Sat Nov 7 18:30:20 1998 Peter Schauer <peter.schauer@regent.e-technik.tu-muenchen.de>
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2 Copyright 1986, 87, 88, 89, 90, 91, 93, 94, 95, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "frame.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "language.h"
28 #include "expression.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "breakpoint.h"
33 #include "demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38
39 extern int asm_demangle; /* Whether to demangle syms in asm printouts */
40 extern int addressprint; /* Whether to print hex addresses in HLL " */
41
42 struct format_data
43 {
44 int count;
45 char format;
46 char size;
47 };
48
49 /* Last specified output format. */
50
51 static char last_format = 'x';
52
53 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
54
55 static char last_size = 'w';
56
57 /* Default address to examine next. */
58
59 static CORE_ADDR next_address;
60
61 /* Default section to examine next. */
62
63 static asection *next_section;
64
65 /* Last address examined. */
66
67 static CORE_ADDR last_examine_address;
68
69 /* Contents of last address examined.
70 This is not valid past the end of the `x' command! */
71
72 static value_ptr last_examine_value;
73
74 /* Largest offset between a symbolic value and an address, that will be
75 printed as `0x1234 <symbol+offset>'. */
76
77 static unsigned int max_symbolic_offset = UINT_MAX;
78
79 /* Append the source filename and linenumber of the symbol when
80 printing a symbolic value as `<symbol at filename:linenum>' if set. */
81 static int print_symbol_filename = 0;
82
83 /* Number of auto-display expression currently being displayed.
84 So that we can disable it if we get an error or a signal within it.
85 -1 when not doing one. */
86
87 int current_display_number;
88
89 /* Flag to low-level print routines that this value is being printed
90 in an epoch window. We'd like to pass this as a parameter, but
91 every routine would need to take it. Perhaps we can encapsulate
92 this in the I/O stream once we have GNU stdio. */
93
94 int inspect_it = 0;
95
96 struct display
97 {
98 /* Chain link to next auto-display item. */
99 struct display *next;
100 /* Expression to be evaluated and displayed. */
101 struct expression *exp;
102 /* Item number of this auto-display item. */
103 int number;
104 /* Display format specified. */
105 struct format_data format;
106 /* Innermost block required by this expression when evaluated */
107 struct block *block;
108 /* Status of this display (enabled or disabled) */
109 enum enable status;
110 };
111
112 /* Chain of expressions whose values should be displayed
113 automatically each time the program stops. */
114
115 static struct display *display_chain;
116
117 static int display_number;
118
119 /* Pointer to the target-dependent disassembly function. */
120
121 int (*tm_print_insn) PARAMS ((bfd_vma, disassemble_info *));
122 disassemble_info tm_print_insn_info;
123
124 /* Functions exported for general use: */
125
126 void output_command PARAMS ((char *, int));
127
128
129 /* Prototypes for local functions. */
130
131 static void delete_display PARAMS ((int));
132
133 static void enable_display PARAMS ((char *, int));
134
135 static void disable_display_command PARAMS ((char *, int));
136
137 static void disassemble_command PARAMS ((char *, int));
138
139 static void printf_command PARAMS ((char *, int));
140
141 static void print_frame_nameless_args PARAMS ((struct frame_info *, long,
142 int, int, GDB_FILE *));
143
144 static void display_info PARAMS ((char *, int));
145
146 static void do_one_display PARAMS ((struct display *));
147
148 static void undisplay_command PARAMS ((char *, int));
149
150 static void free_display PARAMS ((struct display *));
151
152 static void display_command PARAMS ((char *, int));
153
154 void x_command PARAMS ((char *, int));
155
156 static void address_info PARAMS ((char *, int));
157
158 static void set_command PARAMS ((char *, int));
159
160 static void call_command PARAMS ((char *, int));
161
162 static void inspect_command PARAMS ((char *, int));
163
164 static void print_command PARAMS ((char *, int));
165
166 static void print_command_1 PARAMS ((char *, int, int));
167
168 static void validate_format PARAMS ((struct format_data, char *));
169
170 static void do_examine PARAMS ((struct format_data, CORE_ADDR addr, asection *section));
171
172 static void print_formatted PARAMS ((value_ptr, int, int));
173
174 static struct format_data decode_format PARAMS ((char **, int, int));
175
176 static int print_insn PARAMS ((CORE_ADDR, GDB_FILE *));
177
178 static void sym_info PARAMS ((char *, int));
179
180 \f
181 /* Decode a format specification. *STRING_PTR should point to it.
182 OFORMAT and OSIZE are used as defaults for the format and size
183 if none are given in the format specification.
184 If OSIZE is zero, then the size field of the returned value
185 should be set only if a size is explicitly specified by the
186 user.
187 The structure returned describes all the data
188 found in the specification. In addition, *STRING_PTR is advanced
189 past the specification and past all whitespace following it. */
190
191 static struct format_data
192 decode_format (string_ptr, oformat, osize)
193 char **string_ptr;
194 int oformat;
195 int osize;
196 {
197 struct format_data val;
198 register char *p = *string_ptr;
199
200 val.format = '?';
201 val.size = '?';
202 val.count = 1;
203
204 if (*p >= '0' && *p <= '9')
205 val.count = atoi (p);
206 while (*p >= '0' && *p <= '9') p++;
207
208 /* Now process size or format letters that follow. */
209
210 while (1)
211 {
212 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
213 val.size = *p++;
214 else if (*p >= 'a' && *p <= 'z')
215 val.format = *p++;
216 else
217 break;
218 }
219
220 while (*p == ' ' || *p == '\t') p++;
221 *string_ptr = p;
222
223 /* Set defaults for format and size if not specified. */
224 if (val.format == '?')
225 {
226 if (val.size == '?')
227 {
228 /* Neither has been specified. */
229 val.format = oformat;
230 val.size = osize;
231 }
232 else
233 /* If a size is specified, any format makes a reasonable
234 default except 'i'. */
235 val.format = oformat == 'i' ? 'x' : oformat;
236 }
237 else if (val.size == '?')
238 switch (val.format)
239 {
240 case 'a':
241 case 's':
242 /* Pick the appropriate size for an address. */
243 if (TARGET_PTR_BIT == 64)
244 val.size = osize ? 'g' : osize;
245 else if (TARGET_PTR_BIT == 32)
246 val.size = osize ? 'w' : osize;
247 else if (TARGET_PTR_BIT == 16)
248 val.size = osize ? 'h' : osize;
249 else
250 /* Bad value for TARGET_PTR_BIT */
251 abort ();
252 break;
253 case 'f':
254 /* Floating point has to be word or giantword. */
255 if (osize == 'w' || osize == 'g')
256 val.size = osize;
257 else
258 /* Default it to giantword if the last used size is not
259 appropriate. */
260 val.size = osize ? 'g' : osize;
261 break;
262 case 'c':
263 /* Characters default to one byte. */
264 val.size = osize ? 'b' : osize;
265 break;
266 default:
267 /* The default is the size most recently specified. */
268 val.size = osize;
269 }
270
271 return val;
272 }
273 \f
274 /* Print value VAL on gdb_stdout according to FORMAT, a letter or 0.
275 Do not end with a newline.
276 0 means print VAL according to its own type.
277 SIZE is the letter for the size of datum being printed.
278 This is used to pad hex numbers so they line up. */
279
280 static void
281 print_formatted (val, format, size)
282 register value_ptr val;
283 register int format;
284 int size;
285 {
286 struct type *type = check_typedef (VALUE_TYPE (val));
287 int len = TYPE_LENGTH (type);
288
289 if (VALUE_LVAL (val) == lval_memory)
290 {
291 next_address = VALUE_ADDRESS (val) + len;
292 next_section = VALUE_BFD_SECTION (val);
293 }
294
295 switch (format)
296 {
297 case 's':
298 /* FIXME: Need to handle wchar_t's here... */
299 next_address = VALUE_ADDRESS (val)
300 + val_print_string (VALUE_ADDRESS (val), -1, 1, gdb_stdout);
301 next_section = VALUE_BFD_SECTION (val);
302 break;
303
304 case 'i':
305 /* The old comment says
306 "Force output out, print_insn not using _filtered".
307 I'm not completely sure what that means, I suspect most print_insn
308 now do use _filtered, so I guess it's obsolete. */
309 /* We often wrap here if there are long symbolic names. */
310 wrap_here (" ");
311 next_address = VALUE_ADDRESS (val)
312 + print_insn (VALUE_ADDRESS (val), gdb_stdout);
313 next_section = VALUE_BFD_SECTION (val);
314 break;
315
316 default:
317 if (format == 0
318 || TYPE_CODE (type) == TYPE_CODE_ARRAY
319 || TYPE_CODE (type) == TYPE_CODE_STRING
320 || TYPE_CODE (type) == TYPE_CODE_STRUCT
321 || TYPE_CODE (type) == TYPE_CODE_UNION)
322 value_print (val, gdb_stdout, format, Val_pretty_default);
323 else
324 print_scalar_formatted (VALUE_CONTENTS (val), type,
325 format, size, gdb_stdout);
326 }
327 }
328
329 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
330 according to letters FORMAT and SIZE on STREAM.
331 FORMAT may not be zero. Formats s and i are not supported at this level.
332
333 This is how the elements of an array or structure are printed
334 with a format. */
335
336 void
337 print_scalar_formatted (valaddr, type, format, size, stream)
338 char *valaddr;
339 struct type *type;
340 int format;
341 int size;
342 GDB_FILE *stream;
343 {
344 LONGEST val_long;
345 unsigned int len = TYPE_LENGTH (type);
346
347 if (len > sizeof (LONGEST)
348 && (format == 't'
349 || format == 'c'
350 || format == 'o'
351 || format == 'u'
352 || format == 'd'
353 || format == 'x'))
354 {
355 if (! TYPE_UNSIGNED (type)
356 || ! extract_long_unsigned_integer (valaddr, len, &val_long))
357 {
358 /* We can't print it normally, but we can print it in hex.
359 Printing it in the wrong radix is more useful than saying
360 "use /x, you dummy". */
361 /* FIXME: we could also do octal or binary if that was the
362 desired format. */
363 /* FIXME: we should be using the size field to give us a
364 minimum field width to print. */
365 val_print_type_code_int (type, valaddr, stream);
366 return;
367 }
368
369 /* If we get here, extract_long_unsigned_integer set val_long. */
370 }
371 else if (format != 'f')
372 val_long = unpack_long (type, valaddr);
373
374 /* If we are printing it as unsigned, truncate it in case it is actually
375 a negative signed value (e.g. "print/u (short)-1" should print 65535
376 (if shorts are 16 bits) instead of 4294967295). */
377 if (format != 'd')
378 {
379 if (len < sizeof (LONGEST))
380 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
381 }
382
383 switch (format)
384 {
385 case 'x':
386 if (!size)
387 {
388 /* no size specified, like in print. Print varying # of digits. */
389 print_longest (stream, 'x', 1, val_long);
390 }
391 else
392 switch (size)
393 {
394 case 'b':
395 case 'h':
396 case 'w':
397 case 'g':
398 print_longest (stream, size, 1, val_long);
399 break;
400 default:
401 error ("Undefined output size \"%c\".", size);
402 }
403 break;
404
405 case 'd':
406 print_longest (stream, 'd', 1, val_long);
407 break;
408
409 case 'u':
410 print_longest (stream, 'u', 0, val_long);
411 break;
412
413 case 'o':
414 if (val_long)
415 print_longest (stream, 'o', 1, val_long);
416 else
417 fprintf_filtered (stream, "0");
418 break;
419
420 case 'a':
421 print_address (unpack_pointer (type, valaddr), stream);
422 break;
423
424 case 'c':
425 value_print (value_from_longest (builtin_type_char, val_long), stream, 0,
426 Val_pretty_default);
427 break;
428
429 case 'f':
430 if (len == sizeof (float))
431 type = builtin_type_float;
432 else if (len == sizeof (double))
433 type = builtin_type_double;
434 print_floating (valaddr, type, stream);
435 break;
436
437 case 0:
438 abort ();
439
440 case 't':
441 /* Binary; 't' stands for "two". */
442 {
443 char bits[8*(sizeof val_long) + 1];
444 char *cp = bits;
445 int width;
446
447 if (!size)
448 width = 8*(sizeof val_long);
449 else
450 switch (size)
451 {
452 case 'b':
453 width = 8;
454 break;
455 case 'h':
456 width = 16;
457 break;
458 case 'w':
459 width = 32;
460 break;
461 case 'g':
462 width = 64;
463 break;
464 default:
465 error ("Undefined output size \"%c\".", size);
466 }
467
468 bits[width] = '\0';
469 while (width-- > 0)
470 {
471 bits[width] = (val_long & 1) ? '1' : '0';
472 val_long >>= 1;
473 }
474 if (!size)
475 {
476 while (*cp && *cp == '0')
477 cp++;
478 if (*cp == '\0')
479 cp--;
480 }
481 fprintf_filtered (stream, local_binary_format_prefix());
482 fprintf_filtered (stream, cp);
483 fprintf_filtered (stream, local_binary_format_suffix());
484 }
485 break;
486
487 default:
488 error ("Undefined output format \"%c\".", format);
489 }
490 }
491
492 /* Specify default address for `x' command.
493 `info lines' uses this. */
494
495 void
496 set_next_address (addr)
497 CORE_ADDR addr;
498 {
499 next_address = addr;
500
501 /* Make address available to the user as $_. */
502 set_internalvar (lookup_internalvar ("_"),
503 value_from_longest (lookup_pointer_type (builtin_type_void),
504 (LONGEST) addr));
505 }
506
507 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
508 after LEADIN. Print nothing if no symbolic name is found nearby.
509 Optionally also print source file and line number, if available.
510 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
511 or to interpret it as a possible C++ name and convert it back to source
512 form. However note that DO_DEMANGLE can be overridden by the specific
513 settings of the demangle and asm_demangle variables. */
514
515 void
516 print_address_symbolic (addr, stream, do_demangle, leadin)
517 CORE_ADDR addr;
518 GDB_FILE *stream;
519 int do_demangle;
520 char *leadin;
521 {
522 struct minimal_symbol *msymbol;
523 struct symbol *symbol;
524 struct symtab *symtab = 0;
525 CORE_ADDR name_location = 0;
526 char *name = "";
527 asection *section = 0;
528 int unmapped = 0;
529
530 /* Determine if the address is in an overlay, and whether it is mapped. */
531 if (overlay_debugging)
532 {
533 section = find_pc_overlay (addr);
534 if (pc_in_unmapped_range (addr, section))
535 {
536 unmapped = 1;
537 addr = overlay_mapped_address (addr, section);
538 }
539 }
540
541 /* On some targets, add in extra "flag" bits to PC for
542 disassembly. This should ensure that "rounding errors" in
543 symbol addresses that are masked for disassembly favour the
544 the correct symbol. */
545
546 #ifdef GDB_TARGET_UNMASK_DISAS_PC
547 addr = GDB_TARGET_UNMASK_DISAS_PC (addr);
548 #endif
549
550 /* First try to find the address in the symbol table, then
551 in the minsyms. Take the closest one. */
552
553 /* This is defective in the sense that it only finds text symbols. So
554 really this is kind of pointless--we should make sure that the
555 minimal symbols have everything we need (by changing that we could
556 save some memory, but for many debug format--ELF/DWARF or
557 anything/stabs--it would be inconvenient to eliminate those minimal
558 symbols anyway). */
559 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
560 symbol = find_pc_sect_function (addr, section);
561
562 if (symbol)
563 {
564 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
565 if (do_demangle)
566 name = SYMBOL_SOURCE_NAME (symbol);
567 else
568 name = SYMBOL_LINKAGE_NAME (symbol);
569 }
570
571 if (msymbol != NULL)
572 {
573 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
574 {
575 /* The msymbol is closer to the address than the symbol;
576 use the msymbol instead. */
577 symbol = 0;
578 symtab = 0;
579 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
580 if (do_demangle)
581 name = SYMBOL_SOURCE_NAME (msymbol);
582 else
583 name = SYMBOL_LINKAGE_NAME (msymbol);
584 }
585 }
586 if (symbol == NULL && msymbol == NULL)
587 return;
588
589 /* On some targets, mask out extra "flag" bits from PC for handsome
590 disassembly. */
591
592 #ifdef GDB_TARGET_MASK_DISAS_PC
593 name_location = GDB_TARGET_MASK_DISAS_PC (name_location);
594 addr = GDB_TARGET_MASK_DISAS_PC (addr);
595 #endif
596
597 /* If the nearest symbol is too far away, don't print anything symbolic. */
598
599 /* For when CORE_ADDR is larger than unsigned int, we do math in
600 CORE_ADDR. But when we detect unsigned wraparound in the
601 CORE_ADDR math, we ignore this test and print the offset,
602 because addr+max_symbolic_offset has wrapped through the end
603 of the address space back to the beginning, giving bogus comparison. */
604 if (addr > name_location + max_symbolic_offset
605 && name_location + max_symbolic_offset > name_location)
606 return;
607
608 fputs_filtered (leadin, stream);
609 if (unmapped)
610 fputs_filtered ("<*", stream);
611 else
612 fputs_filtered ("<", stream);
613 fputs_filtered (name, stream);
614 if (addr != name_location)
615 fprintf_filtered (stream, "+%u", (unsigned int)(addr - name_location));
616
617 /* Append source filename and line number if desired. Give specific
618 line # of this addr, if we have it; else line # of the nearest symbol. */
619 if (print_symbol_filename)
620 {
621 struct symtab_and_line sal;
622
623 sal = find_pc_sect_line (addr, section, 0);
624
625 if (sal.symtab)
626 fprintf_filtered (stream, " at %s:%d", sal.symtab->filename, sal.line);
627 else if (symtab && symbol && symbol->line)
628 fprintf_filtered (stream, " at %s:%d", symtab->filename, symbol->line);
629 else if (symtab)
630 fprintf_filtered (stream, " in %s", symtab->filename);
631 }
632 if (unmapped)
633 fputs_filtered ("*>", stream);
634 else
635 fputs_filtered (">", stream);
636 }
637
638 /* Print address ADDR on STREAM. USE_LOCAL means the same thing as for
639 print_longest. */
640 void
641 print_address_numeric (addr, use_local, stream)
642 CORE_ADDR addr;
643 int use_local;
644 GDB_FILE *stream;
645 {
646 /* This assumes a CORE_ADDR can fit in a LONGEST. Probably a safe
647 assumption. */
648 print_longest (stream, 'x', use_local, (ULONGEST) addr);
649 }
650
651 /* Print address ADDR symbolically on STREAM.
652 First print it as a number. Then perhaps print
653 <SYMBOL + OFFSET> after the number. */
654
655 void
656 print_address (addr, stream)
657 CORE_ADDR addr;
658 GDB_FILE *stream;
659 {
660 print_address_numeric (addr, 1, stream);
661 print_address_symbolic (addr, stream, asm_demangle, " ");
662 }
663
664 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
665 controls whether to print the symbolic name "raw" or demangled.
666 Global setting "addressprint" controls whether to print hex address
667 or not. */
668
669 void
670 print_address_demangle (addr, stream, do_demangle)
671 CORE_ADDR addr;
672 GDB_FILE *stream;
673 int do_demangle;
674 {
675 if (addr == 0)
676 {
677 fprintf_filtered (stream, "0");
678 }
679 else if (addressprint)
680 {
681 print_address_numeric (addr, 1, stream);
682 print_address_symbolic (addr, stream, do_demangle, " ");
683 }
684 else
685 {
686 print_address_symbolic (addr, stream, do_demangle, "");
687 }
688 }
689 \f
690
691 /* These are the types that $__ will get after an examine command of one
692 of these sizes. */
693
694 static struct type *examine_i_type;
695
696 static struct type *examine_b_type;
697 static struct type *examine_h_type;
698 static struct type *examine_w_type;
699 static struct type *examine_g_type;
700
701 /* Examine data at address ADDR in format FMT.
702 Fetch it from memory and print on gdb_stdout. */
703
704 static void
705 do_examine (fmt, addr, sect)
706 struct format_data fmt;
707 CORE_ADDR addr;
708 asection *sect;
709 {
710 register char format = 0;
711 register char size;
712 register int count = 1;
713 struct type *val_type = NULL;
714 register int i;
715 register int maxelts;
716
717 format = fmt.format;
718 size = fmt.size;
719 count = fmt.count;
720 next_address = addr;
721 next_section = sect;
722
723 /* String or instruction format implies fetch single bytes
724 regardless of the specified size. */
725 if (format == 's' || format == 'i')
726 size = 'b';
727
728 if (format == 'i')
729 val_type = examine_i_type;
730 else if (size == 'b')
731 val_type = examine_b_type;
732 else if (size == 'h')
733 val_type = examine_h_type;
734 else if (size == 'w')
735 val_type = examine_w_type;
736 else if (size == 'g')
737 val_type = examine_g_type;
738
739 maxelts = 8;
740 if (size == 'w')
741 maxelts = 4;
742 if (size == 'g')
743 maxelts = 2;
744 if (format == 's' || format == 'i')
745 maxelts = 1;
746
747 /* Print as many objects as specified in COUNT, at most maxelts per line,
748 with the address of the next one at the start of each line. */
749
750 while (count > 0)
751 {
752 QUIT;
753 print_address (next_address, gdb_stdout);
754 printf_filtered (":");
755 for (i = maxelts;
756 i > 0 && count > 0;
757 i--, count--)
758 {
759 printf_filtered ("\t");
760 /* Note that print_formatted sets next_address for the next
761 object. */
762 last_examine_address = next_address;
763 /* The value to be displayed is not fetched greedily.
764 Instead, to avoid the posibility of a fetched value not
765 being used, its retreval is delayed until the print code
766 uses it. When examining an instruction stream, the
767 disassembler will perform its own memory fetch using just
768 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
769 the disassembler be modified so that LAST_EXAMINE_VALUE
770 is left with the byte sequence from the last complete
771 instruction fetched from memory? */
772 last_examine_value = value_at_lazy (val_type, next_address, sect);
773 print_formatted (last_examine_value, format, size);
774 }
775 printf_filtered ("\n");
776 gdb_flush (gdb_stdout);
777 }
778 }
779 \f
780 static void
781 validate_format (fmt, cmdname)
782 struct format_data fmt;
783 char *cmdname;
784 {
785 if (fmt.size != 0)
786 error ("Size letters are meaningless in \"%s\" command.", cmdname);
787 if (fmt.count != 1)
788 error ("Item count other than 1 is meaningless in \"%s\" command.",
789 cmdname);
790 if (fmt.format == 'i' || fmt.format == 's')
791 error ("Format letter \"%c\" is meaningless in \"%s\" command.",
792 fmt.format, cmdname);
793 }
794
795 /* Evaluate string EXP as an expression in the current language and
796 print the resulting value. EXP may contain a format specifier as the
797 first argument ("/x myvar" for example, to print myvar in hex).
798 */
799
800 static void
801 print_command_1 (exp, inspect, voidprint)
802 char *exp;
803 int inspect;
804 int voidprint;
805 {
806 struct expression *expr;
807 register struct cleanup *old_chain = 0;
808 register char format = 0;
809 register value_ptr val;
810 struct format_data fmt;
811 int cleanup = 0;
812
813 /* Pass inspect flag to the rest of the print routines in a global (sigh). */
814 inspect_it = inspect;
815
816 if (exp && *exp == '/')
817 {
818 exp++;
819 fmt = decode_format (&exp, last_format, 0);
820 validate_format (fmt, "print");
821 last_format = format = fmt.format;
822 }
823 else
824 {
825 fmt.count = 1;
826 fmt.format = 0;
827 fmt.size = 0;
828 }
829
830 if (exp && *exp)
831 {
832 extern int objectprint;
833 struct type *type;
834 expr = parse_expression (exp);
835 old_chain = make_cleanup ((make_cleanup_func) free_current_contents,
836 &expr);
837 cleanup = 1;
838 val = evaluate_expression (expr);
839
840 /* C++: figure out what type we actually want to print it as. */
841 type = VALUE_TYPE (val);
842
843 if (objectprint
844 && ( TYPE_CODE (type) == TYPE_CODE_PTR
845 || TYPE_CODE (type) == TYPE_CODE_REF)
846 && ( TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRUCT
847 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_UNION))
848 {
849 value_ptr v;
850
851 v = value_from_vtable_info (val, TYPE_TARGET_TYPE (type));
852 if (v != 0)
853 {
854 val = v;
855 type = VALUE_TYPE (val);
856 }
857 }
858 }
859 else
860 val = access_value_history (0);
861
862 if (voidprint || (val && VALUE_TYPE (val) &&
863 TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_VOID))
864 {
865 int histindex = record_latest_value (val);
866
867 if (histindex >= 0)
868 annotate_value_history_begin (histindex, VALUE_TYPE (val));
869 else
870 annotate_value_begin (VALUE_TYPE (val));
871
872 if (inspect)
873 printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"", exp, histindex);
874 else
875 if (histindex >= 0) printf_filtered ("$%d = ", histindex);
876
877 if (histindex >= 0)
878 annotate_value_history_value ();
879
880 print_formatted (val, format, fmt.size);
881 printf_filtered ("\n");
882
883 if (histindex >= 0)
884 annotate_value_history_end ();
885 else
886 annotate_value_end ();
887
888 if (inspect)
889 printf_unfiltered("\") )\030");
890 }
891
892 if (cleanup)
893 do_cleanups (old_chain);
894 inspect_it = 0; /* Reset print routines to normal */
895 }
896
897 /* ARGSUSED */
898 static void
899 print_command (exp, from_tty)
900 char *exp;
901 int from_tty;
902 {
903 print_command_1 (exp, 0, 1);
904 }
905
906 /* Same as print, except in epoch, it gets its own window */
907 /* ARGSUSED */
908 static void
909 inspect_command (exp, from_tty)
910 char *exp;
911 int from_tty;
912 {
913 extern int epoch_interface;
914
915 print_command_1 (exp, epoch_interface, 1);
916 }
917
918 /* Same as print, except it doesn't print void results. */
919 /* ARGSUSED */
920 static void
921 call_command (exp, from_tty)
922 char *exp;
923 int from_tty;
924 {
925 print_command_1 (exp, 0, 0);
926 }
927
928 /* ARGSUSED */
929 void
930 output_command (exp, from_tty)
931 char *exp;
932 int from_tty;
933 {
934 struct expression *expr;
935 register struct cleanup *old_chain;
936 register char format = 0;
937 register value_ptr val;
938 struct format_data fmt;
939
940 if (exp && *exp == '/')
941 {
942 exp++;
943 fmt = decode_format (&exp, 0, 0);
944 validate_format (fmt, "output");
945 format = fmt.format;
946 }
947
948 expr = parse_expression (exp);
949 old_chain = make_cleanup ((make_cleanup_func) free_current_contents, &expr);
950
951 val = evaluate_expression (expr);
952
953 annotate_value_begin (VALUE_TYPE (val));
954
955 print_formatted (val, format, fmt.size);
956
957 annotate_value_end ();
958
959 do_cleanups (old_chain);
960 }
961
962 /* ARGSUSED */
963 static void
964 set_command (exp, from_tty)
965 char *exp;
966 int from_tty;
967 {
968 struct expression *expr = parse_expression (exp);
969 register struct cleanup *old_chain
970 = make_cleanup ((make_cleanup_func) free_current_contents, &expr);
971 evaluate_expression (expr);
972 do_cleanups (old_chain);
973 }
974
975 /* ARGSUSED */
976 static void
977 sym_info (arg, from_tty)
978 char *arg;
979 int from_tty;
980 {
981 struct minimal_symbol *msymbol;
982 struct objfile *objfile;
983 struct obj_section *osect;
984 asection *sect;
985 CORE_ADDR addr, sect_addr;
986 int matches = 0;
987 unsigned int offset;
988
989 if (!arg)
990 error_no_arg ("address");
991
992 addr = parse_and_eval_address (arg);
993 ALL_OBJSECTIONS (objfile, osect)
994 {
995 sect = osect->the_bfd_section;
996 sect_addr = overlay_mapped_address (addr, sect);
997
998 if (osect->addr <= sect_addr && sect_addr < osect->endaddr &&
999 (msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, sect)))
1000 {
1001 matches = 1;
1002 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
1003 if (offset)
1004 printf_filtered ("%s + %u in ",
1005 SYMBOL_SOURCE_NAME (msymbol), offset);
1006 else
1007 printf_filtered ("%s in ",
1008 SYMBOL_SOURCE_NAME (msymbol));
1009 if (pc_in_unmapped_range (addr, sect))
1010 printf_filtered ("load address range of ");
1011 if (section_is_overlay (sect))
1012 printf_filtered ("%s overlay ",
1013 section_is_mapped (sect) ? "mapped" : "unmapped");
1014 printf_filtered ("section %s", sect->name);
1015 printf_filtered ("\n");
1016 }
1017 }
1018 if (matches == 0)
1019 printf_filtered ("No symbol matches %s.\n", arg);
1020 }
1021
1022 /* ARGSUSED */
1023 static void
1024 address_info (exp, from_tty)
1025 char *exp;
1026 int from_tty;
1027 {
1028 register struct symbol *sym;
1029 register struct minimal_symbol *msymbol;
1030 register long val;
1031 register long basereg;
1032 asection *section;
1033 CORE_ADDR load_addr;
1034 int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
1035 if exp is a field of `this'. */
1036
1037 if (exp == 0)
1038 error ("Argument required.");
1039
1040 sym = lookup_symbol (exp, get_selected_block (), VAR_NAMESPACE,
1041 &is_a_field_of_this, (struct symtab **)NULL);
1042 if (sym == NULL)
1043 {
1044 if (is_a_field_of_this)
1045 {
1046 printf_filtered ("Symbol \"");
1047 fprintf_symbol_filtered (gdb_stdout, exp,
1048 current_language->la_language, DMGL_ANSI);
1049 printf_filtered ("\" is a field of the local class variable `this'\n");
1050 return;
1051 }
1052
1053 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1054
1055 if (msymbol != NULL)
1056 {
1057 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1058
1059 printf_filtered ("Symbol \"");
1060 fprintf_symbol_filtered (gdb_stdout, exp,
1061 current_language->la_language, DMGL_ANSI);
1062 printf_filtered ("\" is at ");
1063 print_address_numeric (load_addr, 1, gdb_stdout);
1064 printf_filtered (" in a file compiled without debugging");
1065 section = SYMBOL_BFD_SECTION (msymbol);
1066 if (section_is_overlay (section))
1067 {
1068 load_addr = overlay_unmapped_address (load_addr, section);
1069 printf_filtered (",\n -- loaded at ");
1070 print_address_numeric (load_addr, 1, gdb_stdout);
1071 printf_filtered (" in overlay section %s", section->name);
1072 }
1073 printf_filtered (".\n");
1074 }
1075 else
1076 error ("No symbol \"%s\" in current context.", exp);
1077 return;
1078 }
1079
1080 printf_filtered ("Symbol \"");
1081 fprintf_symbol_filtered (gdb_stdout, SYMBOL_NAME (sym),
1082 current_language->la_language, DMGL_ANSI);
1083 printf_filtered ("\" is ");
1084 val = SYMBOL_VALUE (sym);
1085 basereg = SYMBOL_BASEREG (sym);
1086 section = SYMBOL_BFD_SECTION (sym);
1087
1088 switch (SYMBOL_CLASS (sym))
1089 {
1090 case LOC_CONST:
1091 case LOC_CONST_BYTES:
1092 printf_filtered ("constant");
1093 break;
1094
1095 case LOC_LABEL:
1096 printf_filtered ("a label at address ");
1097 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1098 1, gdb_stdout);
1099 if (section_is_overlay (section))
1100 {
1101 load_addr = overlay_unmapped_address (load_addr, section);
1102 printf_filtered (",\n -- loaded at ");
1103 print_address_numeric (load_addr, 1, gdb_stdout);
1104 printf_filtered (" in overlay section %s", section->name);
1105 }
1106 break;
1107
1108 case LOC_REGISTER:
1109 printf_filtered ("a variable in register %s", reg_names[val]);
1110 break;
1111
1112 case LOC_STATIC:
1113 printf_filtered ("static storage at address ");
1114 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1115 1, gdb_stdout);
1116 if (section_is_overlay (section))
1117 {
1118 load_addr = overlay_unmapped_address (load_addr, section);
1119 printf_filtered (",\n -- loaded at ");
1120 print_address_numeric (load_addr, 1, gdb_stdout);
1121 printf_filtered (" in overlay section %s", section->name);
1122 }
1123 break;
1124
1125 case LOC_REGPARM:
1126 printf_filtered ("an argument in register %s", reg_names[val]);
1127 break;
1128
1129 case LOC_REGPARM_ADDR:
1130 printf_filtered ("address of an argument in register %s", reg_names[val]);
1131 break;
1132
1133 case LOC_ARG:
1134 printf_filtered ("an argument at offset %ld", val);
1135 break;
1136
1137 case LOC_LOCAL_ARG:
1138 printf_filtered ("an argument at frame offset %ld", val);
1139 break;
1140
1141 case LOC_LOCAL:
1142 printf_filtered ("a local variable at frame offset %ld", val);
1143 break;
1144
1145 case LOC_REF_ARG:
1146 printf_filtered ("a reference argument at offset %ld", val);
1147 break;
1148
1149 case LOC_BASEREG:
1150 printf_filtered ("a variable at offset %ld from register %s",
1151 val, reg_names[basereg]);
1152 break;
1153
1154 case LOC_BASEREG_ARG:
1155 printf_filtered ("an argument at offset %ld from register %s",
1156 val, reg_names[basereg]);
1157 break;
1158
1159 case LOC_TYPEDEF:
1160 printf_filtered ("a typedef");
1161 break;
1162
1163 case LOC_BLOCK:
1164 printf_filtered ("a function at address ");
1165 #ifdef GDB_TARGET_MASK_DISAS_PC
1166 print_address_numeric
1167 (load_addr= GDB_TARGET_MASK_DISAS_PC (BLOCK_START (SYMBOL_BLOCK_VALUE (sym))),
1168 1, gdb_stdout);
1169 #else
1170 print_address_numeric (load_addr=BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
1171 1, gdb_stdout);
1172 #endif
1173 if (section_is_overlay (section))
1174 {
1175 load_addr = overlay_unmapped_address (load_addr, section);
1176 printf_filtered (",\n -- loaded at ");
1177 print_address_numeric (load_addr, 1, gdb_stdout);
1178 printf_filtered (" in overlay section %s", section->name);
1179 }
1180 break;
1181
1182 case LOC_UNRESOLVED:
1183 {
1184 struct minimal_symbol *msym;
1185
1186 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, NULL);
1187 if (msym == NULL)
1188 printf_filtered ("unresolved");
1189 else
1190 {
1191 section = SYMBOL_BFD_SECTION (msym);
1192 printf_filtered ("static storage at address ");
1193 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (msym),
1194 1, gdb_stdout);
1195 if (section_is_overlay (section))
1196 {
1197 load_addr = overlay_unmapped_address (load_addr, section);
1198 printf_filtered (",\n -- loaded at ");
1199 print_address_numeric (load_addr, 1, gdb_stdout);
1200 printf_filtered (" in overlay section %s", section->name);
1201 }
1202 }
1203 }
1204 break;
1205
1206 case LOC_OPTIMIZED_OUT:
1207 printf_filtered ("optimized out");
1208 break;
1209
1210 default:
1211 printf_filtered ("of unknown (botched) type");
1212 break;
1213 }
1214 printf_filtered (".\n");
1215 }
1216 \f
1217 void
1218 x_command (exp, from_tty)
1219 char *exp;
1220 int from_tty;
1221 {
1222 struct expression *expr;
1223 struct format_data fmt;
1224 struct cleanup *old_chain;
1225 struct value *val;
1226
1227 fmt.format = last_format;
1228 fmt.size = last_size;
1229 fmt.count = 1;
1230
1231 if (exp && *exp == '/')
1232 {
1233 exp++;
1234 fmt = decode_format (&exp, last_format, last_size);
1235 }
1236
1237 /* If we have an expression, evaluate it and use it as the address. */
1238
1239 if (exp != 0 && *exp != 0)
1240 {
1241 expr = parse_expression (exp);
1242 /* Cause expression not to be there any more
1243 if this command is repeated with Newline.
1244 But don't clobber a user-defined command's definition. */
1245 if (from_tty)
1246 *exp = 0;
1247 old_chain = make_cleanup ((make_cleanup_func) free_current_contents,
1248 &expr);
1249 val = evaluate_expression (expr);
1250 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_REF)
1251 val = value_ind (val);
1252 /* In rvalue contexts, such as this, functions are coerced into
1253 pointers to functions. This makes "x/i main" work. */
1254 if (/* last_format == 'i'
1255 && */ TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
1256 && VALUE_LVAL (val) == lval_memory)
1257 next_address = VALUE_ADDRESS (val);
1258 else
1259 next_address = value_as_pointer (val);
1260 if (VALUE_BFD_SECTION (val))
1261 next_section = VALUE_BFD_SECTION (val);
1262 do_cleanups (old_chain);
1263 }
1264
1265 do_examine (fmt, next_address, next_section);
1266
1267 /* If the examine succeeds, we remember its size and format for next time. */
1268 last_size = fmt.size;
1269 last_format = fmt.format;
1270
1271 /* Set a couple of internal variables if appropriate. */
1272 if (last_examine_value)
1273 {
1274 /* Make last address examined available to the user as $_. Use
1275 the correct pointer type. */
1276 set_internalvar (lookup_internalvar ("_"),
1277 value_from_longest (
1278 lookup_pointer_type (VALUE_TYPE (last_examine_value)),
1279 (LONGEST) last_examine_address));
1280
1281 /* Make contents of last address examined available to the user as $__.*/
1282 /* If the last value has not been fetched from memory then don't
1283 fetch it now - instead mark it by voiding the $__ variable. */
1284 if (VALUE_LAZY (last_examine_value))
1285 set_internalvar (lookup_internalvar ("__"),
1286 allocate_value (builtin_type_void));
1287 else
1288 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1289 }
1290 }
1291
1292 \f
1293 /* Add an expression to the auto-display chain.
1294 Specify the expression. */
1295
1296 static void
1297 display_command (exp, from_tty)
1298 char *exp;
1299 int from_tty;
1300 {
1301 struct format_data fmt;
1302 register struct expression *expr;
1303 register struct display *new;
1304
1305 if (exp == 0)
1306 {
1307 do_displays ();
1308 return;
1309 }
1310
1311 if (*exp == '/')
1312 {
1313 exp++;
1314 fmt = decode_format (&exp, 0, 0);
1315 if (fmt.size && fmt.format == 0)
1316 fmt.format = 'x';
1317 if (fmt.format == 'i' || fmt.format == 's')
1318 fmt.size = 'b';
1319 }
1320 else
1321 {
1322 fmt.format = 0;
1323 fmt.size = 0;
1324 fmt.count = 0;
1325 }
1326
1327 innermost_block = 0;
1328 expr = parse_expression (exp);
1329
1330 new = (struct display *) xmalloc (sizeof (struct display));
1331
1332 new->exp = expr;
1333 new->block = innermost_block;
1334 new->next = display_chain;
1335 new->number = ++display_number;
1336 new->format = fmt;
1337 new->status = enabled;
1338 display_chain = new;
1339
1340 if (from_tty && target_has_execution)
1341 do_one_display (new);
1342
1343 dont_repeat ();
1344 }
1345
1346 static void
1347 free_display (d)
1348 struct display *d;
1349 {
1350 free ((PTR)d->exp);
1351 free ((PTR)d);
1352 }
1353
1354 /* Clear out the display_chain.
1355 Done when new symtabs are loaded, since this invalidates
1356 the types stored in many expressions. */
1357
1358 void
1359 clear_displays ()
1360 {
1361 register struct display *d;
1362
1363 while ((d = display_chain) != NULL)
1364 {
1365 free ((PTR)d->exp);
1366 display_chain = d->next;
1367 free ((PTR)d);
1368 }
1369 }
1370
1371 /* Delete the auto-display number NUM. */
1372
1373 static void
1374 delete_display (num)
1375 int num;
1376 {
1377 register struct display *d1, *d;
1378
1379 if (!display_chain)
1380 error ("No display number %d.", num);
1381
1382 if (display_chain->number == num)
1383 {
1384 d1 = display_chain;
1385 display_chain = d1->next;
1386 free_display (d1);
1387 }
1388 else
1389 for (d = display_chain; ; d = d->next)
1390 {
1391 if (d->next == 0)
1392 error ("No display number %d.", num);
1393 if (d->next->number == num)
1394 {
1395 d1 = d->next;
1396 d->next = d1->next;
1397 free_display (d1);
1398 break;
1399 }
1400 }
1401 }
1402
1403 /* Delete some values from the auto-display chain.
1404 Specify the element numbers. */
1405
1406 static void
1407 undisplay_command (args, from_tty)
1408 char *args;
1409 int from_tty;
1410 {
1411 register char *p = args;
1412 register char *p1;
1413 register int num;
1414
1415 if (args == 0)
1416 {
1417 if (query ("Delete all auto-display expressions? "))
1418 clear_displays ();
1419 dont_repeat ();
1420 return;
1421 }
1422
1423 while (*p)
1424 {
1425 p1 = p;
1426 while (*p1 >= '0' && *p1 <= '9') p1++;
1427 if (*p1 && *p1 != ' ' && *p1 != '\t')
1428 error ("Arguments must be display numbers.");
1429
1430 num = atoi (p);
1431
1432 delete_display (num);
1433
1434 p = p1;
1435 while (*p == ' ' || *p == '\t') p++;
1436 }
1437 dont_repeat ();
1438 }
1439
1440 /* Display a single auto-display.
1441 Do nothing if the display cannot be printed in the current context,
1442 or if the display is disabled. */
1443
1444 static void
1445 do_one_display (d)
1446 struct display *d;
1447 {
1448 int within_current_scope;
1449
1450 if (d->status == disabled)
1451 return;
1452
1453 if (d->block)
1454 within_current_scope = contained_in (get_selected_block (), d->block);
1455 else
1456 within_current_scope = 1;
1457 if (!within_current_scope)
1458 return;
1459
1460 current_display_number = d->number;
1461
1462 annotate_display_begin ();
1463 printf_filtered ("%d", d->number);
1464 annotate_display_number_end ();
1465 printf_filtered (": ");
1466 if (d->format.size)
1467 {
1468 CORE_ADDR addr;
1469 value_ptr val;
1470
1471 annotate_display_format ();
1472
1473 printf_filtered ("x/");
1474 if (d->format.count != 1)
1475 printf_filtered ("%d", d->format.count);
1476 printf_filtered ("%c", d->format.format);
1477 if (d->format.format != 'i' && d->format.format != 's')
1478 printf_filtered ("%c", d->format.size);
1479 printf_filtered (" ");
1480
1481 annotate_display_expression ();
1482
1483 print_expression (d->exp, gdb_stdout);
1484 annotate_display_expression_end ();
1485
1486 if (d->format.count != 1)
1487 printf_filtered ("\n");
1488 else
1489 printf_filtered (" ");
1490
1491 val = evaluate_expression (d->exp);
1492 addr = value_as_pointer (val);
1493 if (d->format.format == 'i')
1494 addr = ADDR_BITS_REMOVE (addr);
1495
1496 annotate_display_value ();
1497
1498 do_examine (d->format, addr, VALUE_BFD_SECTION (val));
1499 }
1500 else
1501 {
1502 annotate_display_format ();
1503
1504 if (d->format.format)
1505 printf_filtered ("/%c ", d->format.format);
1506
1507 annotate_display_expression ();
1508
1509 print_expression (d->exp, gdb_stdout);
1510 annotate_display_expression_end ();
1511
1512 printf_filtered (" = ");
1513
1514 annotate_display_expression ();
1515
1516 print_formatted (evaluate_expression (d->exp),
1517 d->format.format, d->format.size);
1518 printf_filtered ("\n");
1519 }
1520
1521 annotate_display_end ();
1522
1523 gdb_flush (gdb_stdout);
1524 current_display_number = -1;
1525 }
1526
1527 /* Display all of the values on the auto-display chain which can be
1528 evaluated in the current scope. */
1529
1530 void
1531 do_displays ()
1532 {
1533 register struct display *d;
1534
1535 for (d = display_chain; d; d = d->next)
1536 do_one_display (d);
1537 }
1538
1539 /* Delete the auto-display which we were in the process of displaying.
1540 This is done when there is an error or a signal. */
1541
1542 void
1543 disable_display (num)
1544 int num;
1545 {
1546 register struct display *d;
1547
1548 for (d = display_chain; d; d = d->next)
1549 if (d->number == num)
1550 {
1551 d->status = disabled;
1552 return;
1553 }
1554 printf_unfiltered ("No display number %d.\n", num);
1555 }
1556
1557 void
1558 disable_current_display ()
1559 {
1560 if (current_display_number >= 0)
1561 {
1562 disable_display (current_display_number);
1563 fprintf_unfiltered (gdb_stderr, "Disabling display %d to avoid infinite recursion.\n",
1564 current_display_number);
1565 }
1566 current_display_number = -1;
1567 }
1568
1569 static void
1570 display_info (ignore, from_tty)
1571 char *ignore;
1572 int from_tty;
1573 {
1574 register struct display *d;
1575
1576 if (!display_chain)
1577 printf_unfiltered ("There are no auto-display expressions now.\n");
1578 else
1579 printf_filtered ("Auto-display expressions now in effect:\n\
1580 Num Enb Expression\n");
1581
1582 for (d = display_chain; d; d = d->next)
1583 {
1584 printf_filtered ("%d: %c ", d->number, "ny"[(int)d->status]);
1585 if (d->format.size)
1586 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1587 d->format.format);
1588 else if (d->format.format)
1589 printf_filtered ("/%c ", d->format.format);
1590 print_expression (d->exp, gdb_stdout);
1591 if (d->block && !contained_in (get_selected_block (), d->block))
1592 printf_filtered (" (cannot be evaluated in the current context)");
1593 printf_filtered ("\n");
1594 gdb_flush (gdb_stdout);
1595 }
1596 }
1597
1598 static void
1599 enable_display (args, from_tty)
1600 char *args;
1601 int from_tty;
1602 {
1603 register char *p = args;
1604 register char *p1;
1605 register int num;
1606 register struct display *d;
1607
1608 if (p == 0)
1609 {
1610 for (d = display_chain; d; d = d->next)
1611 d->status = enabled;
1612 }
1613 else
1614 while (*p)
1615 {
1616 p1 = p;
1617 while (*p1 >= '0' && *p1 <= '9')
1618 p1++;
1619 if (*p1 && *p1 != ' ' && *p1 != '\t')
1620 error ("Arguments must be display numbers.");
1621
1622 num = atoi (p);
1623
1624 for (d = display_chain; d; d = d->next)
1625 if (d->number == num)
1626 {
1627 d->status = enabled;
1628 goto win;
1629 }
1630 printf_unfiltered ("No display number %d.\n", num);
1631 win:
1632 p = p1;
1633 while (*p == ' ' || *p == '\t')
1634 p++;
1635 }
1636 }
1637
1638 /* ARGSUSED */
1639 static void
1640 disable_display_command (args, from_tty)
1641 char *args;
1642 int from_tty;
1643 {
1644 register char *p = args;
1645 register char *p1;
1646 register struct display *d;
1647
1648 if (p == 0)
1649 {
1650 for (d = display_chain; d; d = d->next)
1651 d->status = disabled;
1652 }
1653 else
1654 while (*p)
1655 {
1656 p1 = p;
1657 while (*p1 >= '0' && *p1 <= '9')
1658 p1++;
1659 if (*p1 && *p1 != ' ' && *p1 != '\t')
1660 error ("Arguments must be display numbers.");
1661
1662 disable_display (atoi (p));
1663
1664 p = p1;
1665 while (*p == ' ' || *p == '\t')
1666 p++;
1667 }
1668 }
1669
1670 \f
1671 /* Print the value in stack frame FRAME of a variable
1672 specified by a struct symbol. */
1673
1674 void
1675 print_variable_value (var, frame, stream)
1676 struct symbol *var;
1677 struct frame_info *frame;
1678 GDB_FILE *stream;
1679 {
1680 value_ptr val = read_var_value (var, frame);
1681
1682 value_print (val, stream, 0, Val_pretty_default);
1683 }
1684
1685 /* Print the arguments of a stack frame, given the function FUNC
1686 running in that frame (as a symbol), the info on the frame,
1687 and the number of args according to the stack frame (or -1 if unknown). */
1688
1689 /* References here and elsewhere to "number of args according to the
1690 stack frame" appear in all cases to refer to "number of ints of args
1691 according to the stack frame". At least for VAX, i386, isi. */
1692
1693 void
1694 print_frame_args (func, fi, num, stream)
1695 struct symbol *func;
1696 struct frame_info *fi;
1697 int num;
1698 GDB_FILE *stream;
1699 {
1700 struct block *b = NULL;
1701 int nsyms = 0;
1702 int first = 1;
1703 register int i;
1704 register struct symbol *sym;
1705 register value_ptr val;
1706 /* Offset of next stack argument beyond the one we have seen that is
1707 at the highest offset.
1708 -1 if we haven't come to a stack argument yet. */
1709 long highest_offset = -1;
1710 int arg_size;
1711 /* Number of ints of arguments that we have printed so far. */
1712 int args_printed = 0;
1713
1714 if (func)
1715 {
1716 b = SYMBOL_BLOCK_VALUE (func);
1717 nsyms = BLOCK_NSYMS (b);
1718 }
1719
1720 for (i = 0; i < nsyms; i++)
1721 {
1722 QUIT;
1723 sym = BLOCK_SYM (b, i);
1724
1725 /* Keep track of the highest stack argument offset seen, and
1726 skip over any kinds of symbols we don't care about. */
1727
1728 switch (SYMBOL_CLASS (sym)) {
1729 case LOC_ARG:
1730 case LOC_REF_ARG:
1731 {
1732 long current_offset = SYMBOL_VALUE (sym);
1733 arg_size = TYPE_LENGTH (SYMBOL_TYPE (sym));
1734
1735 /* Compute address of next argument by adding the size of
1736 this argument and rounding to an int boundary. */
1737 current_offset
1738 = ((current_offset + arg_size + sizeof (int) - 1)
1739 & ~(sizeof (int) - 1));
1740
1741 /* If this is the highest offset seen yet, set highest_offset. */
1742 if (highest_offset == -1
1743 || (current_offset > highest_offset))
1744 highest_offset = current_offset;
1745
1746 /* Add the number of ints we're about to print to args_printed. */
1747 args_printed += (arg_size + sizeof (int) - 1) / sizeof (int);
1748 }
1749
1750 /* We care about types of symbols, but don't need to keep track of
1751 stack offsets in them. */
1752 case LOC_REGPARM:
1753 case LOC_REGPARM_ADDR:
1754 case LOC_LOCAL_ARG:
1755 case LOC_BASEREG_ARG:
1756 break;
1757
1758 /* Other types of symbols we just skip over. */
1759 default:
1760 continue;
1761 }
1762
1763 /* We have to look up the symbol because arguments can have
1764 two entries (one a parameter, one a local) and the one we
1765 want is the local, which lookup_symbol will find for us.
1766 This includes gcc1 (not gcc2) on the sparc when passing a
1767 small structure and gcc2 when the argument type is float
1768 and it is passed as a double and converted to float by
1769 the prologue (in the latter case the type of the LOC_ARG
1770 symbol is double and the type of the LOC_LOCAL symbol is
1771 float). */
1772 /* But if the parameter name is null, don't try it.
1773 Null parameter names occur on the RS/6000, for traceback tables.
1774 FIXME, should we even print them? */
1775
1776 if (*SYMBOL_NAME (sym))
1777 {
1778 struct symbol *nsym;
1779 nsym = lookup_symbol
1780 (SYMBOL_NAME (sym),
1781 b, VAR_NAMESPACE, (int *)NULL, (struct symtab **)NULL);
1782 if (SYMBOL_CLASS (nsym) == LOC_REGISTER)
1783 {
1784 /* There is a LOC_ARG/LOC_REGISTER pair. This means that
1785 it was passed on the stack and loaded into a register,
1786 or passed in a register and stored in a stack slot.
1787 GDB 3.x used the LOC_ARG; GDB 4.0-4.11 used the LOC_REGISTER.
1788
1789 Reasons for using the LOC_ARG:
1790 (1) because find_saved_registers may be slow for remote
1791 debugging,
1792 (2) because registers are often re-used and stack slots
1793 rarely (never?) are. Therefore using the stack slot is
1794 much less likely to print garbage.
1795
1796 Reasons why we might want to use the LOC_REGISTER:
1797 (1) So that the backtrace prints the same value as
1798 "print foo". I see no compelling reason why this needs
1799 to be the case; having the backtrace print the value which
1800 was passed in, and "print foo" print the value as modified
1801 within the called function, makes perfect sense to me.
1802
1803 Additional note: It might be nice if "info args" displayed
1804 both values.
1805 One more note: There is a case with sparc structure passing
1806 where we need to use the LOC_REGISTER, but this is dealt with
1807 by creating a single LOC_REGPARM in symbol reading. */
1808
1809 /* Leave sym (the LOC_ARG) alone. */
1810 ;
1811 }
1812 else
1813 sym = nsym;
1814 }
1815
1816 /* Print the current arg. */
1817 if (! first)
1818 fprintf_filtered (stream, ", ");
1819 wrap_here (" ");
1820
1821 annotate_arg_begin ();
1822
1823 fprintf_symbol_filtered (stream, SYMBOL_SOURCE_NAME (sym),
1824 SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
1825 annotate_arg_name_end ();
1826 fputs_filtered ("=", stream);
1827
1828 /* Avoid value_print because it will deref ref parameters. We just
1829 want to print their addresses. Print ??? for args whose address
1830 we do not know. We pass 2 as "recurse" to val_print because our
1831 standard indentation here is 4 spaces, and val_print indents
1832 2 for each recurse. */
1833 val = read_var_value (sym, fi);
1834
1835 annotate_arg_value (val == NULL ? NULL : VALUE_TYPE (val));
1836
1837 if (val)
1838 {
1839 #ifdef GDB_TARGET_IS_D10V
1840 if (SYMBOL_CLASS(sym) == LOC_REGPARM && TYPE_CODE(VALUE_TYPE(val)) == TYPE_CODE_PTR)
1841 TYPE_LENGTH(VALUE_TYPE(val)) = 2;
1842 #endif
1843 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), VALUE_ADDRESS (val),
1844 stream, 0, 0, 2, Val_no_prettyprint);
1845 }
1846 else
1847 fputs_filtered ("???", stream);
1848
1849 annotate_arg_end ();
1850
1851 first = 0;
1852 }
1853
1854 /* Don't print nameless args in situations where we don't know
1855 enough about the stack to find them. */
1856 if (num != -1)
1857 {
1858 long start;
1859
1860 if (highest_offset == -1)
1861 start = FRAME_ARGS_SKIP;
1862 else
1863 start = highest_offset;
1864
1865 print_frame_nameless_args (fi, start, num - args_printed,
1866 first, stream);
1867 }
1868 }
1869
1870 /* Print nameless args on STREAM.
1871 FI is the frameinfo for this frame, START is the offset
1872 of the first nameless arg, and NUM is the number of nameless args to
1873 print. FIRST is nonzero if this is the first argument (not just
1874 the first nameless arg). */
1875
1876 static void
1877 print_frame_nameless_args (fi, start, num, first, stream)
1878 struct frame_info *fi;
1879 long start;
1880 int num;
1881 int first;
1882 GDB_FILE *stream;
1883 {
1884 int i;
1885 CORE_ADDR argsaddr;
1886 long arg_value;
1887
1888 for (i = 0; i < num; i++)
1889 {
1890 QUIT;
1891 #ifdef NAMELESS_ARG_VALUE
1892 NAMELESS_ARG_VALUE (fi, start, &arg_value);
1893 #else
1894 argsaddr = FRAME_ARGS_ADDRESS (fi);
1895 if (!argsaddr)
1896 return;
1897
1898 arg_value = read_memory_integer (argsaddr + start, sizeof (int));
1899 #endif
1900
1901 if (!first)
1902 fprintf_filtered (stream, ", ");
1903
1904 #ifdef PRINT_NAMELESS_INTEGER
1905 PRINT_NAMELESS_INTEGER (stream, arg_value);
1906 #else
1907 #ifdef PRINT_TYPELESS_INTEGER
1908 PRINT_TYPELESS_INTEGER (stream, builtin_type_int, (LONGEST) arg_value);
1909 #else
1910 fprintf_filtered (stream, "%ld", arg_value);
1911 #endif /* PRINT_TYPELESS_INTEGER */
1912 #endif /* PRINT_NAMELESS_INTEGER */
1913 first = 0;
1914 start += sizeof (int);
1915 }
1916 }
1917 \f
1918 /* ARGSUSED */
1919 static void
1920 printf_command (arg, from_tty)
1921 char *arg;
1922 int from_tty;
1923 {
1924 register char *f;
1925 register char *s = arg;
1926 char *string;
1927 value_ptr *val_args;
1928 char *substrings;
1929 char *current_substring;
1930 int nargs = 0;
1931 int allocated_args = 20;
1932 struct cleanup *old_cleanups;
1933
1934 val_args = (value_ptr *) xmalloc (allocated_args * sizeof (value_ptr));
1935 old_cleanups = make_cleanup ((make_cleanup_func) free_current_contents,
1936 &val_args);
1937
1938 if (s == 0)
1939 error_no_arg ("format-control string and values to print");
1940
1941 /* Skip white space before format string */
1942 while (*s == ' ' || *s == '\t') s++;
1943
1944 /* A format string should follow, enveloped in double quotes */
1945 if (*s++ != '"')
1946 error ("Bad format string, missing '\"'.");
1947
1948 /* Parse the format-control string and copy it into the string STRING,
1949 processing some kinds of escape sequence. */
1950
1951 f = string = (char *) alloca (strlen (s) + 1);
1952
1953 while (*s != '"')
1954 {
1955 int c = *s++;
1956 switch (c)
1957 {
1958 case '\0':
1959 error ("Bad format string, non-terminated '\"'.");
1960
1961 case '\\':
1962 switch (c = *s++)
1963 {
1964 case '\\':
1965 *f++ = '\\';
1966 break;
1967 case 'a':
1968 #ifdef __STDC__
1969 *f++ = '\a';
1970 #else
1971 *f++ = '\007'; /* Bell */
1972 #endif
1973 break;
1974 case 'b':
1975 *f++ = '\b';
1976 break;
1977 case 'f':
1978 *f++ = '\f';
1979 break;
1980 case 'n':
1981 *f++ = '\n';
1982 break;
1983 case 'r':
1984 *f++ = '\r';
1985 break;
1986 case 't':
1987 *f++ = '\t';
1988 break;
1989 case 'v':
1990 *f++ = '\v';
1991 break;
1992 case '"':
1993 *f++ = '"';
1994 break;
1995 default:
1996 /* ??? TODO: handle other escape sequences */
1997 error ("Unrecognized escape character \\%c in format string.",
1998 c);
1999 }
2000 break;
2001
2002 default:
2003 *f++ = c;
2004 }
2005 }
2006
2007 /* Skip over " and following space and comma. */
2008 s++;
2009 *f++ = '\0';
2010 while (*s == ' ' || *s == '\t') s++;
2011
2012 if (*s != ',' && *s != 0)
2013 error ("Invalid argument syntax");
2014
2015 if (*s == ',') s++;
2016 while (*s == ' ' || *s == '\t') s++;
2017
2018 /* Need extra space for the '\0's. Doubling the size is sufficient. */
2019 substrings = alloca (strlen (string) * 2);
2020 current_substring = substrings;
2021
2022 {
2023 /* Now scan the string for %-specs and see what kinds of args they want.
2024 argclass[I] classifies the %-specs so we can give printf_filtered
2025 something of the right size. */
2026
2027 enum argclass {no_arg, int_arg, string_arg, double_arg, long_long_arg};
2028 enum argclass *argclass;
2029 enum argclass this_argclass;
2030 char *last_arg;
2031 int nargs_wanted;
2032 int lcount;
2033 int i;
2034
2035 argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
2036 nargs_wanted = 0;
2037 f = string;
2038 last_arg = string;
2039 while (*f)
2040 if (*f++ == '%')
2041 {
2042 lcount = 0;
2043 while (strchr ("0123456789.hlL-+ #", *f))
2044 {
2045 if (*f == 'l' || *f == 'L')
2046 lcount++;
2047 f++;
2048 }
2049 switch (*f)
2050 {
2051 case 's':
2052 this_argclass = string_arg;
2053 break;
2054
2055 case 'e':
2056 case 'f':
2057 case 'g':
2058 this_argclass = double_arg;
2059 break;
2060
2061 case '*':
2062 error ("`*' not supported for precision or width in printf");
2063
2064 case 'n':
2065 error ("Format specifier `n' not supported in printf");
2066
2067 case '%':
2068 this_argclass = no_arg;
2069 break;
2070
2071 default:
2072 if (lcount > 1)
2073 this_argclass = long_long_arg;
2074 else
2075 this_argclass = int_arg;
2076 break;
2077 }
2078 f++;
2079 if (this_argclass != no_arg)
2080 {
2081 strncpy (current_substring, last_arg, f - last_arg);
2082 current_substring += f - last_arg;
2083 *current_substring++ = '\0';
2084 last_arg = f;
2085 argclass[nargs_wanted++] = this_argclass;
2086 }
2087 }
2088
2089 /* Now, parse all arguments and evaluate them.
2090 Store the VALUEs in VAL_ARGS. */
2091
2092 while (*s != '\0')
2093 {
2094 char *s1;
2095 if (nargs == allocated_args)
2096 val_args = (value_ptr *) xrealloc ((char *) val_args,
2097 (allocated_args *= 2)
2098 * sizeof (value_ptr));
2099 s1 = s;
2100 val_args[nargs] = parse_to_comma_and_eval (&s1);
2101
2102 /* If format string wants a float, unchecked-convert the value to
2103 floating point of the same size */
2104
2105 if (argclass[nargs] == double_arg)
2106 {
2107 struct type *type = VALUE_TYPE (val_args[nargs]);
2108 if (TYPE_LENGTH (type) == sizeof (float))
2109 VALUE_TYPE (val_args[nargs]) = builtin_type_float;
2110 if (TYPE_LENGTH (type) == sizeof (double))
2111 VALUE_TYPE (val_args[nargs]) = builtin_type_double;
2112 }
2113 nargs++;
2114 s = s1;
2115 if (*s == ',')
2116 s++;
2117 }
2118
2119 if (nargs != nargs_wanted)
2120 error ("Wrong number of arguments for specified format-string");
2121
2122 /* Now actually print them. */
2123 current_substring = substrings;
2124 for (i = 0; i < nargs; i++)
2125 {
2126 switch (argclass[i])
2127 {
2128 case string_arg:
2129 {
2130 char *str;
2131 CORE_ADDR tem;
2132 int j;
2133 tem = value_as_pointer (val_args[i]);
2134
2135 /* This is a %s argument. Find the length of the string. */
2136 for (j = 0; ; j++)
2137 {
2138 char c;
2139 QUIT;
2140 read_memory_section (tem + j, &c, 1,
2141 VALUE_BFD_SECTION (val_args[i]));
2142 if (c == 0)
2143 break;
2144 }
2145
2146 /* Copy the string contents into a string inside GDB. */
2147 str = (char *) alloca (j + 1);
2148 read_memory_section (tem, str, j, VALUE_BFD_SECTION (val_args[i]));
2149 str[j] = 0;
2150
2151 printf_filtered (current_substring, str);
2152 }
2153 break;
2154 case double_arg:
2155 {
2156 double val = value_as_double (val_args[i]);
2157 printf_filtered (current_substring, val);
2158 break;
2159 }
2160 case long_long_arg:
2161 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2162 {
2163 long long val = value_as_long (val_args[i]);
2164 printf_filtered (current_substring, val);
2165 break;
2166 }
2167 #else
2168 error ("long long not supported in printf");
2169 #endif
2170 case int_arg:
2171 {
2172 /* FIXME: there should be separate int_arg and long_arg. */
2173 long val = value_as_long (val_args[i]);
2174 printf_filtered (current_substring, val);
2175 break;
2176 }
2177 default:
2178 error ("internal error in printf_command");
2179 }
2180 /* Skip to the next substring. */
2181 current_substring += strlen (current_substring) + 1;
2182 }
2183 /* Print the portion of the format string after the last argument. */
2184 printf_filtered (last_arg);
2185 }
2186 do_cleanups (old_cleanups);
2187 }
2188 \f
2189 /* Dump a specified section of assembly code. With no command line
2190 arguments, this command will dump the assembly code for the
2191 function surrounding the pc value in the selected frame. With one
2192 argument, it will dump the assembly code surrounding that pc value.
2193 Two arguments are interpeted as bounds within which to dump
2194 assembly. */
2195
2196 /* ARGSUSED */
2197 static void
2198 disassemble_command (arg, from_tty)
2199 char *arg;
2200 int from_tty;
2201 {
2202 CORE_ADDR low, high;
2203 char *name;
2204 CORE_ADDR pc, pc_masked;
2205 char *space_index;
2206
2207 name = NULL;
2208 if (!arg)
2209 {
2210 if (!selected_frame)
2211 error ("No frame selected.\n");
2212
2213 pc = get_frame_pc (selected_frame);
2214 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
2215 error ("No function contains program counter for selected frame.\n");
2216 low += FUNCTION_START_OFFSET;
2217 }
2218 else if (!(space_index = (char *) strchr (arg, ' ')))
2219 {
2220 /* One argument. */
2221 pc = parse_and_eval_address (arg);
2222 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
2223 error ("No function contains specified address.\n");
2224 low += FUNCTION_START_OFFSET;
2225 }
2226 else
2227 {
2228 /* Two arguments. */
2229 *space_index = '\0';
2230 low = parse_and_eval_address (arg);
2231 high = parse_and_eval_address (space_index + 1);
2232 }
2233
2234 printf_filtered ("Dump of assembler code ");
2235 if (name != NULL)
2236 {
2237 printf_filtered ("for function %s:\n", name);
2238 }
2239 else
2240 {
2241 printf_filtered ("from ");
2242 print_address_numeric (low, 1, gdb_stdout);
2243 printf_filtered (" to ");
2244 print_address_numeric (high, 1, gdb_stdout);
2245 printf_filtered (":\n");
2246 }
2247
2248 /* Dump the specified range. */
2249 pc = low;
2250
2251 #ifdef GDB_TARGET_MASK_DISAS_PC
2252 pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
2253 #else
2254 pc_masked = pc;
2255 #endif
2256
2257 while (pc_masked < high)
2258 {
2259 QUIT;
2260 print_address (pc_masked, gdb_stdout);
2261 printf_filtered (":\t");
2262 /* We often wrap here if there are long symbolic names. */
2263 wrap_here (" ");
2264 pc += print_insn (pc, gdb_stdout);
2265 printf_filtered ("\n");
2266
2267 #ifdef GDB_TARGET_MASK_DISAS_PC
2268 pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
2269 #else
2270 pc_masked = pc;
2271 #endif
2272 }
2273 printf_filtered ("End of assembler dump.\n");
2274 gdb_flush (gdb_stdout);
2275 }
2276
2277 /* Print the instruction at address MEMADDR in debugged memory,
2278 on STREAM. Returns length of the instruction, in bytes. */
2279
2280 static int
2281 print_insn (memaddr, stream)
2282 CORE_ADDR memaddr;
2283 GDB_FILE *stream;
2284 {
2285 /* If there's no disassembler, something is very wrong. */
2286 if (tm_print_insn == NULL)
2287 abort ();
2288
2289 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2290 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
2291 else
2292 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
2293
2294 if (target_architecture != NULL)
2295 tm_print_insn_info.mach = target_architecture->mach;
2296 /* else: should set .mach=0 but some disassemblers don't grok this */
2297
2298 return (*tm_print_insn) (memaddr, &tm_print_insn_info);
2299 }
2300
2301 \f
2302 void
2303 _initialize_printcmd ()
2304 {
2305 current_display_number = -1;
2306
2307 add_info ("address", address_info,
2308 "Describe where symbol SYM is stored.");
2309
2310 add_info ("symbol", sym_info,
2311 "Describe what symbol is at location ADDR.\n\
2312 Only for symbols with fixed locations (global or static scope).");
2313
2314 add_com ("x", class_vars, x_command,
2315 concat ("Examine memory: x/FMT ADDRESS.\n\
2316 ADDRESS is an expression for the memory address to examine.\n\
2317 FMT is a repeat count followed by a format letter and a size letter.\n\
2318 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2319 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n",
2320 "Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2321 The specified number of objects of the specified size are printed\n\
2322 according to the format.\n\n\
2323 Defaults for format and size letters are those previously used.\n\
2324 Default count is 1. Default address is following last thing printed\n\
2325 with this command or \"print\".", NULL));
2326
2327 add_com ("disassemble", class_vars, disassemble_command,
2328 "Disassemble a specified section of memory.\n\
2329 Default is the function surrounding the pc of the selected frame.\n\
2330 With a single argument, the function surrounding that address is dumped.\n\
2331 Two arguments are taken as a range of memory to dump.");
2332
2333 #if 0
2334 add_com ("whereis", class_vars, whereis_command,
2335 "Print line number and file of definition of variable.");
2336 #endif
2337
2338 add_info ("display", display_info,
2339 "Expressions to display when program stops, with code numbers.");
2340
2341 add_cmd ("undisplay", class_vars, undisplay_command,
2342 "Cancel some expressions to be displayed when program stops.\n\
2343 Arguments are the code numbers of the expressions to stop displaying.\n\
2344 No argument means cancel all automatic-display expressions.\n\
2345 \"delete display\" has the same effect as this command.\n\
2346 Do \"info display\" to see current list of code numbers.",
2347 &cmdlist);
2348
2349 add_com ("display", class_vars, display_command,
2350 "Print value of expression EXP each time the program stops.\n\
2351 /FMT may be used before EXP as in the \"print\" command.\n\
2352 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2353 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2354 and examining is done as in the \"x\" command.\n\n\
2355 With no argument, display all currently requested auto-display expressions.\n\
2356 Use \"undisplay\" to cancel display requests previously made."
2357 );
2358
2359 add_cmd ("display", class_vars, enable_display,
2360 "Enable some expressions to be displayed when program stops.\n\
2361 Arguments are the code numbers of the expressions to resume displaying.\n\
2362 No argument means enable all automatic-display expressions.\n\
2363 Do \"info display\" to see current list of code numbers.", &enablelist);
2364
2365 add_cmd ("display", class_vars, disable_display_command,
2366 "Disable some expressions to be displayed when program stops.\n\
2367 Arguments are the code numbers of the expressions to stop displaying.\n\
2368 No argument means disable all automatic-display expressions.\n\
2369 Do \"info display\" to see current list of code numbers.", &disablelist);
2370
2371 add_cmd ("display", class_vars, undisplay_command,
2372 "Cancel some expressions to be displayed when program stops.\n\
2373 Arguments are the code numbers of the expressions to stop displaying.\n\
2374 No argument means cancel all automatic-display expressions.\n\
2375 Do \"info display\" to see current list of code numbers.", &deletelist);
2376
2377 add_com ("printf", class_vars, printf_command,
2378 "printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2379 This is useful for formatted output in user-defined commands.");
2380
2381 add_com ("output", class_vars, output_command,
2382 "Like \"print\" but don't put in value history and don't print newline.\n\
2383 This is useful in user-defined commands.");
2384
2385 add_prefix_cmd ("set", class_vars, set_command,
2386 concat ("Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2387 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2388 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2389 with $), a register (a few standard names starting with $), or an actual\n\
2390 variable in the program being debugged. EXP is any valid expression.\n",
2391 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2392 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2393 You can see these environment settings with the \"show\" command.", NULL),
2394 &setlist, "set ", 1, &cmdlist);
2395
2396 /* "call" is the same as "set", but handy for dbx users to call fns. */
2397 add_com ("call", class_vars, call_command,
2398 "Call a function in the program.\n\
2399 The argument is the function name and arguments, in the notation of the\n\
2400 current working language. The result is printed and saved in the value\n\
2401 history, if it is not void.");
2402
2403 add_cmd ("variable", class_vars, set_command,
2404 "Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2405 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2406 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2407 with $), a register (a few standard names starting with $), or an actual\n\
2408 variable in the program being debugged. EXP is any valid expression.\n\
2409 This may usually be abbreviated to simply \"set\".",
2410 &setlist);
2411
2412 add_com ("print", class_vars, print_command,
2413 concat ("Print value of expression EXP.\n\
2414 Variables accessible are those of the lexical environment of the selected\n\
2415 stack frame, plus all those whose scope is global or an entire file.\n\
2416 \n\
2417 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2418 $$NUM refers to NUM'th value back from the last one.\n\
2419 Names starting with $ refer to registers (with the values they would have\n",
2420 "if the program were to return to the stack frame now selected, restoring\n\
2421 all registers saved by frames farther in) or else to debugger\n\
2422 \"convenience\" variables (any such name not a known register).\n\
2423 Use assignment expressions to give values to convenience variables.\n",
2424 "\n\
2425 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2426 @ is a binary operator for treating consecutive data objects\n\
2427 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2428 element is FOO, whose second element is stored in the space following\n\
2429 where FOO is stored, etc. FOO must be an expression whose value\n\
2430 resides in memory.\n",
2431 "\n\
2432 EXP may be preceded with /FMT, where FMT is a format letter\n\
2433 but no count or size letter (see \"x\" command).", NULL));
2434 add_com_alias ("p", "print", class_vars, 1);
2435
2436 add_com ("inspect", class_vars, inspect_command,
2437 "Same as \"print\" command, except that if you are running in the epoch\n\
2438 environment, the value is printed in its own window.");
2439
2440 add_show_from_set (
2441 add_set_cmd ("max-symbolic-offset", no_class, var_uinteger,
2442 (char *)&max_symbolic_offset,
2443 "Set the largest offset that will be printed in <symbol+1234> form.",
2444 &setprintlist),
2445 &showprintlist);
2446 add_show_from_set (
2447 add_set_cmd ("symbol-filename", no_class, var_boolean,
2448 (char *)&print_symbol_filename,
2449 "Set printing of source filename and line number with <symbol>.",
2450 &setprintlist),
2451 &showprintlist);
2452
2453 /* For examine/instruction a single byte quantity is specified as
2454 the data. This avoids problems with value_at_lazy() requiring a
2455 valid data type (and rejecting VOID). */
2456 examine_i_type = init_type (TYPE_CODE_INT, 1, 0, "examine_i_type", NULL);
2457
2458 examine_b_type = init_type (TYPE_CODE_INT, 1, 0, "examine_b_type", NULL);
2459 examine_h_type = init_type (TYPE_CODE_INT, 2, 0, "examine_h_type", NULL);
2460 examine_w_type = init_type (TYPE_CODE_INT, 4, 0, "examine_w_type", NULL);
2461 examine_g_type = init_type (TYPE_CODE_INT, 8, 0, "examine_g_type", NULL);
2462
2463 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2464 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2465 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2466 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2467 tm_print_insn_info.print_address_func = dis_asm_print_address;
2468 }
This page took 0.084447 seconds and 4 git commands to generate.