlist);
2885 if (dbx_commands)
2886 add_com ("assign", class_vars, set_command, _("\
2887 Evaluate expression EXP and assign result to variable VAR.\n\
2888 Usage: assign VAR = EXP\n\
2889 This uses assignment syntax appropriate for the current language\n\
2890 (VAR = EXP or VAR := EXP for example).\n\
2891 VAR may be a debugger \"convenience\" variable (names starting\n\
2892 with $), a register (a few standard names starting with $), or an actual\n\
2893 variable in the program being debugged. EXP is any valid expression.\n\
2894 Use \"set variable\" for variables with names identical to set subcommands.\n\
2895 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2896 You can see these environment settings with the \"show\" command."));
2897
2898 /* "call" is the same as "set", but handy for dbx users to call fns. */
2899 c = add_com ("call", class_vars, call_command, _("\
2900 Call a function in the program.\n\
2901 Usage: call EXP\n\
2902 The argument is the function name and arguments, in the notation of the\n\
2903 current working language. The result is printed and saved in the value\n\
2904 history, if it is not void."));
2905 set_cmd_completer_handle_brkchars (c, print_command_completer);
2906
2907 add_cmd ("variable", class_vars, set_command, _("\
2908 Evaluate expression EXP and assign result to variable VAR.\n\
2909 Usage: set variable VAR = EXP\n\
2910 This uses assignment syntax appropriate for the current language\n\
2911 (VAR = EXP or VAR := EXP for example).\n\
2912 VAR may be a debugger \"convenience\" variable (names starting\n\
2913 with $), a register (a few standard names starting with $), or an actual\n\
2914 variable in the program being debugged. EXP is any valid expression.\n\
2915 This may usually be abbreviated to simply \"set\"."),
2916 &setlist);
2917 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2918
2919 const auto print_opts = make_value_print_options_def_group (nullptr);
2920
2921 static const std::string print_help = gdb::option::build_help (_("\
2922 Print value of expression EXP.\n\
2923 Usage: print [[OPTION]... --] [/FMT] [EXP]\n\
2924 \n\
2925 Options:\n\
2926 %OPTIONS%\n\
2927 \n\
2928 Note: because this command accepts arbitrary expressions, if you\n\
2929 specify any command option, you must use a double dash (\"--\")\n\
2930 to mark the end of option processing. E.g.: \"print -o -- myobj\".\n\
2931 \n\
2932 Variables accessible are those of the lexical environment of the selected\n\
2933 stack frame, plus all those whose scope is global or an entire file.\n\
2934 \n\
2935 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2936 $$NUM refers to NUM'th value back from the last one.\n\
2937 Names starting with $ refer to registers (with the values they would have\n\
2938 if the program were to return to the stack frame now selected, restoring\n\
2939 all registers saved by frames farther in) or else to debugger\n\
2940 \"convenience\" variables (any such name not a known register).\n\
2941 Use assignment expressions to give values to convenience variables.\n\
2942 \n\
2943 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2944 @ is a binary operator for treating consecutive data objects\n\
2945 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2946 element is FOO, whose second element is stored in the space following\n\
2947 where FOO is stored, etc. FOO must be an expression whose value\n\
2948 resides in memory.\n\
2949 \n\
2950 EXP may be preceded with /FMT, where FMT is a format letter\n\
2951 but no count or size letter (see \"x\" command)."),
2952 print_opts);
2953
2954 c = add_com ("print", class_vars, print_command, print_help.c_str ());
2955 set_cmd_completer_handle_brkchars (c, print_command_completer);
2956 add_com_alias ("p", "print", class_vars, 1);
2957 add_com_alias ("inspect", "print", class_vars, 1);
2958
2959 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2960 &max_symbolic_offset, _("\
2961 Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2962 Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2963 Tell GDB to only display the symbolic form of an address if the\n\
2964 offset between the closest earlier symbol and the address is less than\n\
2965 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2966 to always print the symbolic form of an address if any symbol precedes\n\
2967 it. Zero is equivalent to \"unlimited\"."),
2968 NULL,
2969 show_max_symbolic_offset,
2970 &setprintlist, &showprintlist);
2971 add_setshow_boolean_cmd ("symbol-filename", no_class,
2972 &print_symbol_filename, _("\
2973 Set printing of source filename and line number with <SYMBOL>."), _("\
2974 Show printing of source filename and line number with <SYMBOL>."), NULL,
2975 NULL,
2976 show_print_symbol_filename,
2977 &setprintlist, &showprintlist);
2978
2979 add_com ("eval", no_class, eval_command, _("\
2980 Construct a GDB command and then evaluate it.\n\
2981 Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2982 Convert the arguments to a string as \"printf\" would, but then\n\
2983 treat this string as a command line, and evaluate it."));
2984 }
This page took 0.088913 seconds and 4 git commands to generate.